Технологии локальных вычислительных сетей. Сеть и сетевая технология

ВВЕДЕНИЕ………………………………………………………………..3

1 СЕТИ ETHERNET И FAST ETHERNET………………………………5

2 СЕТЬ TOKEN-RING…………………………………………………….9

3 СЕTЬ ARCNET………………………………………………………….14

4 СЕТЬ FDDI………………………………………………………………18

5 СЕТЬ 100VG-AnyLAN………………………………………………….23

6 СВЕРХСКОРОСТНЫЕ СЕТИ………………………………………….25

7 БЕСПРОВОДНЫЕ СЕТИ……………………………………………….31

ЗАКЛЮЧЕНИЕ…………………………………………………………….36

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………39


ВВЕДЕНИЕ

За время, прошедшее с момента появления первых локальных сетей, было разработано несколько сот самых разных сетевых технологий, однако заметное распространение получили немногие. Это связано, прежде всего, с высоким уровнем стандартизации принципов организации сетей и с поддержкой их известными компаниями. Тем не менее, не всегда стандартные сети обладают рекордными характеристиками, обеспечивают наиболее оптимальные режимы обмена. Но большие объемы выпуска их аппаратуры и, следовательно, ее невысокая стоимость дают им огромные преимущества. Немаловажно и то, что производители программных средств также в первую очередь ориентируются на самые распространенные сети. Поэтому пользователь, выбирающий стандартные сети, имеет полную гарантию совместимости аппаратуры и программ.

Целью данной курсовой работы является рассмотрение существующих технологий локальных сетей их характеристик и преимуществ или недостатков друг перед другом.

Я выбрал тему технологий локальных сетей, из-за того, что на мой взгляд, эта тема сейчас особенно актуальна, когда во всем мире ценится мобильность, скорость и удобство, с наименьшей тратой времени, насколько это возможно.

В настоящее время уменьшение количества типов используемых сетей стало тенденцией. Дело в том, что увеличение скорости передачи в локальных сетях до 100 и даже до 1000 Мбит/с требует применения самых передовых технологий, проведения дорогих научных исследований. Естественно, это могут позволить себе только крупнейшие фирмы, которые поддерживают свои стандартные сети и их более совершенные разновидности. К тому же большое количество потребителей уже установило у себя какие-то сети и не желает сразу и полностью заменять сетевое оборудование. В ближайшем будущем вряд ли стоит ожидать того, что будут приняты принципиально новые стандарты.

На рынке предлагаются стандартные локальные сети всех возможных топологий, так что выбор у пользователей имеется. Стандартные сети обеспечивают широкий диапазон допустимых размеров сети, количества абонентов и, что не менее важно, цен на аппаратуру. Но сделать выбор все равно непросто. Ведь в отличие от программных средств, заменить которые нетрудно, аппаратура обычно служит многие годы, ее замена ведет не только к значительным затратам, к необходимости перекладки кабелей, но и к пересмотру системы компьютерных средств организации. В связи с этим ошибки в выборе аппаратуры обычно обходятся гораздо дороже ошибок при выборе программных средств.

1 СЕТИ ETHERNET И FAST ETHERNET

Наибольшее распространение среди стандартных сетей получила сеть Ethernet. Впервые она появилась в 1972 году (разработчиком выступила известная фирма Xerox). Сеть оказалась довольно удачной, и вследствие этого ее в 1980 году поддержали такие крупнейшие компании, как DEC и Intel). Их стараниями в 1985 году сеть Ethernet стала международным стандартом, ее приняли крупнейшие международные организации по стандартам: комитет 802 IEEE (Institute of Electrical and Electronic Engineers) и ECMA (European Computer Manufacturers Association).

Стандарт получил название IEEE 802.3 (по-английски читается как "eight oh two dot three"). Он определяет множественный доступ к моноканалу типа шина с обнаружением конфликтов и контролем передачи. Этому стандарту удовлетворяли и некоторые другие сети, так как уровень его детализации невысок. В результате сети стандарта IEEE 802.3 нередко были несовместимы между собой как по конструктивным, так и по электрическим характеристикам. Однако в последнее время стандарт IEEE 802.3 считается стандартом именно сети Ethernet.

Основные характеристики первоначального стандарта IEEE 802.3:

  • топология – шина;
  • среда передачи – коаксиальный кабель;
  • скорость передачи – 10 Мбит/с;
  • максимальная длина сети – 5 км;
  • максимальное количество абонентов – до 1024;
  • длина сегмента сети – до 500 м;
  • количество абонентов на одном сегменте – до 100;
  • метод доступа – CSMA/CD;
  • передача узкополосная, то есть без модуляции (моноканал).

Строго говоря, между стандартами IEEE 802.3 и Ethernet существуют незначительные отличия, но о них обычно предпочитают не вспоминать.

Сеть Ethernet сейчас наиболее популярна в мире (более 90% рынка), предположительно таковой она и останется в ближайшие годы. Этому в немалой степени способствовало то, что с самого начала характеристики, параметры, протоколы сети были открыты, в результате чего огромное число производителей во всем мире стали выпускать аппаратуру Ethernet, полностью совместимую между собой.

В классической сети Ethernet применялся 50-омный коаксиальный кабель двух видов (толстый и тонкий). Однако в последнее время (с начала 90-х годов) наибольшее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары. Определен также стандарт для применения в сети оптоволоконного кабеля. Для учета этих изменений в изначальный стандарт IEEE 802.3 были сделаны соответствующие добавления. В 1995 году появился дополнительный стандарт на более быструю версию Ethernet, работающую на скорости 100 Мбит/с (так называемый Fast Ethernet, стандарт IEEE 802.3u), использующую в качестве среды передачи витую пару или оптоволоконный кабель. В 1997 году появилась и версия на скорость 1000 Мбит/с (Gigabit Ethernet, стандарт IEEE 802.3z).

Помимо стандартной топологии шина все шире применяются топологии типа пассивная звезда и пассивное дерево.


Классическая топология сети Ethernet

Максимальная длина кабеля сети в целом (максимальный путь сигнала) теоретически может достигать 6,5 километров, но практически не превышает 3,5 километров.

В сети Fast Ethernet не предусмотрена физическая топология шина, используется только пассивная звезда или пассивное дерево. К тому же в Fast Ethernet гораздо более жесткие требования к предельной длине сети. Ведь при увеличении в 10 раз скорости передачи и сохранении формата пакета его минимальная длина становится в десять раз короче. Таким образом в 10 раз уменьшается допустимая величина двойного времени прохождения сигнала по сети (5,12 мкс против 51,2 мкс в Ethernet).

Для передачи информации в сети Ethernet применяется стандартный манчестерский код.

Доступ к сети Ethernet осуществляется по случайному методу CSMA/CD, обеспечивающему равноправие абонентов. В сети используются пакеты переменной длины со структурой.

Для сети Ethernet, работающей на скорости 10 Мбит/с, стандарт определяет четыре основных типа сегментов сети, ориентированных на различные среды передачи информации:

  • 10BASE5 (толстый коаксиальный кабель);
  • 10BASE2 (тонкий коаксиальный кабель);
  • 10BASE-T (витая пара);
  • 10BASE-FL (оптоволоконный кабель).

Наименование сегмента включает в себя три элемента: цифра "10" означает скорость передачи 10 Мбит/с, слово BASE – передачу в основной полосе частот (то есть без модуляции высокочастотного сигнала), а последний элемент – допустимую длину сегмента: "5" – 500 метров, "2" – 200 метров (точнее, 185 метров) или тип линии связи: "Т" – витая пара (от английского "twisted-pair"), "F" – оптоволоконный кабель (от английского "fiber optic").

Точно так же для сети Ethernet, работающей на скорости 100 Мбит/с (Fast Ethernet) стандарт определяет три типа сегментов, отличающихся типами среды передачи:

  • 100BASE-T4 (счетверенная витая пара);
  • 100BASE-TX (сдвоенная витая пара);
  • 100BASE-FX (оптоволоконный кабель).

Здесь цифра "100" означает скорость передачи 100 Мбит/с, буква "Т" – витую пару, буква "F" – оптоволоконный кабель. Типы 100BASE-TX и 100BASE-FX иногда объединяют под именем 100BASE-X, а 100BASE-T4 и 100BASE-TX – под именем 100BASE-T.

Развитие технологии Ethernet идет по пути все большего отхода от первоначального стандарта. Применение новых сред передачи и коммутаторов позволяет существенно увеличить размер сети. Отказ от манчестерского кода (в сети Fast Ethernet и Gigabit Ethernet) обеспечивает увеличение скорости передачи данных и снижение требований к кабелю. Отказ от метода управления CSMA/CD (при полнодуплексном режиме обмена) дает возможность резко повысить эффективность работы и снять ограничения с длины сети. Тем не менее, все новые разновидности сети также называются сетью Ethernet.

2 СЕТЬ TOKEN-RING

Сеть Token-Ring (маркерное кольцо) была предложена компанией IBM в 1985 году (первый вариант появился в 1980 году). Она предназначалась для объединения в сеть всех типов компьютеров, выпускаемых IBM. Уже тот факт, что ее поддерживает компания IBM, крупнейший производитель компьютерной техники, говорит о том, что ей необходимо уделить особое внимание. Но не менее важно и то, что Token-Ring является в настоящее время международным стандартом IEEE 802.5 (хотя между Token-Ring и IEEE 802.5 есть незначительные отличия). Это ставит данную сеть на один уровень по статусу с Ethernet.

Разрабатывалась Token-Ring как надежная альтернатива Ethernet. И хотя сейчас Ethernet вытесняет все остальные сети, Token-Ring нельзя считать безнадежно устаревшей. Более 10 миллионов компьютеров по всему миру объединены этой сетью.

Компания IBM сделала все для максимально широкого распространения своей сети: была выпущена подробная документация вплоть до принципиальных схем адаптеров. В результате многие компании, например, 3СOM, Novell, Western Digital, Proteon и другие приступили к производству адаптеров. Кстати, специально для этой сети, а также для другой сети IBM PC Network была разработана концепция NetBIOS. Если в созданной ранее сети PC Network программы NetBIOS хранились во встроенной в адаптер постоянной памяти, то в сети Token-Ring уже применялась эмулирующая NetBIOS программа. Это позволило более гибко реагировать на особенности аппаратуры и поддерживать совместимость с программами более высокого уровня.

При проектировании ЛВС основная роль отводится протоколам физического и канального уровней модели OSI. Канальный уровень разделяют на два подуровня:

· логической передачи данных (Logical Link Control – LLC) – организует передачу кадров данных с различной степенью надежности;

· управления доступом к сети (Media Access Control – MAC) – обеспечивает корректное использование общей среды передачи данных.

В феврале 1980 г. в институте IEEE (институт инженеров по электротехнике и радиоэлектронике) организован комитет 802 по стандартизации ЛВС (отсюда и число 802 в названии). Принято семейство стандартов IEEE 802.X : 802.1 – 802.12. Стандарты 802.3, 802.4, 802.5, 802.12 прямо относятся к подуровню MAC канального уровня модели OSI. Остальные решают общие вопросы сетей.

Технология Ethernet – самая распространенная технология локальных сетей. Появилась в 1972 г. (разработчик – фирма Xerox). В 1980 г. ее поддержали фирмы DЕС и Intel (объединение назвали DIX по первым буквам). Нe отличалась рекордными характеристиками и оптимальными алгоритмами, но благодаря мощной поддержке, высочайшему уровню стандартизации, огромным объемам выпуска технических средств вытеснила все остальные технологии.

Семейство технологий включает фирменные и стандартные варианты:

· стандарт Ethernet DIX (фирмы DEC, Intel, Xerox);

· 10-мегабитные варианты стандарта IEEE 802.3;

· высокоскоростные технологии Fast Ethernet, Gigabit Ethernet, 10 Gigabit Ethernet.

Все стандарты Ethernet используют метод случайного доступа CSMA/CD (метод коллективного доступа с опознаванием несущей и обнаружением коллизий). Метод применяется в сетях с логической топологией общая шина. Для передачи кадра, станция должна убедиться, что разделяемая среда свободна (отсутствует несущая частота). Если среда свободна, узел начинает передачу кадра (захватывает среду). Время монопольного использования среды узлом ограничено временем передачи одного кадра.

При попадании кадра в разделяемую среду все станции одновременно начинают принимать его и анализируют адрес назначения. Станция, узнавшая свой адрес, записывает содержимое во внутренний буфер сетевого адаптера, обрабатывает полученные данные и посылает по кабелю кадр-ответ.

Коллизия – ситуация, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Содержимое кадров сталкивается и информация искажается. При обнаружении коллизии станции прекращают передачу и после паузы случайной длительности пытаются снова получить доступ к среде.

Для сети Ethernet, работающей на скорости 10 Мбит/с, стандарт определял четыре основных типа среды передачи информации:



· 10 BASE-5 (толстый коаксиальный кабель);

· 10 BASE-2 (тонкий коаксиальный кабель);

· 10 BASE-T (витая пара);

· 10 BASE-FL (оптоволоконный кабель).

Цифра «10» означает скорость передачи 10 Мбит/с, слово «BASE» – передачу в основной полосе частот (без модуляции высокочастотного сигнала), последний элемент – допустимую длину сегмента или тип линии связи. Сеть стандарта 10 Base-2 показана на рисунке.

Cеть Ethernet на базе витой пары развивается с 1990 г. и сегодня наиболее распространена. Передача сигналов осуществляется по двум витым парам, каждая из которых передает только в одну сторону (одна пара – передающая, другая – принимающая). Каждый из абонентов сети присоединяется кабелем, содержащим двойные витые пары, к концентратору. Концентратор производит смешение сигналов от абонентов для обеспечения метода доступа CSMA/CD.

Длина кабеля между адаптером и концентратором не должна превышать 100 м (на длине 100 м витая пара позволяет передавать данные со скоростью 10 Мбит/с при использовании «манчестерского» кода). Кабели присоединяются 8-контактными разъемами RJ-45 (используются четыре контакта). Объединить в сеть два компьютера можно без концентратора, применив специальный «перекрестный» кабель (crossover саblе), соединяющий передающие контакты одного разъема RJ-45 с приемными контактами другого разъема RJ-45 и наоборот.

Концентратор (хаб) повторяет сигналы на всех отрезках витых пар, подключенных к его портам. Образуется логическая общая шина. Концентраторы соединяются друг с другом с помощью тех же портов. В стандарте определено «правило 4-х хабов» : максимальное число концентраторов между любыми двумя станциями сети – 4 (максимальный диаметр сети – 500 м).

Сеть Ethernet на оптоволоконном кабеле состоит из тех же элементов, что и сеть 10 Base-T (сетевые адаптеры, многопортовые повторители, отрезки кабеля). Используются два оптоволокна – одно соединяет выход адаптера со входом повторителя, а другое – вход адаптера с выходом повторителя:

· Стандарт FOIRL (Fiber Optic Inter-Repeater Link) гарантирует длину связи между повторителями до 1000 м при общей длине сети до 2500 м.

· Стандарт 10 Base-FL – улучшение стандарта FOIRL. Увеличена мощность передатчиков. Максимальное расстояние между узлом и концентратором – 2000 м, максимальная длина сети – 2500 м.

Технология Fast Ethernet (1995 г.) – составная часть стандарта IEEE 802.3 (IEEE 802.3u). Более быстрая версия Ethernet, использующую тот же метод доступа CSMA/CD, но работающую на скорости 100 Мбит/с. Сохраняется формат кадра, принятый в классической версии Ethernet. Отличия только на физическом уровне (другой способ кодирования, избыточный код 4В/5В). Физическая топология «шина» не предусмотрена.

Механизм автоматического определения скорости передачи позволяет сетевым адаптерам Fast Ethernet автоматически переключаться со скорости 10 Мбит/с на скорость 100 Мбит/с и наоборот.

Более высокая пропускная способность среды передачи позволила резко снизить нагрузку на сеть и уменьшить вероятность возникновения коллизий.

Стандарт определяет следующие спецификации Fast Ethernet:

· 100 Base-FX – передача ведется со скоростью 100 Мбит/с по двум волоконно-оптическим кабелям;

· 100 Base-T4 – передача ведется со скоростью 100 Мбит/с по четырем витым парам электрических проводов (кабель категории 3) – промежуточный компромиссный вариант, не нашедший широкого применения;

· 100 Base-TX – передача ведется со скоростью 100 Мбит/с по двум витым парам электрических проводов (кабель категории 5).

Вариант 100 Base-FX определяет в качестве среды передачи многомодовый оптический кабель и волну 850 нм, что обеспечивает связь между портами двух коммутаторов или маршрутизаторов на расстоянии до 2000 м. Одномодовый оптический кабель в стандарте не описывается, но на рынке можно найти оборудование Fast Ethernet, работающее и на таком типе кабеля (максимальная длина одного сегмента ка­беля – до нескольких десятков километров).

Применение волоконно-оптического кабеля и в этом случае позволяет существенно увеличить протяженность сети, а также избавиться от электрических наводок и повысить секретность передаваемой информации. Максимальная длина кабеля между компьютером и концентратором может составлять до 400 м, причем это ограничение определяется временными соотношениями. Согласно стандарту, следует применять мультимодовый волоконно-оптический кабель.

Вариант 100 Base-TX по схеме объединения компьютеров не отличается от 10 Base-T. Длина кабеля также не может превышать 100 м, но кабель должен быть более качественным. Если для 10 Base-T предельная длина кабеля в 100 м ограничена только качеством кабеля и может быть увеличена при использовании более качественного кабеля, то в случае 100 Base-TX предельная длина ограничена временными соотношениями обмена и не может быть увеличена.

Высокоскоростная технология Gigabit Ethernet (1998 г.). После появления Fast Ethernet сете­вые интеграторы и администраторы при построении корпоративных сетей почувствовали ограничения. Серверы, под­ключенные по 100-мегабитному каналу, перегружали сетевые магистрали, также работающие на скорости 100 Мбит/с. Ощуща­лась потребность в следующем уровне скорости. Летом 1996 г. объявлено о начале разработки протокола, в максимальной степени подобного Ethernet, но с битовой скоростью 1000 Мбит/с. Проблем­ная группа IEEE 802.3 ab справилась с задачей, и версия Gigabit Ethernetдля витой пары категории 5 была принята.

Технология позволяет строить крупные локальные сети, в которых мощные серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль Gigabit Ethernet объединяет их.

Сохранена преемственность с технологиями Ethernet к Fast Ethernet. Поддерживается тот же метод доступа CSMA/CD с минимальными изменениями, те же форматы кадров. Работа в полнодуплексном и полудуплексномрежимах.

Номенклатура сегментов сети Gigabit Ethernet включает типы:

· 1000 BASE-SX – сегмент на многомодовом оптоволоконном кабеле с длиной волны светового сигнала 850 нм (до 500 м);

· 1000 BASE-LX – сегмент на многомодовом (до 500 м) и одномодовом (до нескольких десятков км) оптоволоконном кабеле с длиной волны 1300 нм;

· 1000 BASE-CХ – формально вернул коаксиальный кабель в состав поддер­живаемых сред передачи данных, но на практике этот вариант с макси­мальной длиной сегмента 25 м используется редко;

· 1000 BASE-T – сегмент на счетверенной неэкранированной витой паре категорий 5 и 6 (длиной до 100 м); данные передаются параллельно по всем 4 парам со скоростью 250 Мбит/с по каждой; передача в дуп­лексном режиме.

Gigabit Ethernet поддерживает процедуру автопереговоров. Для удобства перехода с одной среды передачи данных на другую порты имеют сменные приемопередатчики, так называемые мо­дули GBIC(Gigabit Interface Converter - конвертор гигабитного интер­фейса). Используя их, один и тот же порт Gigabit Ethernet может работать с любой из стандартных сред, для этого нужно приобрести и установить соответствующий кабелю модуль GBIC.

Стандарт 10G Ethernet – самый скоростной вариант технологии Ethernet. Первый стандарт Ethernet, ко­торый не работает на разделяемой среде даже теоретически. Это первый стандарт Ethernet, который включает спецификации физического уровня, совместимые со стандартами глобальных сетей (сетей SDH).

Стандарт 10G Ethernet включает большое число специфи­каций физического уровня. Первая группа спецификаций, рассчитан­ная на использование оптического волокна, принята в 2002 г. После этого работы продолжались, и в 2006 г. принята спецификация, описывающая функционирование 10G Ethernet на витой паре.

Существует три группы физических интерфейсов стандарта 10G Ethernet:

· 10G Base-T – принят в 2006 г., дает возможность использовать кабели на витой паре категории 6 или 6а (в первом случае максимальная длина кабеля не должна превы­шать 55 м, во втором – 100 м);

· 10G Base-R работает на оптическом кабеле, включает спецификации 10G Base-RS, 10G Base-RL, 10G Base-RE;

· 10G Base-W – работает на оптическом кабеле, включает спецификации 10G Base-WS, 10G Base-WL, 10G Base-WE.

Первые две группы относятся к варианту 10G Ethernet для локальных сетей , последняя – к варианту для глобальных сетей .

В версиях для локальных сетей использу­ются стандартные кадры Ethernet и обеспечивается скорость пере­дачи данных 10 Гбит/с. Версии 10G Ethernet для глобальных сетей разрабо­таны в расчете на первичные сети SDH и поддерживают скорость передачи и формат данных, совместимые с интерфейсом сетей SDH. Эф­фективная скорость передачи данных спецификаций для глобальных сетей ниже 10 Гбит/с (9,58464 Гбит/с), т. к. часть пропуск­ной способности тратится на заголовки кадров SDH. Поэтому интерфейсы этой группы могут взаимодействовать только между собой (соединение 10G Base-R и 10G Base-W невозможно).

В каждой из групп 10G Base-W и 10G Base-R, которые работают на оптическом кабеле , может быть три варианта спецификаций: S, L и Е (в зависимости от используемого диапазона волн: 850, 1310 или 1550 нм). Таким образом, существуют интерфейсы 10G Base-WS, 10G Base-WL, 10G Base-WE, а также 10G Base-RS, l0G Base-RL и l0G Base-RE. Каждый из них передает информацию с помощью одной волнысоответствующего диапазона.

Спецификации S рассчитаны на многомодовый оптический кабель длиной до 300 м в зависимости от качества кабеля. Спецификации L рассчитаны на одномодовый кабель и в зависимости от его качества допускают расстоя­ния до 25 км. Спецификации Е обеспечивают передачу данных на расстояния до 40 км. Это позволяет стро­ить не только локальные, но и глобальные сети.

Стандарт 10G Ethernet является развивающейся технологией, так что можно ожидать появление его новых спецификаций. В настоящее время ведется ра­бота над двумя новыми стандартами Ethernet: 40G и 100G, которые должны найти свое применение на магистралях крупных сетей.

Технология Token Ring (802.5) развивалась компанией IBM с1984 г. Разделяемая среда передачи данных состоит из отрезков кабеля; соединяющих все станции сети в кольцо. Для доступа используется детерминированныйалгоритм , основанный на передаче станциям права на использование кольца.

Маркер (токен) – кадр специального формата, циркулирующий по кольцу. При отсутствии данных для передачи станция обеспечивает его продвижение далее. Станция, имеющая данные для передачи, изымает маркер из кольца и выдает в кольцо кадр данных. Переданные данные проходят по кольцу всегда в одном направлении. Кадр снабжен адресом назначения и адресом источника. Все станции кольца ретранслируют кадр побитно как повторители.

При проходе кадра через станцию назначения, она копирует кадр в свой внутренний буфер и вставляет в кадр признак подтверждения приема. Станция-передатчик получив обратно свой кадр с подтверждением приема изымает этот кадр из кольца и передает в сеть новый маркер.

Такой алгоритм доступа применяется в сетях Token Ring со скоростью работы 4 Мбит/с. В сетях Token Ring 16 Мбит/с используется алгоритм раннего освобождения маркера . Станция передает маркер следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Отдельные компьютеры присоединяются к сети через специальные концентраторы или многостанционные устройства доступа (MSAU или MAU – Multistation Access Unit) по топологии «звезда».

Для присоединения кабеля к концентратору применяются специальные разъемы, обеспечивающие постоянство замкнутости кольца даже при отключении абонента. Концентратор может быть один, в кольцозамыкаются его абоненты.

Несколько концентраторов могут конструктивно объединяться в кластер, внутри которого абоненты также соединенывединое кольцо.

Основные характеристики сети Token-Ring (неэкранир. витая пара):

· максимальное количество концентраторов MAU – 12;

· максимальное количество абонентов в сети – 96;

· максим. длина кабеля между абонентом и концентратором – 45 м;

· максимальная длина кабеля между концентраторами – 45 м.;

· максим. длина кабеля, соединяющего все концентраторы - 120 м;

· скорости передачи данных – 4 Мбит/с и 16 Мбит/с.

Технология Token Ring обладает элементами отказоустойчивости . Одна из станций (активный монитор) непрерывно контролирует наличие маркера, а также время оборота маркера и кадров данных. При некорректной работе кольца запускается процедура его повторной инициализации.

Технология FDDI (Fiber Distributed Data Interface – оптоволоконный интерфейс распределенных данных) первой использовала волоконно-оптический кабель в локальных сетях и работу на скорости 100 Мбит/с. Для нее характерны кольцевая топология и маркерный метод доступа.

Сеть строится на основе двух колец . В нормальном режиме вторичное кольцо не используется. При обрыве кабеля или отказе узла первичное кольцо объединяется со вторичным (Wrap – свертывание). При множественных отказах сеть распадается на несколько несвязанных сетей.

Основные преимущества сети FDDI:

· высокая помехозащищенность;

· максимальная секретность передачи информации

· высокая скорость передачи;

· передача данных на расстояние нескольких километров без ретрансляции.

Основные технические характеристики сети FDDI:

· максимальное количество абонентов сети – 1000;

· максимальная протяженность кольца сети ~ 20 км;

· максимальное расстояние между абонентами сети – 2 км;

· среда передачи – многомодовый оптоволоконный кабель;

· метод доступа – маркерный (IEEE 802.5);

· скорость передачи – 100 Мбит/с (200 Мбит/с в дуплексном режиме).

Применяется звездно-кольцевая топология с концентраторами. Стандарт предусматривает два типа абонентов.

Абоненты класса А подключаются к обоим кольцам. Аппаратура используется в самых критичных частях сети. Абоненты класса В подключаются только к внешнему кольцу сети. Они проще и дешевле, чем компьютеры класса А.

Сеть FDDI не получила широкого распространения, что связано с высокой стоимостью аппаратуры. Область применения – базовые, опорные сети, объединяющие несколько сетей, соединение мощных серверов, требующих высокоскоростного обмена.

7. Беспроводные локальные сети

Wi-Fi – аббревиатура, обозначающая устройства для построения беспроводных локальных сетей WLAN (Wireless Local Area Network). Сокращение от Wireless Fidelity («беспроводная приверженность»), по аналогии с используемым на аудио-рынке термином Hi-Fi (High Fidelity). В основе технологий WLAN лежит принцип радиосвязи между узлами сети (сигнал распространяется с помощью электромагнитных волн высокой частоты).

Беспроводные локальные сетив некоторых случаях являются предпочтительным по сравнению с проводной сетью решением, а иногда просто единственно возможным. Примеры популярных областей применения WLAN:

· организация «кочевого» доступа в аэропортах и вокзалах;

· создание временных локальных сетей (при проведении конфе­ренций);

· реализация доступа в Интернет в жилых домах и квартирах;

· обеспечение мобильного доступа в пределах нескольких помещений или зданий, что актуально, например, для больниц.

За преимущества беспроводных сетей приходится расплачиваться множеством проблем, связанных с неустойчивой и непредска­зуемой беспроводной средой. Помехи от бытовых приборов, телекоммуникационных систем, атмосферные помехи, отражения сигнала создают трудности для надежного обмена.

Распространение радио­сигнала внутри здания подвержено влиянию многих факторов. Неравномерное распределение интенсивности сигнала приводит и к неопределенности зоны покрытия беспроводной локальной сети.

В связи с этим в WLAN применяются сложные методы кодирования, кото­рые помогают снизить влияние помех на полезный сигнал, кроме того, в бес­проводных сетях широко используются методы прямой коррекции ошибок (Forward Error Control, FEC) и протоколы с повторной передачей потерян­ных кадров.

В 1990 г. комитет IEEE 802 сформировал рабо­чую группу по стандартам беспроводных локальных сетей 802.11. Первый стандарт 802.11 (1997 г.) определял три метода передачи на физическом уровне:

· метод инфракрасной передачи (непопулярен из-за низкой пропускной способности и потому, что солнечный свет может искажать сигналы);

· два метода радиосвязи небольшого радиуса действия (в радиодиапазонах 2,4 ГГц и 915 МГц);

Стандарты работают на частотах, признанных в США, Европы и Японии частотамидля нелицензируемых радиоопераций . Маломощный сигнал позволяет уменьшить количество конфликтов между передатчиками. Для сетей, работающих на частоте 2,4 ГГц, определены скорости доступа 1 и 2 Мбит/с. Новая технология, многое перенявшая из Ethernet, названа Radio Ethernet.

Стандарт 802.11 определяет две составные части оборудова­ния:

· беспроводная станция (ПК с сетевым радиоадаптером или некомпьютерные клиенты – мобильные теле­фоны, поддерживающие стандарт);

· точка доступа (АР – Access Point), действующая как мост между беспроводными и проводными сетями.

Точка доступа включает прие­мопередатчик, сетевой интерфейс и ПО. Действует как базовая станция , осуществляя доступ беспроводных станций к проводной сети. В точке доступа полученные сообщения преобразуются в формат, понятный для обычной сети. Чем больше точек доступа, тем шире область действия WLAN и больше количество пользователей. Одна точка доступа поддерживает работу 10 – 20 клиентов (не удаляются более чем на 100 м).

Для расширения беспроводной части сети можно воспользоваться несколькими точками доступа или установить точку расширения (Extension Point) – беспроводной повторитель между беспроводными клиентами и точкой доступа.

Сетевой радиоадаптер – беспроводной сетевой адаптер, позволяющий компьютерам и другому оборудованию связываться с точками доступа. Представляет собой PCMCIA-карту или внешнее устройство, подключаемое через USB.

Дополнительные устройства:

· конвертеры интерфейсов (Wireless PCMCIA/PCI и PCMCIA/ISA) – предназначены для установки сетевого радиоадаптера в стационарные ПК;

· радиомосты, шлюзы, беспроводные принт-серверы, радиомаршрутизаторы.

Стандарт 802.11 определяет два режима работы:

· инфраструк­турный (infrastructure mode);

· специальный (ad hoc mode).

В ин­фраструктурном режиме WLAN состоит из одной и более точек доступа, связанных с проводной сетевой ин­фраструктурой и набора беспроводных конечных станций. Эту конфигурацию называют основным сервисным набором (BSS – Basic Service Set). Расширенный сервисный набор (ESS – Extended Service Set) – набор двух или более BSS, образующих отдельную подсеть.

Специальный режим (одноранговый режим – peer-to-peer mode) или независимый основной сервисный набор (IBSS – Independent Basic Service Set) – совокупность беспроводных станций 802.11, которые связываются непосредственно друг с другом, не используя точку доступа и подключение к проводным сетям.

Технология 802.11 не может использовать метод CSMA/CD:

· проблема скрытой станции – не все станции могут слышать друг друга, и передача в одной части соты, может быть не воспринята станцией в другой части;

· большинство радиосистем являются полудуплексными , т. е. не могут одновременно и на одной частоте посылать и принимать сигналы.

Протокол 802.11 использует метод CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) – метод множественного доступа с прослушиванием несущей волны и уклонением от коллизий. Это сетевой протокол, в котором:

· используется схема прослушивания несущей волны;

· обнаружив, что канал свободен, станция, которая собирается начать передачу, посылает предупреждающий jam-сигнал (сигнал затора);

· после продолжительного ожидания всех станций, которые могут послать предупреждающий jam-сигнал, станция начинает передачу кадра;

· если предупреждающие сигналы одновременно посылают несколько станций, то они повторяют процедуру после случайно выбранного интервала времени.

CSMA/CA отличается от CSMA/CD тем, что коллизиям подвержены не пакеты данных, а только jam-сигналы. Отсюда и название «Collision Avoidance» – предотвращение коллизий (именно пакетов данных). Посылка предупреждающих сигналов ограничивает пропускную способность канала, поэтому CSMA/CA используется в сетях, работающих с небольшими скоростями (беспроводных).

Спецификация IEEE 802.11b . Невысокая скорость не удовлетворя­ла требованиям и в сентябре 1999 г. выпущен ва­риант IEEE 802.11 b для передачи со скоростью до 11 Мбит/с. Сети работают в нелицензируемом спектре частот 2,4 ГГц (от 2,4 ГГц до 2,4835 ГГц). Скорость передачи может автоматически ме­няться в зависимости от уровня помех и расстояния между пере­датчиком и приемником. На практике скорость почти всегда равна 11 Мбит/с.

Недостатки:

· Диапазон 2,4 ГГц, может быть занят другим оборудованием – бытовыми приборами (микроволновыми печами, радиотелефонами), ме­дицинской и научной аппаратурой, гарнитурами Bluetooth. Проблема усугубляется тем, что 802.11b рассчитан на связь на расстоянии до 300 м на открытой местности.

· Система защиты Wired Equivalent Privacy (WEP) показала уязвимость и несложность расшифровки кода с 40-битовым ключом. Сети позволяют подключаться злоумышленнику, находящемуся на возвышении даже на расстоянии мили, при условии использования небольшой направленной антенны. Предложен алгоритм шифровки со 128-битовым ключом – Advanced Encryption Standard (AES), требующий об­новления ТС и ПО или Temporal Key Integrity Protocol (TKIP).

· Невысокая максимальная скорость передачи данных, до­стигающая 11 Мбит/сек при радиусе действия около 100 м в помещениях. Ее можно получить только при сильном сигнале при условии, что в каждый момент времени только одно устройство в сегменте передает данные. Перегрузка, конфигу­рация и требования безопасности могут уменьшить производительность до типичного значения в 5 Мбит/с . Этого достаточно для Web-браузеров, но мало для боль­шого количества приложений типа потокового видео.

Спецификация IEEE 802.11a . Спецификация беспровод­ных сетей для диапазона 5 ГГц (от 5,725 до 5,850 Ггц) с макси­мальной пропускной спо­собностью 54 Мбит/сек. Этот диапазон частот не так зашумлен, как 2,4 ГГц. Но устройства 802.11а не могут работать с точкой доступа 802.11b и наобо­рот.

Спецификация IEEE 802.11g . Принят в середине 2003 г. Стандарт предусматрива­ет использование диапазона 2,4 ГГц. Обеспечивает скорость переда­чи 54 Мбит/сек. Главное преимущество перед 802.11а – полная обратная совместимость с устройствами 802.11b. Недостаток – зашумленность диапазона 2,4 ГГц.

Спецификация IEEE 802.11n . утвержден 11 сентября 2009 г. Повышает скорость передачи данных вчетверо по сравнению с устройствами 802.11g (максимальная скорость – 54 МБит/с), при условии использования с другими устройствами 802.11n. Теоретически способен обеспечить скорость передачи данных до 600 Мбит/с. Устройства работают в диапазонах 2,4–2,5 или 5,0 ГГц.

Кроме того, устройства 802.11n могут работать в трех режимах:

· наследуемом (Legacy), в котором обеспечивается поддержка устройств 802.11b/g и 802.11a;

· смешанном (Mixed), в котором поддерживаются устройства 802.11b/g, 802.11a и 802.11n;

· «чистом» – 802.11n (именно в этом режиме можно воспользоваться преимуществами повышенной скорости и увеличенной дальности передачи данных).

Типы офисных беспроводных локальных сетей

Тема 1.3: Открытые системы и модель OSІ

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.5. Базовые технологии или сетевые технологии локальных сетей

1.5.3. Сетевые технологии локальных сетей

В локальных сетях, как правило, используется разделяемая среда передачи данных (моноканал) и основная роль отводится протоколами физического и канального уровней, так как эти уровни в наибольшей степени отражают специфику локальных сетей.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевые технологии называют базовыми технологиями или сетевыми архитектурами локальных сетей.

Сетевая технология или архитектура определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии или сетевые архитектуры, как: Ethernet, Token-Ring, ArcNet, FDDI.

Сетевые технологии локальных сетей IEEE802.3/Ethernet

В настоящее время эта сетевая технология наиболее популярна в мире. Популярность обеспечивается простыми, надежными и недорогими технологиями. В классической локальной сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий).

Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. В локальных сетях Ethernet применяются топологии типа “шина” и типа “пассивная звезда”, а метод доступа CSMA/CD.

Стандарт IEEE802.3 в зависимости от типа среды передачи данных имеет модификации:

  1. 10BASE5 (толстый коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 500м.
  2. 10BASE2 (тонкий коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 200м.
  3. 10BASE-T (неэкранированная витая пара) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 100м. Общее количество узлов не должно превышать 1024.
  4. 10BASE-F (оптоволоконный кабель) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 2000м.

В развитие сетевой технологии Ethernet созданы высокоскоростные варианты: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet. Основная топология, которая используется в локальных сетях Fast Ethernet и Gigabit Ethernet, пассивная звезда.

Сетевая технология Fast Ethernet обеспечивает скорость передачи 100 Мбит/с и имеет три модификации:

  1. 100BASE-T4 - используется неэкранированная витая пара (счетверенная витая пара). Расстояние от концентратора до конечного узла до 100м.
  2. 100BASE-TX - используются две витые пары (неэкранированная и экранированная). Расстояние от концентратора до конечного узла до 100м.
  3. 100BASE-FX - используется оптоволоконный кабель (два волокна в кабеле). Расстояние от концентратора до конечного узла до 2000м.

Сетевая технология локальных сетей Gigabit Ethernet – обеспечивает скорость передачи 1000 Мбит/с.

Существуют следующие модификации стандарта:

  1. 1000BASE-SX – применяется оптоволоконный кабель с длиной волны светового сигнала 850 нм.
  2. 1000BASE-LX – используется оптоволоконный кабель с длиной волны светового сигнала 1300 нм.
  3. 1000BASE-CX – используется экранированная витая пара.
  4. 1000BASE-T – применяется счетверенная неэкранированная витая пара.

Локальные сети Fast Ethernet и Gigabit Ethernet совместимы с локальными сетями, выполненными по технологии (стандарту) Ethernet, поэтому легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую вычислительную сеть.

Сетевые технологии локальных сетей IEEE802.5/Token-Ring

Сеть Token-Ring предполагает использование разделяемой среды передачи данных, которая образуется объединением всех узлов в кольцо.

Сеть Token-Ring имеет звездно-кольцевую топологию (основная кольцевая и звездная дополнительная топология). Для доступа к среде передачи данных используется маркерный метод (детерминированный маркерный метод).

Стандарт поддерживает витую пару (экранированную и неэкранированную) и оптоволоконный кабель. Максимальное число узлов на кольце - 260, максимальная длина кольца - 4000 м. Скорость передачи данных до 16 Мбит/с.

Сетевые технологии локальных сетей IEEE802.4/ArcNet

В качестве топологии локальная сеть ArcNet использует “шину” и “пассивную звезду”. Поддерживает экранированную и неэкранированную витую пару и оптоволоконный кабель.

В сети ArcNet для доступа к среде передачи данных используется метод передачи полномочий. Локальная сеть ArcNet - это одна из старейших сетей и пользовалась большой популярностью. Среди основных достоинств локальной сети ArcNet можно назвать высокую надежность, низкую стоимость адаптеров и гибкость.

Основным недостаткам сети является низкая скорость передачи информации (2,5 Мбит/с). Максимальное количество абонентов - 255. Максимальная длина сети - 6000 метров.

Сетевые технологии локальных сети FDDI (Fiber Distributed Data Interface)

FDDI– стандартизованная спецификация для сетевой архитектуры высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи – 100 Мбит/с. Эта технология во многом базируется на архитектуре Token-Ring и используется детерминированный маркерный доступ к среде передачи данных.

Максимальная протяженность кольца сети – 100 км. Максимальное количество абонентов сети – 500. Сеть FDDI - это очень высоконадежная сеть, которая создается на основе двух оптоволоконных колец, образующих основной и резервный пути передачи данных между узлами.

Компьютерные сети делятся на три основных класса:

1. Локальные компьютерные сети (LAN – LocalAreaNetwork) – это сети, которые объединяют между собой компьютеры, находящиеся географически в одном месте. В локальную сеть объединяют компьютеры, расположенные физически близко друг от друга (в одном помещении или одном здании).

2. Региональные компьютерные сети (MAN – MetropolitanAreaNetwork) – это сети, которые объединяют между собой несколько локальных компьютерных сетей, расположенных в пределах одной территории (города, области или региона, например, Дальнего Востока).

3. Глобальные вычислительные сети (WAN – WideAreaNetwork) – это сети, которые объединяют множество локальных, региональных сетей и

компьютеров отдельных пользователей, расположенные на любом расстоянии друг от друга (Internet, FIDO).

На настоящий момент используются следующие стандарты построения локальных вычислительных сетей:

Arcnet;(IEEE 802.4)

Token Ring;(802,5)

Ethernet.(802,3)

Рассмотрим каждую из них подробнее

ТехнологияIEEE 802.4 ARCNET (или ARCnet, от англ. Attached Resource Computer NETwork) - технология ЛВС, назначение которой аналогично назначению Ethernet или Token ring. ARCNET являлась первой технологией для создания сетей микрокомпьютеров и стала очень популярной в 1980-х при автоматизации учрежденческой деятельности. Предназначена для организации ЛВС в сетевой топологии «звезда».

Основу коммуникационного оборудования составляет:

коммутатор (switch)

пассивный/активный концентратор

Преимущество имеет коммутаторное оборудование, так как позволяет формировать сетевые домены. Активные хабы применяются при большом удалении рабочей станции (они восстанавливают форму сигнала и усиливают его). Пассивные - при маленьком. В сети применяется назначаемый принцип доступа рабочих станций, то есть право на передачу имеет станция, получившая от сервера так называемый программный маркер. То есть реализуется детерминированный сетевой трафик.

Преимущества подхода:

Замечания : сообщения, передаваемые рабочими станциями образуют очередь на сервере. Если время обслуживания очереди значительно (более, чем в 2 раза) превышает максимальное время доставки пакета между двумя самыми удалёнными станциями, то считается, что пропускная способность сети достигла максимального предела. В этом случае дальнейшее наращивание сети невозможно и требуется установка второго сервера.



Предельные технические характеристики:

Минимальное расстояние между рабочими станциями, подключенными к одному кабелю - 0,9 м.

Максимальная длина сети по самому длинному маршруту - 6 км.

Ограничения связаны с аппаратной задержкой передачи информации при большом количестве коммутирующих элементов.

Максимальное расстояние между пассивным концентратором и рабочей станцией - 30 м.

Максимальное расстояние между активным и пассивным хабом - 30 м.

Между активным хабом и активным хабом - 600 м.

Достоинства:

Низкая стоимость сетевого оборудования и возможность создания протяжённых сетей.

Недостатки:

Невысокая скорость передачи данных. После распространения Ethernet в качестве технологии для создания ЛВС, ARCNET нашла применение во встраиваемых системах.

Поддержкой технологии ARCNET (в частности распространением спецификаций) занимается некоммерческая организация ARCNET Trade Association (ATA).

Технология - Архитектура ArcNET представлена двумя основными топологиями: шинная и звездная. В качестве среды передачи используется коаксиальный кабель RG-62 с волновым сопротивлением 93 Ом, обжатый на BNC вилки с соответствующим диаметром заделки (отличаются от вилок 10Base-2 («тонкий» Ethernet)).

Сетевое оборудование состоит из сетевых адаптеров и хабов. Сетевые адаптеры могут быть для шинной топологии, для звездной и универсальные. Хабы могут быть активными и пассивными. Пассивные хабы применяются для создания звездных участков сети. Активные хабы могут быть для шинной, звездной и смешанной топологии. Порты для шинной топологии физически не совместимы с портами для звездной топологии, хоть и имеют одинаковое физическое подключение (BNC розетка).

В случае шинной топологии, рабочие станции и серверы подключаются друг к другу с помощью T-коннекторов (таких же, как в 10Base-2 («тонкий» Ethernet)), подключенных к сетевым адаптерам и хабам и соединенных коаксиальным кабелем. Крайние точки сегмента терминируются наконечниками с сопротивлением 93 Ом. Количество устройств на одной шине ограничено. Минимальное расстояние между коннекторами - 0,9 метра и должно быть кратно этой величине. Для облегчения разделки, на кабель могут быть нанесены метки. Отдельные шины могут быть объединены с помощью шинных хабов.



При использовании звездной топологии применяются активные и пассивные хабы. Пассивный хаб представляет собой резистивный делитель-согласователь, позволяющий подключить четыре кабеля. Все кабели в этом

случае подключаются по принципу «точка-точка», без образования шин. Между двумя активными устройствами не должно быть подключено больше двух пассивных хабов. Минимальная длина любого сетевого кабеля - 0.9 метра и должна быть кратна этой величине. Существует ограничение длины кабеля между активным и пассивным портами, между двумя пассивными, между двумя активными.

При смешанной топологии применяются активные хабы, поддерживающие оба типа подключения.

На сетевых адаптерах рабочих станций и серверов с помощью джамперов или DIP-переключателей выставляется уникальный сетевой адрес, разрешение использования микросхемы расширения BIOS, позволяющего осуществить удаленную загрузку рабочей станции (может быть бездисковой), тип подключения (шинная или звездная топология), подключение встроенного терминатора (последние два пункта - опционально). Ограничение на количество рабочих станций - 255 (по разрядности регистра сетевого адреса). В случае, если два устройства имеют одинаковый сетевой адрес, оба теряют работоспособность, но на работу сети в целом эта коллизия не влияет.

При шинной топологии обрыв кабеля или терминатора приводит к неработоспособности сети для всех устройств, подключенных к сегменту, в который входит этот кабель(то есть от терминатора до терминатора). При звёздной топологии обрыв любого кабеля приводит к отказу того сегмента, который отключается этим кабелем от файл-сервера.

Логическая архитектура ArcNET - кольцо с маркерным доступом. Поскольку такая архитектура в принципе не допускает коллизий, при относительно большом количестве хостов (на практике испытывалось 25-30 рабочих станций) производительность сети ArcNET оказывалась выше, чем 10Base-2, при вчетверо меньшей скорости в среде (2,5 против 10 Mбит/с).

Технология 802,5 Token Ring - технология локальной вычислительной сети (LAN) кольца с «маркёрным доступом» - протокол локальной сети, который находится на канальном уровне(DLL) модели OSI. Он использует специальный трёхбайтовый фрейм, названный маркёром, который перемещается вокруг кольца. Владение маркёром предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркёрным доступом перемещаются в цикле.Станции на локальной вычислительной сети (LAN) Token ring логически организованы в кольцевую топологию с данными, передаваемыми последовательно от одной кольцевой станции до другой с управляющим маркером, циркулирующим вокруг кольцевого доступа управления. Этот механизм передачи маркёра совместно использован ARCNET, маркёрной шиной, и FDDI, и имеет теоретические преимущества перед стохастическим CSMA/CD Ethernet.

Передача маркёра Token Ring и IEEE 802.5 являются главными примерами сетей с передачей маркёра. Сети с передачей маркёра перемещают вдоль сети небольшой блок данных, называемый маркёром. Владение этим маркёром гарантирует право передачи. Если узел, принимающий маркёр, не имеет информации для отправки, он просто переправляет маркёр к следующей конечной станции. Каждая станция может удерживать маркёр в течение определенного максимального времени (по умолчанию - 10 мс).

Данная технология предлагает вариант решения проблемы коллизий, которая возникает при работе локальной сети. В технологии Ethernet, такие коллизии возникают при одновременной передаче информации несколькими рабочими станциями, находящимися в пределах одного сегмента, то есть использующих общий физический канал данных.

Если у станции, владеющей маркёром, имеется информация для передачи, она захватывает маркёр, изменяет у него один бит (в результате чего маркёр превращается в последовательность «начало блока данных»), дополняет информацией, которую он хочет передать и отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркёр в сети отсутствует (если только кольцо не обеспечивает «раннего освобождения маркёра» - early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркёра, то новый маркёр может быть выпущен после завершения передачи блока данных.

Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.

Сфера применения В отличие от сетей CSMA/CD (например, Ethernet) сети с передачей маркёра являются детерминистическими сетями. Это означает, что можно вычислить максимальное время, которое пройдет, прежде чем любая конечная станция сможет передавать. Эта характеристика, а также некоторые характеристики надежности, делают сеть Token Ring идеальной для применений, где задержка должна быть предсказуема и важна устойчивость функционирования сети. Примерами таких применений является среда автоматизированных станций на заводах.

Применяется как более дешёвая технология, получила распространение везде, где есть ответственные приложения, для которых важна не столько скорость, сколько надёжная доставка информации. В настоящее время Ethernet по надёжности не уступает Token Ring и существенно выше по производительности.

Модификации Token RingСуществуют 2 модификации по скоростям передачи: 4 Мбит/с и 16 Мбит/с. В Token Ring 16 Мбит/с используется

технология раннего освобождения маркера. Суть этой технологии заключается в том, что станция, «захватившая» маркёр, по окончании передачи данных генерирует свободный маркёр и запускает его в сеть. Попытки внедрить 100 Мбит/с технологию не увенчались коммерческим успехом. В настоящее время технология Token Ring не поддерживается.

Технология 802,3 Ethernet от англ. ether «эфир») - пакетная технология передачи данных преимущественно локальных компьютерных сетей.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде - на канальном уровне модели OSI. Ethernet в основном описывается стандартамиIEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие устаревшие технологии, как Arcnet, FDDI и Token ring.

На выполнение работ по созданию локальной сети нужно учитывать следующее:

* Создание локальной сети и настройка оборудования для доступа к сети Интернет;

* Выбор оборудования должен быть основан на технических характеристиках, способных удовлетворить требованиям к скорости передачи данных;

* Оборудование должно быть безопасно, защищено от поражения людей электрическим током;

* У каждой рабочей станции, для подключения к сети должен быть сетевой кабель;

* Возможное наличие wi-fi по всему кабинету;

* Расположение рабочих мест должно удовлетворять требования стандартов размещения оборудования в учебных заведениях;

* Затраты на создание локальной сети должны быть экономически оправданы;

* Надежность локальной сети.

может производиться обмен данными. При разрыве соединения станция – инициатор разрыва отправляет другой стороне соответствующее уведомление.

Датаграммные протоколы предоставляют услуги по ненадежной доставке данных. Данные отсылаются без предупреждения и протокол не отвечает за их доставку.

Датаграммные протоколы работают достаточно быстро, т.к. не выполняет никаких действий при отправке данных.

Передача данных на физическом уровне

Различают два способа передачи информации: 1.Аналоговоя модуляция 2.Цифровое кодирование

Аналоговая модуляция – используется при передаче данных по телефонным линиям связи (узкополосные каналы связи). Сигнал имеет синусоидальную форму. Для кодирования информации используются три способа:

Амплитудная модуляция, т.е. изменение амплитуды сигнала несущей частоты

Частотная модуляция, т.е. изменение частоты сигнала

Фазовая модуляция, т.е. изменение фазы сигнала

Цифровое кодирование – способ представления информации в виде прямоугольных импульсов. Различают два способа цифрового кодирования:

Потенциальное кодирование – для представления нулей и единиц используются только значения потенциала сигнала, а его перепады игнорируются.

Импульсное кодирование – позволяет представлять данные перепадом потенциала определенного направления.

Литература:

Тема 4. Технологии локальных сетей

Вопросы для изучения:

Стандарты IEEE 802

Технология Ethernet

Технология Token Ring

Технология FDDI

Стандарты IEEE 802

В 1980г. В институте IEEE был организован комитет 802 целью которого была разработка стандартов локальных сетей. Эти стандарты описывают функционирование локальных сетей на физическом и канальном уровнях. Канальный уровень делится на два подуровня: уровень логического управления каналом(Logical Link Layer, LLC) и уровень управления доступом к среде передачи данных (Media Access Control, MAC).

Уровень MAC выполняет синхронизацию доступа к совместной среде передачи данных и определяет в какой момент времени станция может начинать передавать имеющиеся данные.

После того как получен доступ к среде, выполняется передача данных в соответствии со стандартами, которые определены на уровне LLC. Уровень LLC отвечает за связь с сетевым уровнем, а также выполняет передачу данных с заданной степенью надежности.

На уровне LLC используются три процедуры передачи данных:

1. LLC1 – передача данных с установлением соединения и подтверждением

2. LLC2 – передача данных без установления соединения и подтверждения

3. LLC3 – передача данных без установления соединения, но с подтверждением приема данных.

Протоколы LLC и MAC взаимно независимы – каждый протокол уровня MAC может применяться с любым протоколом уровня LLC и наоборот.

Стандарт 802.1 описывает общие понятия локальных сетей, определяет связь трех уровней стандартов 802 с семиуровневой моделью, а также стандарты построения сложных сетей на основе базовых топологий(internetworking). К этим стандартам относят стандарты, описывающие функционирование моста/коммутатора, стандарты объединения разнородных сетей при помощи транслирующего моста, стандарты построения виртуальных сетей(VLAN) на основе коммутаторов.

Технология Ethernet

Термин Ethernet относится к семейству протоколов локальных сетей, которые описываются стандартом IEEE 802.3 и используют метод доступа к среде CSMA/CD.

В настоящий момент существует три основные разновидности технологии, которые функционируют на базе оптоволоконных кабелей или неэкранированной витой пары:

1. 10 Mbps - 10Base-T Ethernet

2. 100 Mbps - Fast Ethernet

3. 1000 Mbps - Gigabit Ethernet

10 – мегабитный Ethernet включает три стандарта физического уровня:

1. 10Base – 5 («Толстый» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.5 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 500м. На один сегмент может подключаться не более 100 трансиверов. При построении сети используется правило «3-4- 5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Повторитель подключается при помощи трансивера, т.о. в сети может быть не более 297 узлов. Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

2. 10 Base – 2 («Тонкий» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.25 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 185м. На один сегмент может подключаться не более 30 узлов. При построении сети используется правило «3-4-5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

3. 10 Base – Т (Неэкранированная витая пара) – в качестве передающей среды используются две неэкранированные витые пары, узлы подключаются к концентратору и

образуют топологию «звезда». Расстояние от повторителя до станции не более 100 метров для категории кабеля не ниже 3. Концентраторы могут соединяться между собой, увеличивая протяженность логического сегмента сети(домена коллизий). При построении сети используется правило 4-х хабов(между любыми двумя узлами сети должно быть не более 4-х повторителей), количество узлов в сети не должно превышать 1024.

100 – мегабитный Ethernet(Fast Ethernet) включает следующие спецификации:

1. 100Base – TX. Среда передачи данных - неэкранированная витая пара категории не ниже 5. Поддерживается функция автоопределения скорости. Возможна работа в полнодуплексном режиме.

2. 100Base – FX Использует многомодовое оптоволокно.

3. 100Base – T4 Использует 4 витые пары для передачи данных по кабелю 3 категории. Не поддерживает полнодуплексной передачи данных.

В сетях 100-мегабитного Ethernet используются повторители двух классов (I иII ). Повторители классаI могут соединять каналы, отвечающие разным требованиям, например, 100Base-TX и 100Base-T4 или 100Base-FX. В пределах одного логического сегмента может быть применен только один повторитель классаI . Такие повторители часто имеют встроенные возможности управления с использованием протокола SNMP.

Повторители класса II не выполняют преобразования сигналов, и могут объединять только однотипные сегменты. Логический сегмент может содержать не более двух повторителей классаII.

При построении сети необходимо учитывать следующие ограничения:

Все сегменты на витой паре не должны превышать 100 м. Оптоволоконные сегменты не должны превышать 412 м.Расстояние между концентраторами класса II не должно превышать 5м.

1000 – мегабитный (Gigabit) Ethernet описан следующими стандартами:

IEEE 802.3z(1000Base-TX, 1000Base-LX, 1000Base-SX)

IEEE 802.3ab(1000Base-T)

1000Base-TX: передающая среда – экранированный медный кабель длиной до 25м. 1000Base-LX : передающая среда – одномодовое оптоволокно, длина до 5000м. 1000Base-CX : передающая среда – многомодовое оптоволокно, длина до 550м. 1000Base-T : передающая среда – UTP CAT5/CAT5e, длина сегмента до 100м.

При проектировании сетей Ethernet должно всегда выполняться требование корректного определения коллизий. Для этого время передачи кадра минимальной длины должно превышать или быть равным размеру интервала времени, за который кадр дважды пройдет расстояние между двумя самыми удаленными узлами сети.

Технология Token Ring

Была разработана фирмой IBM в 1984 году. Топология сети Token Ring представляет собой кольцо, где все станции соединениы отрезками кабеля.Способ доступа к сети – маркерный. Право передавать данные получает та станция, которая завладела маркером – кадром специального формата. Период времени в течение которого станция может вести передачу определяется временем удержания маркера.

Данные передаются с двумя скоростями – 4 и 16 Мбит/с. Работа на разных скоростях в одном кольце не допускается. Для контроля состояния сети одна из станций при инициализации кольца выбирается на роль активного монитора.

В сети Token Ring со скоростью передачи 4 Мбит станция передает кадр данных, который по кругу передается всеми станциями, пока его не получит станция – адресат. Станция – получатель копирует кадр в свой буфер, устанавливает признак того, что кадр был успешно принят, и передает его по кольцу дальше. Станция – отправитель кадра изымает кадр из сети, и, если время удержания маркера не истекло, то передает следующий кадр данных. В один момент времени в сети присутствует либо маркер либо кадр данных.

В сети Token Ring со скоростью передачи 16 Мбит используется алгоритм раннего высвобождения маркера. Его суть заключается в том, что станция, передавшая кадр своих данных, передает следом кадр маркера, не дожидаясь возвращения кадра данных по кольцу. В этом случае по кольцу одновременно циркулируют кадры данных и маркера, но данные может передавать только станция, захватившая маркер.

Для разных типов сообщений, кадрам могут присваиваться различные приоритеты

– от 0 до 7. Кадр маркера имеет два поля в которых записываются текущее и резервируемое значения приоритета. Станция может захватить маркер только в том случае, если значение приоритета для ее данных выше или равно значению приоритета маркера. В противном случае она может записать значение приоритета своих данных в резервное поле приоритета маркера, зарезервировав его для себя во время следующего прохода(если это поле еще не зарезервировано для данных с более высоким уровнем приоритета). Станция, которая сумела захватить маркер, после завершения передачи своих данных переписывает биты поля резервного приоритета в поле приоритета маркера и обнуляет поле резервного приоритета. Механизм приоритетов используется только по требованию приложений.

На физическом уровне узлы в сети Token Ring подключаются при помощи устройств многостанционного доступа(MSAU – Multistation Access Unit), которые объединяются кусками кабеля и образуют кольцо. Все станции в кольце работают на одной скорости.Максимальная длина кольца равна 4000м.

Технология FDDI

Fiber Distributed Data Interface – Оптоволоконный интерфейс распределенных данных, разработан институтом ANSI с 1986 по1988г. Является первой технологией локальных сетей, в которой используется оптоволокно. Для повышения безотказности FDDI строится на базе двух оптоволоконных колец, которые образуют основной и резервный пути прохождения данных. Для обеспечения надежности узлы подключают к обоим кольцам. В нормальном режиме работы данные проходят только по первичному кольцу. Если произошел отказ и часть первичного кольца не может передавать данные, то выполняется операция свертывания кольца – то есть объединение первичного кольца с вторичным и образование единого кольца.

В сетях FDDI используется маркерный метод доступа к среде передачи данных, который работает на основе алгоритма с ранним освобождением маркера. Технология FDDI поддерживает передачу двух видов трафика – синхронного(звук, видео) и асинхронного(данные). Тип данных определяется станцией. Маркер всегда может быть захвачен на определенный итервал времени для передачи синхронных кадров и лишь в случае отсутствия перегрузок кольца – для передачи асинхронного кадра.

Максимальное число станций с двойным подключением в кольце составляет 500, максимальная длина кольца – 100км. Максимальное расстояние между двумя соседними узлами равно 2км.