Тип шины dual ddr2 sdram. Виды модулей памяти и их характеристики

Появлением на массовом рынке новых платформ все большую популярность приобретает память DDR2, которая постепенно начинает вытеснять память DDR. Первоначально существовала только память DDR2-400, на смену которой довольно быстро пришла память DDR2-533. А сейчас уже можно встретить память DDR2-667, DDR2-675, DDR2-750, DDR2-800, DDR2-900, DDR2-1000 и даже DDR2-1066. При этом отметим, что стандартизированной памятью в настоящее время является DDR2-533 и DDR2-667. В скором будущем будет также стандартизирована память DDR2-800, в связи с чем многие материнские платы уже поддерживают этот тип памяти. Остальные же типы памяти не стандартизированы, и не факт, что материнская плата способна поддержать эту память на заявленной тактовой частоте. Возникает вопрос: почему же производители памяти, соревнуясь друг с другом, стараются выпускать все более скоростную память? Ответ довольно прост — это маркетинговый ход. Ведь, по мнению рядового покупателя, чем выше тактовая частота, тем лучше. Но так ли это на самом деле и действительно ли производительность памяти целиком и полностью определяется ее тактовой частотой? Действительно ли сегодня востребована скоростная память типа DDR2-1000 или же это не более чем соревнование между производителями памяти?

Оказывается, что тактовая частота — далеко не единственная и даже не самая главная характеристика памяти, определяющая ее производительность. Куда более важной характеристикой является латентность памяти (тайминги памяти), и в этом смысле память DDR2-800 с большой латентностью будет менее производительной, чем память DDR2-667 с низкой латентностью.

Впрочем, чтобы разобраться во всех этих нюансах и выяснить, что такое латентность и почему эта характеристика более важна, чем тактовая частота, нам надлежит сначала понять, как работает оперативная память.

Что такое оперативная память

перативная память (или RAM-память —Random Access Memory) — это память с произвольным доступом.

Поскольку элементарной единицей информации является бит, оперативную память можно рассматривать как некий набор элементарных ячеек, каждая из которых способна хранить один информационный бит.

Элементарная ячейка оперативной памяти представляет собой конденсатор, способный в течение короткого промежутка времени сохранять электрический заряд, наличие которого можно ассоциировать с информационным битом. Проще говоря, при записи логической единицы в ячейку памяти конденсатор заряжается, при записи нуля — разряжается. При считывании данных конденсатор разряжается через схему считывания, и если заряд конденсатора был ненулевым, то на выходе схемы считывания устанавливается единичное значение.

Поскольку элементарной единицей информации для современных компьютеров является байт (восемь бит), то для простоты можно считать, что элементарная ячейка памяти, которая может адресоваться, хранит не бит, а байт информации. Таким образом, доступ в памяти производится не побитно, а побайтно.

Микросхемы памяти организованы в виде матрицы, напоминающий лист бумаги в клетку, причем пересечение столбца и строки матрицы задает одну из элементарных ячеек. Кроме того, современные чипы памяти имеют несколько банков, каждый из которых можно рассматривать как отдельную матрицу со своими столбцами и строками.

На рис. 1 показана упрощенная схема чипа памяти, в котором имеется четыре банка, каждый из которых содержит 8192 строки и 1024 столбца. Таким образом, емкость каждого банка — 8192x1024 = 8192 Кбайт = 8 Мбайт. Учитывая, что в чипе имеется четыре банка, получается, что полная емкость чипа составляет 32 Мбайт.

При обращении к той или иной ячейке памяти следует задать адрес нужной строки и столбца.

Для того чтобы получить доступ к ячейке памяти для записи или считывания информации, необходимо задать адрес этой ячейки. С учетом того, что в модуле памяти используется несколько чипов памяти, а в каждом чипе — несколько банков памяти, прежде всего необходимо указать, в каком чипе и банке находится ячейка. Для этого используют специальные сигналы CS, BA0 и BA1.

Сигнал CS позволяет выбрать требуемый чип памяти. Когда сигнал активен, возможен доступ к чипу памяти, то есть чип активируется. В противном случае чип памяти недоступен.

Сигналы BA0 и BA1 позволяют адресовать один из четырех банков памяти. Учитывая, что каждый сигнал может принимать одно из двух значений: 0 или 1, комбинации 00, 01, 10 и 11 позволяют задать адрес четырех банков памяти.

Когда выбраны чип и банк памяти, можно получить доступ к требуемой ячейке памяти, задав адрес столбца и строки. Адрес строки и столбца передается по специальной мультиплексированной шине адреса MA (Multiplexed Address).

Для считывания адреса строки на входы матрицы памяти подается специальный стробирующий импульс RAS (Row Address Strobe). Если точнее, то этот импульс представляет собой изменение уровня сигнала с высокого на низкий, то есть при переходе сигнала RAS с высокого уровня на низкий возможно считывание адреса строки.

При этом отметим, что само считывание адреса строки происходит не в момент изменения RAS-сигнала, а синхронизовано с положительным фронтом тактирующего импульса.

Аналогичным образом считывание адреса столбца происходит при изменении уровня сигнала (стробирующего импульса) CAS# (Column Address Strobe) с высокого значения на низкое и синхронизовано с положительным фронтом тактирующего импульса.

Кстати, заметим, что, поскольку все события памяти (считывание адреса строки и столбца, выдача или запись данных) синхронизованы с фронтами тактирующего импульса, память называется синхронной.

Импульсы RAS# и CAS# подаются последовательно друг за другом, причем импульс CAS# всегда следует за импульсом RAS#, то есть сначала происходит выбор строки, а затем — выбор столбца.

После считывания адреса строки и столбца ячейки памяти к ней возможен доступ для чтения или записи информации. Эти операции подобны друг другу, но для записи используется специальный разрешающий сигнал (стробирующий импульс) WE# (Write Enable). Если сигнал по напряжению меняется с высокого уровня на низкий, то в выбранную ячейку происходит запись информации. Если же сигнал WE# остается высоким, то происходит считывание информации с выбранной ячейки.

После того как все данные записаны или считаны с ячеек активной сроки, необходимо выполнить команду Precharge, которая закрывает активную строку и позволяет активировать следующую строку. Команды, используемые для записи или чтения, и соответствующие им состояния стробирующих импульсов представлены в табл. 1 и на рис. 2.

Таблица 1. Команды, используемые для записи или чтения ячеек памяти

Характеристики памяти

ак известно, главной характеристикой памяти является ее пропускная способность, то есть максимальное количество данных, которое можно считать из памяти или записать в память в единицу времени. Именно эта характеристика прямо или косвенно отражается в названии типа памяти.

Для того чтобы определить пропускную способность памяти, нужно умножить частоту системной шины на количество байт, передаваемых за один такт. Память SDRAM имеет 64-битную (8-байтную) шину данных.

К примеру, память DDR400 имеет пропускную способность 400 МГц x 8 байт = 3,2 Гбайт/с. Если память работает в двухканальном режиме, то теоретическая пропускная способность памяти удваивается, то есть для памяти DDR400 в двухканальном режиме она составляет 6,4 Гбайт/с. Теоретическая пропускная способность для различных типов памяти отображена в табл. 2.

Таблица 2. Соответствие типа памяти и теоретической пропускной способности

Казалось бы, чем больше пропускная способность памяти, тем лучше. Отчасти это справедливо, но лишь отчасти. Дело в том, что пропускная способность памяти должна быть сбалансирована с пропускной способностью процессорной шины. И если пропускная способность памяти превосходит пропускную способность процессорной шины, то именно процессорная шина становится узким местом в системе, ограничивая возможности памяти. Если рассматривать процессор Intel Pentium 4 или новые двухъядерные процессоры Intel Pentium D, то тактовая частота процессорной шины составляет 800 или 1066 МГц. Учитывая, что ширина шины составляет 64 бит (или 8 байт), получаем, что пропускная способность процессорной шины составляет 6,4 или 8,5 Гбайт/с. Из этого следует, что если в системе используется процессор с частотой FSB 800 МГц, то в одноканальном режиме для сбалансированного решения достаточно использовать память DDR2-800, а в двухканальном — DDR2-400.

Аналогичным образом, если в системе используется процессор с частотой FSB 1066 МГц, то в одноканальном режиме для сбалансированного решения потребуется использовать память DDR2-1066, а в двухканальном — достаточно памяти DDR2-533.

С учетом того, что типичной ситуацией является использование памяти в двухканальном режиме, память DDR2-533 вполне обеспечивает сбалансированное решение.

Возникает вопрос: если память DDR2-533 обеспечивает пропускную способность, согласующуюся с пропускной способностью процессорной шины, зачем тогда нужна более быстродействующая память? Дело в том, что до сих пор мы говорили лишь о теоретической, то есть о максимально возможной пропускной способности, которая реализуется только в случае последовательной передачи данных — когда данные передаются с каждым тактом. В реальной ситуации теоретический предел недостижим, поскольку, кроме этого, необходимо учитывать и такты, которые необходимы для получения доступа к самой ячейке памяти, а также для настроек модуля памяти. В связи с этим другими важными характеристиками памяти являются тайминги памяти или ее латентность.

Под латентностью принято понимать задержку между поступлением команды и ее реализацией. В этом смысле латентность можно сравнить с телефонным звонком. Время, которое проходит от набора номера (вызова абонента) и до ответа в трубке, — это и есть латентность телефонного вызова.

Латентность памяти, которая определяется ее таймингами, — это задержки, измеряемые в количествах тактов, между отдельными командами. Рассмотрим тайминги памяти более подробно. На рис. 3 показана последовательность команд при чтении или записи данных в память. Первоначально происходит активация нужной строки памяти (команда ACTIVE), для чего сигнал RAS переводится в низкий уровень и происходит считывание адреса строки. Далее следует команда записи (WRITE) или чтения (READ) данных, для чего сигнал CAS переводится в низкий уровень и в надлежащий уровень устанавливается сигнал WE. При установке CAS в низкий уровень после прихода положительного фронта тактирующего импульса происходит выборка адреса столбца, наличествующего в данный момент на шине адреса, и открывается доступ к нужному столбцу матрицы памяти. Однако команда чтения или записи не может следовать непосредственно за командой активации — требуется, чтобы между этими командами, то есть между импульсами RAS и CAS, существовал некий промежуток времени RAS to CAS Delay (задержка сигнала CAS относительно сигнала RAS). Эту задержку, измеряемую в тактах системной шины, принято обозначать tRCD.

После команды чтения (записи) данных и до выдачи первого элемента данных на шину (записи данных в ячейку памяти) проходит промежуток времени, который называется CAS Latency. Эта задержка измеряется в тактах системной шины и обозначается tCL. Каждый последующий элемент данных появляется на шине данных в очередном такте.

Завершение цикла обращения к банку памяти осуществляется подачей команды PRECHARGE, приводящей к закрытию строки памяти. После команды PRECHARGE и до поступления новой команды активации строки памяти должен пройти промежуток времени (tRP), называемый Row Precharge.

Еще один тип задержки, называемый ACTIVE to PRECHARGE delay, — это промежуток времени между командой активации строки памяти и командой PRECHARGE. Эта задержка обозначается tRAS и измеряется в тактах системной шины.

Ну и последний тип задержки, который необходимо упомянуть, — это скорость выполнения команд (Command Rate). Command Rate — это задержка в тактах системной шины между командой CS# выбора чипа и командой активации строки. Как правило, задержка Command Rate составляет один или два такта (1T или 2T).

Описанные задержки — RAS to CAS Delay (tRCD), CAS Latency (tCL) и Row Precharge (tRP) — определяют тайминги памяти, записываемые в виде последовательности tCL—tRCD—tRP—tRAS—Command Rate. К примеру, для модуля DDR400 (PC3200) тайминги могут быть следующими: 2-3-4-5-(1T). Это означает, что для данного модуля CAS Latency (tCL) составляет 2 такта, RAS to CAS Delay (tRCD) — 3 такта, Row Precharge (tRP) — 4 такта, ACTIVE to PRECHARGE delay (tRAS) — 5 тактов и Command Rate — 1 такт.

Понятно, что чем меньше тайминги, тем более быстродействующей является память. Поэтому если сравнивать память с таймингом 3-3-3-5-(1T) и память с таймингом 3-2-2-5-(1T), то последняя оказывается более быстродействующей.

Память SDR

азобравшись с такими важными характеристиками памяти, как ее тайминги, можно перейти непосредственно к принципам работы памяти. Несмотря на то что данная статья посвящена современной памяти DDR2, рассмотрение принципов работы памяти мы начнем с синхронной SDRAM-памяти типа SDR (Single Data Rate).

В SDR SDRAM-памяти обеспечивается синхронизация всех входных и выходных сигналов с положительными фронтами импульсов тактового генератора. Весь массив памяти SDRAM-модуля разделен на два независимых банка. Такое решение позволяет совмещать выборку данных из одного банка с установкой адреса в другом банке, то есть одновременно иметь две открытые страницы. Доступ к этим страницам чередуется (bank interleaving), и соответственно устраняются задержки, что обеспечивает создание непрерывного потока данных.

Наиболее распространенными типами SDRAM-памяти до недавнего времени являлись PC100 и PC133. Цифры 100 и 133 определяют частоту системной шины в мегагерцах (МГц), которую поддерживает эта память. По внутренней архитектуре, способам управления и внешнему дизайну модули памяти PC100 и PC133 полностью идентичны.

В SDRAM-памяти организована пакетная обработка данных, что позволяет производить обращение по новому адресу столбца ячейки памяти на каждом тактовом цикле. В микросхеме SDRAM имеется счетчик для наращивания адресов столбцов ячеек памяти, чтобы обеспечить быстрый доступ к ним.

В SDRAM-памяти ядро и буферы обмена работают в синхронном режиме на одной и той же частоте (100 или 133 МГц). Передача каждого бита из буфера происходит с каждым тактом работы ядра памяти.

Временная диаграмма работы памяти SDR SDRAM показана на рис. 4.

Память DDR

амять DDR SDRAM, которая пришла на смену памяти SDR, обеспечивает в два раза большую пропускную способность. Аббревиатура DDR (Double Data Rate) в названии памяти означает удвоенную скорость передачи данных. В DDR-памяти каждый буфер ввода-вывода передает два бита за один такт, то есть фактически работает на удвоенной тактовой частоте, оставаясь при этом полностью синхронизированным с ядром памяти. Такой режим работы возможен в случае, если эти два бита доступны буферу ввода-вывода на каждом такте работы памяти. Для этого требуется, чтобы каждая команда чтения приводила к передаче из ядра памяти в буфер сразу двух бит. С этой целью используются две независимые линии передачи от ядра памяти к буферам ввода-вывода, откуда биты поступают на шину данных в требуемом порядке.

Поскольку при таком способе организации работы памяти происходит предвыборка двух бит перед передачей их на шину данных, его также называют Pre-fetch 2 (предвыборка 2).

Для того чтобы осуществить синхронизацию работы ядра памяти и буферов ввода-вывода, используется одна и та же тактовая частота (одни и те же тактирующие импульсы). Только если в самом ядре памяти синхронизация осуществляется по положительному фронту тактирующего импульса, то в буфере ввода-вывода для синхронизации используется как положительный, так и отрицательный фронт тактирующего импульса (рис. 5). Таким образом, передача двух бит в буфер ввода-вывода по двум раздельным линиям осуществляется по положительному фронту тактирующего импульса, а их выдача на шину данных происходит как по положительному, так и по отрицательному фронту тактирующего импульса. Это обеспечивает в два раза более высокую скорость работы буфера и соответственно вдвое большую пропускную способность памяти (см. рис. 5).

Все остальные принципиальные характеристики DDR-памяти не изменились: структура нескольких независимых банков позволяет совмещать выборку данных из одного банка с установкой адреса в другом банке, то есть можно одновременно иметь две открытые страницы. Доступ к этим страницам чередуется (bank interleaving), что приводит к устранению задержек и обеспечивает создание непрерывного потока данных.

Память DDR2

сли следовать терминологии SDR (Single Data Rate), DDR (Double Data Rate), то память DDR2 было бы логично назвать QDR (Quadra Data Rate), поскольку этот стандарт подразумевает в четыре раза большую скорость передачи, то есть в стандарте DDR2 при пакетном режиме доступа данные передаются четыре раза за один такт. Для организации данного режима работы памяти необходимо, чтобы буфер ввода-вывода работал на учетверенной частоте по сравнению с частотой ядра памяти. Достигается это следующим образом: ядро памяти, как и прежде, синхронизируется по положительному фронту тактирующих импульсов, а с приходом каждого положительного фронта по четырем независимым линиям в буфер ввода-вывода передаются четыре бита информации (выборка четырех битов за такт). Сам буфер ввода-вывода тактируется на удвоенной частоте ядра памяти и синхронизируется как по положительному, так и по отрицательному фронту этой частоты. Иными словами, с приходом положительного и отрицательного фронтов происходит передача битов в мультиплексном режиме на шину данных (рис. 6). Это позволяет за каждый такт работы ядра памяти передавать четыре бита на шину данных, то есть вчетверо повысить пропускную способность памяти.

По сравнению с памятью DDR, память DDR2 позволяет обеспечить ту же пропускную способность, но при вдвое меньшей частоте ядра. К примеру, в памяти DDR400 ядро функционирует на частоте 200 МГц, а в памяти DDR2-400 — на частоте 100 МГц. В этом смысле память DDR2 имеет значительно большие потенциальные возможности для увеличения пропускной способности по сравнению с памятью DDR.

От теории к практике: память DDR2-667 Kingmax KLCD48F-A8EB5-ECAS

зучив теоретические аспекты функционирования современной памяти DDR2, перейдем от теории к практике. В качестве примера мы рассмотрим новую память SDRAM DDR2-667 компании Kingmax. Стенд для тестирования имел следующую конфигурацию:

  • процессор: Intel Pentium 4 570 (тактовая частота 3,8 ГГц, кэш L2 1 Мбайт);
  • частота FSB: 800 МГц;
  • материнская плата: MSI P4N Diamond;
  • чипсет: NVIDIA nForce4 SLI Intel Edition;
  • память: два модуля DDR2-667 Kingmax KLCD48F-A8EB5-ECAS объемом по 1 Гбайт каждый (двухканальный режим работы);
  • видеокарта: MSI NX6800 Ultra-T2D512E.

К сожалению, технической информации о модулях Kingmax KLCD48F-A8EB5-ECAS на сайте производителя маловато. Единственное, что удалось узнать, так это об организации модуля (8Ѕ128 Мбайт) и о значении параметра CAS Latency, которое составляет 5 тактов.

Для тестирования памяти мы использовали тестовый пакет RightMark Memory Analyzer v 3.55 и набор игровых бенчмарков: Half-Life 2, DOOM 3, FarCry 1.3, Unreal Tournament 2004 и 3DMark 2003. С целью увеличения нагрузки на процессор и память при тестировании использовалось разрешение 640Ѕ480 точек, а драйвер видеокарты настраивался на максимальную производительность.

Как выяснилось в процессе тестирования, модули памяти KLCD48F-A8EB5-ECAS имеют тайминги по умолчанию (by SPD) и составляют последовательность 5-5-5-13-(2T). Таким образом:

CAS Latency (tCL) — 5T;

RAS to CAS delay (tRCD) — 5T;

Row Precharge (tRP) — 5T;

Active to Precharge (tRAS) — 13T;

Command Rate — 2T.

Для того чтобы оценить потенциальные возможности модулей памяти по разгону (но без ущерба для стабильности), мы также провели тестирование в режиме с наименьшими таймингами, которые были определены методом проб и ошибок. Как выяснилось, минимальные тайминги, которые поддерживают данные модули памяти на тактовой частоте 667 МГц, составляют последовательность 4-3-3-5-(2T). Кроме того, мы провели разгон памяти по тактовой частоте, чтобы оценить максимально возможную тактовую частоту, поддерживаемую данными модулями при работе в двухканальном режиме.

Для тестирования с использованием тестового пакета RightMark Memory Analyzer v 3.55 использовались встроенные в бенчмарк пресеты:

RAM Performance Stream;

Average Memory Bandwidth, SSE2;

Maximal RAM Bandwidth, Software Prefetch, SSE2;

Average RAM Latency;

Minimal RAM Latency, 16 Mbyte Block, L1 Cache line.

С подробным описанием каждого пресета можно ознакомиться на сайтах www.rightmark.org или www.ixbt.com .

Результаты тестирования с использованием тестового пакета RightMark Memory Analyzer v 3.55 представлены в табл. 3.


с использованием тестового пакета RightMark Memory Analyzer v 3.55

Как следует из результатов тестирования, тайминги по умолчанию (by SPD) являются сильно завышенными. Уменьшение таймингов не оказывает влияния на стабильность работы модулей памяти, однако приводит к значительному увеличению пропускной способности памяти и к снижению латентности. Так, максимальная пропускная способность памяти при таймингах 5-5-5-13-(2T) составляет 5967,3 Мбайт/с (операция чтения, пресет Maximal RAM Bandwidth, Software Prefetch, SSE2). В то же время при уменьшении таймингов до 4-3-3-5-(2T) пропускная способность увеличивается до 6294,9 Мбайт/с, то есть на 5,5%. Отметим, что значение 6294,9 Мбайт/с близко к теоретическому пределу пропускной способности процессорной шины, которая в данном случае составляет 6,4 Гбайт/с.

Увеличение тактовой частоты до 710 МГц не оказывает влияния на стабильность в работе памяти, однако добиться значительного увеличения производительности памяти в данном случае не удается, что еще раз подтверждает тот факт, что изменение таймингов памяти оказывает существенно большее влияние на производительность памяти, нежели увеличение тактовой частоты.

Теперь обратимся к результатам игровых тестов (табл. 4). Как видите, уменьшение таймингов памяти позволяет (хотя и незначительно) увеличить результаты во всех игровых тестах. В то же время увеличение тактовой частоты памяти никак не отражается на результатах теста.

***

Итак, если говорить о рассмотренных модулях памяти Kingmax KLCD48F-A8EB5-ECAS, то можно констатировать, что в сочетании с материнской платой MSI P4N Diamond, а следовательно, и с чипсетом NVIDIA nForce4 SLI Intel Edition, эти модули обеспечивают гарантированно стабильную работу и прекрасно разгоняются путем уменьшения таймингов. Именно поэтому мы решили присвоить модулям Kingmax KLCD48F-A8EB5-ECAS знак «Редакция рекомендует».

Редакция выражает признательность компании Kingmax (www.kingmax.com ) за предоставление модулей памяти Kingmax KLCD48F-A8EB5-ECAS.

Сейчас актуальным стандартом оперативной памяти является DDR4, но в использовании все еще находится множество компьютеров с DDR3, DDR2 и даже DDR. Из-за такого оперативной памяти многие пользователи путаются и забывают какая именно оперативная память используется на их компьютере. Решению этой проблемы и будет посвящена данная статья. Здесь мы расскажем, как узнать какая оперативная память используется на компьютере DDR, DDR2, DDR3 или DDR4.

Если у вас есть возможность открыть компьютер и осмотреть его комплектующие, то всю необходимую информацию вы можете получить с наклейки на модуле оперативной памяти.

Обычно на наклейке можно найти надпись с названием модуля памяти. Это название начинается с букв «PC» после которых идут цифры, и оно указывает на тип данного модуля оперативной памяти и его пропускную способность в мегабайтах за секунду (МБ/с).

Например, если на модуле памяти написано PC1600 или PC-1600, то это модуль DDR первого поколения с пропускной способностью в 1600 МБ/с. Если на модуле написано PC2‑ 3200, то это DDR2 с пропускной способностью в 3200 МБ/с. Если PC3 – то это DDR3 и так далее. В общем, первая цифра после букв PC указывает на поколение DDR, если этой цифры нет, то это простой DDR первого поколения.

В некоторых случаях на модулях оперативной памяти указывается не название модуля, а тип оперативной памяти и его эффективная частота. Например, на модуле может быть написано DDR3 1600. Это означает что это модуль DDR3 c эффективной частотой памяти 1600 МГц.

Для того чтобы соотносить названия модулей с типом оперативной памяти, а пропускную способность с эффективной частотой можно использовать таблицу, которую мы приводим ниже.

Название модуля Тип оперативной памяти
PC-1600 DDR-200
PC-2100 DDR-266
PC-2400 DDR-300
PC-2700 DDR-333
PC-3200 DDR-400
PC-3500 DDR-433
PC-3700 DDR-466
PC-4000 DDR-500
PC-4200 DDR-533
PC-5600 DDR-700
PC2-3200 DDR2-400
PC2-4200 DDR2-533
PC2-5300 DDR2-667
PC2-5400 DDR2-675
PC2-5600 DDR2-700
PC2-5700 DDR2-711
PC2-6000 DDR2-750
PC2-6400 DDR2-800
PC2-7100 DDR2-888
PC2-7200 DDR2-900
PC2-8000 DDR2-1000
PC2-8500 DDR2-1066
PC2-9200 DDR2-1150
PC2-9600 DDR2-1200
PC3-6400 DDR3-800
PC3-8500 DDR3-1066
PC3-10600 DDR3-1333
PC3-12800 DDR3-1600
PC3-14900 DDR3-1866
PC3-17000 DDR3-2133
PC3-19200 DDR3-2400
PC4-12800 DDR4-1600
PC4-14900 DDR4-1866
PC4-17000 DDR4-2133
PC4-19200 DDR4-2400
PC4-21333 DDR4-2666
PC4-23466 DDR4-2933
PC4-25600 DDR4-3200

Использование специальных программ

Если же ваши модули оперативной памяти уже установлены в компьютер, то вы можете узнать к какому типу они относятся с помощью специальных программ.

Самый простой вариант - это воспользоваться бесплатной программой CPU-Z. Для этого запустите CPU-Z на своем компьютере и перейдите на вкладку «Memory». Здесь в левом верхнем углу окна будет указан тип оперативной памяти, который используется на вашем компьютере.

Также на вкладке «Memory» можно узнать эффективную частоту, на которой работает ваша оперативная память. Для этого нужно взять значение «DRAM Frequency» и умножить его два. Например, на скриншоте внизу указана частота 665.1 МГц, умножаем ее на 2 и получаем эффективную частоту 1330,2 МГц.

Если вы хотите узнать какие конкретно модули оперативной памяти установлены на вашем компьютере, то эту информацию можно получить на вкладке «SPD».

Здесь можно узнать, сколько модулей памяти установлено, кто их производитель, на каких частотах они могут работать и многое другое.

Рынок комплектующих постоянно пополняется новыми разработками и инновациями с завидной регулярностью, отчего у многих пользователей, чьи средства явно не позволяют своевременно обзавестись новым железом, появляются сомнения в мощности и производительности своего компьютера в целом. Во все времена обсуждение уймы вопросов на технических форумах про актуальность своих комплектующих не стихает никогда. При этом вопросы касаются не только лишь процессора, видеокарты, но даже и оперативной памяти. Однако, даже невзирая на всю динамику развития компьютерного железа, актуальность технологий предыдущих поколений не утрачивается настолько же быстро. В том числе это касается и компонентов

DDR2-память: от первых дней на рынке до заката популярности

DDR2 - это второе поколение с произвольным доступом (от англ. Synchronous Dynamic random access memory - SDRAM), или же, в привычной для любого пользователя формулировке, следующее после DDR1 поколение оперативной памяти, получившей широкое распространение в сегменте персональных компьютеров.

Будучи разработанным в далёком 2003 году, полноценно закрепиться на рынке новый тип смог лишь к концу 2004-го - только на тот момент появились чипсеты с поддержкой DDR2. Активно разрекламированное маркетологами, второе поколение было представлено как чуть ли не в два раза более мощная альтернатива.

Что стоит в первую очередь выделить из различий, это способность работать на значительно более высокой частоте, передавая данные дважды за один такт. С другой стороны, стандартным негативным моментом поднятия частот является увеличение времени задержки при работе.

Наконец, к середине 2000-х новый тип основательно ущемил позиции предыдущего, первого, и лишь только к 2010 году DDR2 была значимым образом потеснена пришедшей на замену новинкой DDR3.

Особенности устройства

Распространяемые модули ОЗУ DDR2 (в обыденной речи принявшие название "плашки") обладали некоторыми отличительными особенностями и разновидностями. И хоть обилием вариаций новый для своего времени откровенно не поражал, однако даже внешние различия сразу же бросались в глаза любому покупателю с первого взгляда:

  • Односторонняя/двухсторонняя планка-модуль SDRAM, на котором микросхемы расположены с одной или двух сторон соответственно.
  • DIMM - стандартный на сегодняшний день форм-фактор для SDRAM (синхронная динамическая оперативная память, коей и является DDR2). Массовое использование в компьютерах общего предназначения началось ещё с конца 90-х годов, чему главным образом способствовало появление процессора Pentium II.
  • SO-DIMM - укороченный форм-фактор модуля SDRAM, разработанный специальным образом для портативных компьютеров. Плашки SO-DIMM DDR2 для ноутбука обладали несколькими существенными отличиями от стандартных DIMM. Это модуль с меньшими физическими размерами, пониженным энергопотреблением и, как следствие, меньшим по сравнению со стандартным DIMM-фактором уровнем производительности. Пример модуля ОЗУ DDR2 для ноутбука можно увидеть на фото ниже.

Помимо всех вышеперечисленных особенностей, следует отметить также довольно посредственную "оболочку" плашек тех времён - почти все они за редким исключением тогда были представлены лишь стандартными платами с микросхемами. Маркетинг в сегменте компьютерного железа тогда лишь только-только начинал раскручиваться, поэтому в продаже попросту не было образцов с привычными уже для современных модулей оперативки радиаторами самых различных размеров и оформления. До сих пор они выполняют прежде всего функцию декоративную, нежели задачу отвода выделяемого тепла (что, в принципе, не свойственно оперативной памяти типа DDR).

На фото, размещенном ниже, можно видеть, как выглядят модули ОЗУ DDR2-667 с радиатором.

Ключик совместимости

DDR2-память по своей конструкции имеет крайне важное отличие от предыдущей DDR - отсутствие обратной совместимости. В образцах второго поколения прорезь в зоне контакта планки с разъёмом для оперативной памяти на материнской плате уже была расположена по-иному, из-за чего вставить плашку DDR2 в разъём, рассчитанный на DDR, физически невозможно без поломки одного из компонентов.

Параметр объёма

Для серийных материнских плат (любая для домашнего/офисного пользования материнская плата) DDR2-стандарт мог предложить максимальный объём 16 гигабайт. Для серверных решений лимит объёма доходил до 32 гигабайт.

Стоит также обратить внимание ещё на один технический нюанс: минимальный объём одной плашки составляет 1 Гб. Помимо этого, на рынке представлены ещё два варианта модулей DDR2: 2Gb и 8Gb. Таким образом, чтобы получить максимально возможный запас оперативной памяти этого стандарта, пользователю придётся устанавливать две планки по 8 Гб либо четыре по 4 Гб соответственно.

Частота передачи данных

Этот параметр отвечает за способность шины памяти пропускать как можно больше информации за единицу времени. Большее значение частоты - больше данных возможно будет предать, и тут DDR2-память существенно обогнала предыдущее поколение, которое могло работать в диапазоне от 200 до 533 МГц максимум. Ведь минимальная частота планки DDR2 - это 533 МГц, а топовые экземпляры, в свою очередь, могли похвастаться разгоном до 1200 МГц.

Однако с ростом частоты памяти закономерно поднимались и тайминги, от которых не в последнюю очередь зависит производительность памяти.

О таймингах

Тайминг - это временной интервал с момента запроса данных до считывания их с оперативной памяти. И чем больше увеличивалась частота модуля, тем дольше оперативке требовалось времени на совершение операций (не до колоссальных задержек, разумеется).

Измеряется параметр в наносекундах. Наиболее влияющим на производительность является тайминг латентности (CAS latency), который в спецификациях обозначается как CL* (вместо * может быть указано любое число, и чем оно меньше - тем оперативное будет работать шина памяти). В некоторых случаях тайминги планок указываются трёхсимвольной комбинацией (к примеру, 5-5-5), однако наиболее критичным параметром будет как раз-таки первое число - им всегда обозначена латентность памяти. Если же тайминги указаны в четырёхзначной комбинации, в которой последнее значение разительно больше всех остальных (к примеру, 5-5-5-15), то это указана длительность общего рабочего цикла в наносекундах.

Старичок, не теряющий формы

Своим появлением второе поколение вызвало немало шума в компьютерных кругах, что и обеспечило ей немалую популярность и отличные продажи. DDR2, как и предшествующее ей поколение, могла передавать данные по обоим срезам, однако более быстрая шина с возможностью передачи данных значительно повысила её работоспособность. К тому же положительным моментом было и более высокая энергоэффективность - на уровне 1,8 В. И если на общей картине энергопотребления компьютера это едва ли хоть как-то сказывалось, то на срок службы (особенно при интенсивной работе железа) это влияло сугубо положительно.

Однако технологии перестали быть таковыми, если бы не развивались в дальнейшем. Именно это и случилось с появлением следующего поколения DDR3 в 2007 году, задачей которого было постепенное, но уверенное вытеснение с рынка устаревающей DDR2. Однако действительно ли это "устаревание" означает полную неконкурентоспособность с новой технологией?

Один на один с третьим поколением

Помимо традиционной обратной несовместимости, DDR3 представлял ряд нескольких технических нововведений в стандарты оперативной памяти:

  • Максимально поддерживаемый объём для серийных материнских плат увеличился с 16 до 32 Гб (при этом показатель одного модуля мог достигать 16 Гб вместо прежних 8).
  • Более высокие частоты передачи данных, минимум которых составляет 2133 МГц, а максимум - 2800 МГц.
  • Наконец, стандартное для каждого нового поколения уменьшенное энергопотребление: 1,5 В против 1,8 В у второго поколения. Помимо этого, на основе DDR3 были разработаны ещё две модификации: DDR3L и LPDDR3, потребляющие 1,35 В и 1,2 В соответственно.

Вместе с новой архитектурой также повысились тайминги, однако падение производительности от этого нивелируется более высокими рабочими частотами.

Как решит покупатель

Покупатель - не инженер-разработчик; помимо технических характеристик покупателю не менее важна будет и цена самого продукта.

На старте продаж нового поколения любого компьютерного железа его стоимость стандартно окажется более высокой. Та же самая оперативная память нового типа поначалу приходит на рынок с очень большой ценовой разницей по сравнению с предыдущим.

Однако же прирост в производительности между поколениями в большинстве приложений если и вообще не отсутствует, то составляет просто смешные показатели, явно не достойные больших переплат. Единственный верный момент для перехода на новое поколение оперативки - максимальное падение его ценника до уровня предыдущего (такое в сегменте продаж SDRAM происходит всегда, это же было в случае с DDR2 и DDR3, это же сейчас произошло в случае с DDR3 и новенькой DDR4). И только лишь тогда, когда цена переплаты между последним и предыдущим поколением будет составлять самый минимум (что адекватно для небольшого прироста производительности), то только в этой ситуации можно задумываться о замене оперативной памяти.

В свою очередь, владельцам компьютеров с DDR2-памятью обзаводиться новым типом оперативки рациональнее всего только при основательном апгрейде с соответствующей поддерживающего этот самый новый тип, и новой материнской платой (и то на сегодняшний день имеет смысл апгрейдиться до уровня компонентов, поддерживающих DDR4-память: ее нынешняя цена находится наравне с DDR3, а прирост между четвёртым и вторым поколением будет куда более ощутимым, нежели между третьим и вторым).

В ином же случае, если подобный апгрейд пользователем совершенно никак не запланирован, то вполне можно обойтись той же DDR2, цена на которую сейчас относительно низкая. Достаточно будет лишь увеличить при необходимости общий объём оперативки аналогичными модулями. Допустимые лимиты памяти этого типа даже сегодня с лихвой покрывают все нужды большинства юзеров (в большинстве случаев достаточно будет установки дополнительного модуля DDR2 2Gb), а отставание в производительности со следующими поколениями совершенно некритичными.

Минимальные цены на модули оперативной памяти (учтены только образцы проверенных брендов Hynix, Kingston и Samsung) могут варьироваться в зависимости от региона проживания покупателя и выбранного им магазина.

История оперативной памяти , или ОЗУ , началась в далёком 1834 году, когда Чарльз Беббидж разработал «аналитическую машину» - по сути, прообраз компьютера. Часть этой машины, которая отвечала за хранение промежуточных данных, он назвал «складом». Запоминание информации там было организовано ещё чисто механическим способом, посредством валов и шестерней.

В первых поколениях ЭВМ в качестве ОЗУ использовались электронно-лучевые трубки, магнитные барабаны, позже появились магнитные сердечники, и уже после них, в третьем поколении ЭВМ появилась память на микросхемах.

Сейчас ОЗУ выполняется по технологии DRAM в форм-факторах DIMM и SO-DIMM , это динамическая память, организованная в виде интегральных схем полупроводников. Она энергозависима, то есть данные исчезают при отсутствии питания.

Выбор оперативной памяти не является сложной задачей на сегодняшний день, главное здесь разобраться в типах памяти, её назначении и основных характеристиках.

Типы памяти

SO-DIMM

Память форм-фактора SO-DIMM предназначена для использования в ноутбуках, компактных ITX-системах, моноблоках - словом там, где важен минимальный физический размер модулей памяти. Отличается от форм-фактора DIMM уменьшенной примерно в 2 раза длиной модуля, и меньшим количеством контактов на плате (204 и 360 контактов у SO-DIMM DDR3 и DDR4 против 240 и 288 на платах тех же типов DIMM-памяти).
По остальным характеристикам - частоте, таймингам, объёму, модули SO-DIMM могут быть любыми, и ничем принципиальным от DIMM не отличаются.

DIMM

DIMM - оперативная память для полноразмерных компьютеров.
Тип памяти, который вы выберете, в первую очередь должен быть совместим с разъёмом на материнской плате. ОЗУ для компьютера делится на 4 типа – DDR , DDR2 , DDR3 и DDR4 .

Память типа DDR появилась в 2001 году, и имела 184 контакта. Напряжение питания составляло от 2.2 до 2.4 В. Частота работы – 400МГц . До сих пор встречается в продаже, правда, выбор невелик. На сегодняшний день формат устарел, - подойдёт, только если вы не хотите обновлять систему полностью, а в старой материнской плате разъёмы только под DDR.

Стандарт DDR2 вышел уже в 2003-ем, получил 240 контактов, которые увеличили число потоков, прилично ускорив шину передачи данных процессору. Частота работы DDR2 могла составлять до 800 МГц (в отдельных случаях – до 1066 МГц), а напряжение питания от 1.8 до 2.1 В – чуть меньше, чем у DDR. Следовательно, понизились энергопотребление и тепловыделение памяти.
Отличия DDR2 от DDR:

· 240 контактов против 120
· Новый слот, несовместимый с DDR
· Меньшее энергопотребление
· Улучшенная конструкция, лучшее охлаждение
· Выше максимальная рабочая частота

Также, как и DDR, устаревший тип памяти - сейчас подойдёт разве что под старые материнские платы, в остальных случаях покупать нет смысла, так как новые DDR3 и DDR4 быстрее.

В 2007 году ОЗУ обновились типом DDR3 , который до сих пор массово распространён. Остались всё те же 240 контактов, но слот подключения для DDR3 стал другим – совместимости с DDR2 нет. Частота работы модулей в среднем от 1333 до 1866 МГц . Встречаются также модули с частотой вплоть до 2800 МГц .
DDR3 отличается от DDR2:

· Слоты DDR2 и DDR3 несовместимы.
· Тактовая частота работы DDR3 выше в 2 раза – 1600 МГц против 800 МГц у DDR2.
· Отличается сниженным напряжением питания – порядка 1.5В, и меньшим энергопотреблением (в версии DDR3L это значение в среднем ещё ниже, около 1.35 В).
· Задержки (тайминги) DDR3 больше, чем у DDR2, но рабочая частота выше. В целом скорость работы DDR3 на 20-30% выше.

DDR3 - на сегодня хороший выбор. Во многих материнских платах в продаже разъёмы под память именно DDR3, и в связи с массовой популярностью этого типа, вряд ли он скоро исчезнет. Также он немного дешевле DDR4.

DDR4 – новый тип ОЗУ, разработанный только в 2012 году. Является эволюционным развитием предыдущих типов. Пропускная способность памяти снова повысилась, теперь достигая 25,6 Гб/с. Частота работы также поднялась – в среднем от 2133 МГц до 3600 МГц . Если же сравнивать новый тип с DDR3, который продержался на рынке целых 8 лет и получил массовое распространение, то прирост производительности незначителен, к тому же далеко не все материнские платы и процессоры поддерживают новый тип.
Отличия DDR4:

· Несовместимость с предыдущими типами
· Пониженно напряжение питания – от 1.2 до 1.05 В, энергопотребление тоже снизилось
· Рабочая частота памяти до 3200 МГц (может достигать 4166 МГц в некоторых планках), при этом, конечно, выросшие пропорционально тайминги
· Может незначительно превосходить по скорости работы DDR3

Если у вас уже стоят планки DDR3, то торопиться менять их на DDR4 нет никакого смысла. Когда этот формат распространится массово, и все материнские платы уже будут поддерживать DDR4, переход на новый тип произойдёт сам собой с обновлением всей системы. Таким образом, можно подытожить, что DDR4 – скорее маркетинг, чем реально новый тип ОЗУ.

Какую частоту памяти выбрать?

Выбор частоты нужно начинать с проверки максимально поддерживаемых частот вашим процессором и материнской платой. Частоту выше поддерживаемой процессором имеет смысл брать только при разгоне процессора.

На сегодняшний день не стоит выбирать память с частотой ниже 1600 МГц. Вариант 1333 МГц допустим в случае DDR3, если это не завалявшиеся у продавца древние модули, которые явно будут медленнее новых.

Оптимальный вариант на сегодня - это память с интервалом частот от 1600 до 2400 МГц . Частота выше почти не имеет преимущества, но стоит гораздо дороже, и как правило является разогнанными модулями с поднятыми таймингами. Для примера, разница между модулями в 1600 и 2133 Мгц в ряде рабочих программ будет не более 5-8 %, в играх разница может быть ещё меньше. Частоты в 2133-2400 Мгц стоит брать, если вы занимаетесь кодированием видео/аудио, рендерингом.

Разница же между частотами в 2400 и 3600 Мгц обойдётся вам довольно дорого, при этом не прибавив ощутимо скорости.

Какой объём оперативной памяти брать?

Объём, который вам понадобится, зависит от типа работы, производимой на компьютере, от установленной операционной системы, от используемых программ. Также не стоит упускать из виду максимально поддерживаемый объём памяти вашей материнской платой.

Объём 2 ГБ - на сегодняшний день, может хватить разве что только для просмотра интернета. Больше половину будет съедать операционная система, оставшегося хватит на неторопливую работу нетребовательных программ.

Объём 4 ГБ
– подойдёт для компьютера средней руки, для домашнего пк-медиацентра. Хватит, чтобы смотреть фильмы, и даже поиграть в нетребовательные игры. Современные – увы, с потянет с трудом. (Станет лучшим выбором, если у вас 32-разрядная операционная система Windows, которая видит не больше 3 ГБ оперативной памяти)

Объём 8 ГБ (или комплект 2х4ГБ) – рекомендуемый объём на сегодня для полноценного ПК. Этого хватит для почти любых игр, для работы с любым требовательным к ресурсам софтом. Лучший выбор для универсального компьютера.

Объём 16 ГБ (или наборы 2х8ГБ , 4х4ГБ)- будет оправданным, если вы работаете с графикой, тяжёлыми средами программирования, или постоянно рендерите видео. Также отлично подойдёт для ведения онлайн-стримов – здесь с 8 ГБ могут быть подвисания, особенно при высоком качестве видео-трансляции. Некоторые игры в высоких разрешениях и с HD-текстурами могут лучше себя вести с 16 ГБ оперативной памяти на борту.

Объём 32 ГБ (набор 2х16ГБ , или 4х8ГБ)– пока очень спорный выбор, пригодится для каких-то совсем экстремальных рабочих задач. Лучше будет потратить деньги на другие комплектующие компьютера, это сильнее отразится на его быстродействии.

Режимы работы: лучше 1 планка памяти или 2?

ОЗУ может работать в одно-канальном, двух-, трёх- и четырёх-канальном режимах. Однозначно, если на вашей материнской плате есть достаточное количество слотов, то лучше взять вместо одной планки памяти несколько одинаковых меньшего объёма. Скорость доступа к ним вырастет от 2 до 4 раз.

Чтобы память работала в двухканальном режиме, нужно устанавливать планки в слоты одного цвета на материнской плате. Как правило, цвет повторяется через разъём. Важно при этом, чтобы частота памяти в двух планках была одинаковой.

- Single chanell Mode – одноканальный режим работы. Включается, когда установлена одна планка памяти, или разные модули, работающие на разной частоте. В итоге память работает на частоте самой медленной планки.
- Dual Mode – двухканальный режим. Работает только с модулями памяти одинаковой частоты, увеличивает скорость работы в 2 раза. Производители выпускают специально для этого комплекты модулей памяти , в которых может быть 2 или 4 одинаковых планки.
- Triple Mode – работает по тому же принципу, что и двух-канальный. На практике не всегда быстрее.
- Quad Mode - четырёх-канальный режим, который работает по принципу двухканального, соответственно увеличивая скорость работы в 4 раза. Используется, там где нужна исключительно высокая скорость - например, в серверах.

- Flex Mode – более гибкий вариант двухканального режима работы, когда планки разного объёма, а одинаковая только частота. При этом в двухканальном режиме будут использоваться одинаковые объёмы модулей, а оставшийся объём будет функционировать в одноканальном.

Нужен ли памяти радиатор?

Сейчас уже давно не те времена, когда при напряжении в 2 В достигалась частота работы в 1600 МГц, и в результате выделялось много тепла, которое надо было как-то отводить. Тогда радиатор мог быть критерием выживаемости разогнанного модуля.

В настоящее время же энергопотребление памяти сильно снизилось, и радиатор на модуле может быть оправдан с технической точки зрения, только если вы увлекаетесь оверклокингом, и модуль будет работать у вас на запредельных для него частотах. Во всех остальных случаях радиаторы можно оправдать, разве что, красивым дизайном.

В случае, если радиатор массивный, и заметно увеличивает высоту планки памяти – это уже существенный минус, поскольку он может помешать вам поставить в систему процессорный суперкулер. Существуют, кстати, специальные низкопрофильные модули памяти , предназначенные для установки в компактные корпуса. Они несколько дороже модулей обычного размера.



Что такое тайминги?

Тайминги , или латентность (latency) – одна из самых важных характеристик оперативной памяти, определяющих её быстродействие. Обрисуем общий смысл этого параметра.

Упрощённо оперативную память можно представить, как двумерную таблицу, в которой каждая ячейка несёт информацию. Доступ к ячейкам происходит по указанию номера столбца и строки, и указание это происходит при помощи стробирующего импульса доступа к строке RAS (Row Access Strobe ) и стробирующего импульса доступа к столбцу CAS (Acess Strobe ) путём изменения напряжения. Таким образом, за каждый такт работы происходят обращения RAS и CAS , и между этими обращениями и командами записи/чтения существуют определённые задержки, которые и называются таймингами.

В описании модуля оперативной памяти можно увидеть пять таймингов, которые для удобства записываются последовательностью цифр через дефис, например 8-9-9-20-27 .

· tRCD (time of RAS to CAS Delay) - тайминг, который определяет задержку от импульса RAS до CAS
· CL (timе of CAS Latency) - тайминг, определяющий задержку между командой о записи/чтении и импульсом CAS
· tRP (timе of Row Precharge) - тайминг, определяющий задержку при переходах от одной строки к следующей
· tRAS (time of Active to Precharge Delay) - тайминг, который определяет задержку между активацией строки и окончанием работы с ней; считается основным значением
· Command rate – определяет задержку между командой выбора отдельного чипа на модуле до команды активации строки; этот тайминг указывают не всегда.

Если говорить ещё проще, то о таймингах важно знать только одно – чем их значения меньше, тем лучше. При этом планки могут иметь одинаковую частоту работы, но разные тайминги, и модуль с меньшими значениями всегда будет быстрее. Так что стоит выбирать минимальные тайминги, для DDR4 ориентиром средних значений будут тайминги 15-15-15-36, для DDR3 - 10-10-10-30. Также стоит помнить, что тайминги связаны с частотой памяти, так что при разгоне скорее всего придётся поднять и тайминги, и наоборот - можно вручную опустить частоту, снизив при этом тайминги. Выгоднее всего обращать внимание на совокупность этих параметров, выбирая скорее баланс, и не гнаться за крайними значениями параметров.

Как определиться с бюджетом?

Располагая большей суммой, вы сможете позволить себе больший объём оперативной памяти. Основное отличие дешёвых и дорогих модулей будет в таймингах, частоте работы, и в бренде – известные, разрекламированные могут стоить немного дороже noname модулей непонятного производителя.
Кроме того, дополнительных денег стоит радиатор, установленный на модули. Далеко не всем планкам он нужен, но производители сейчас на них не скупятся.

Цена будет также зависеть от таймингов, чем они ниже- тем выше скорость, и соответственно, цена.

Итак, имея до 2000 рублей , вы сможете приобрести модуль памяти объёмом 4 ГБ, или 2 модуля по 2 ГБ, что предпочтительнее. Выбирайте в зависимости от того, что позволяет конфигурация вашего пк. Модули типа DDR3 обойдутся почти вдвое дешевле чем DDR4. При таком бюджете разумнее брать именно DDR3.

В группу до 4000 рублей входят модули объёмом в 8 ГБ, а также наборы 2х4 ГБ. Это оптимальный выбор для любых задач, кроме профессиональной работы с видео, и в любых других тяжёлых средах.

В сумму до 8000 рублей обойдётся объём памяти в 16 ГБ. Рекомендуется для профессиональных целей, или для заядлых геймеров - хватит даже про запас, в ожидании новых требовательных игр.

Если не проблема потратить до 13000 рублей , то самым лучшим выбором будет вложить их в набор из 4 планок по 4 ГБ. За эти деньги можно выбрать даже радиаторы покрасивее, возможно для последующего разгона.

Больше 16 ГБ без цели работы в профессиональных тяжёлых средах (да и то не во всех) брать не советую, но если очень хочется, то за сумму от 13000 рублей вы сможете залезть на Олимп, приобретя комплект на 32 ГБ или даже 64 ГБ . Правда, смысла для рядового пользователя или геймера в этом будет не много – лучше потратить средства, скажем, на флагманскую видеокарту.

Тестирование высокоскоростных модулей DDR2: а есть ли толк?

Когда большинство пользователей слышат слово "разгон" или оверклокинг, то они сразу же представляют увеличение тактовой частоты процессора. Но не менее важным фактором является частота FSB, которую можно легко увеличить без особых проблем, обеспечив прирост производительности, равный нескольким дополнительным МГц на CPU. Однако преимущества "разгона" компонентов не всегда очевидны, особенно в системах Pentium 4, где польза, к примеру, от скоростной памяти заметна не каждый раз.

В принципе, ничего принципиально нехорошего в использовании самой скоростной памяти нет. Максимально возможные частоты и связанные с ними задержки как раз и отличают элитные модули. В случае Athlon 64 это означает использование DIMM DDR400, которые поддерживают идеальные задержки CL2-2-2-5.

Современные системы P4 используют память DDR2 RAM. Она способна работать на более высоких частотах, чем обычная DDR, да и задержки постепенно улучшаются. Сегодня больше всего распространена память DDR2-533 (266 МГц), которую постепенно сменяют 333-МГц модули (DDR2-667). Более высокие частоты сегодня доступны только через "разгон", хотя производители чипсетов полностью погружены в совершенствование своей продукции.

Можно было бы предположить, что более высокий потенциал по "разгону" памяти DDR2 RAM перейдёт в соответствующий прирост производительности, но, к сожалению, в реальности ситуация иная. Система P4 с памятью DDR2-533 окажется лишь чуть быстрее, чем с DDR400. Да и переход на DDR2-667 даёт меньший эффект, чем можно было ожидать.

В то же время, всё большее число производителей, включая A-Data и Corsair, выпускают на рынок модули DDR2-667, которые могут работать с низкими задержками и высокими частотами. Мы получили модули от обоих производителей и установили их в "разогнанную" систему P4 - посмотреть, что случится на частотах DDR2-1066.

"Разгон" памяти всегда относителен

В системе Intel шина оперативной памяти всегда работает с каким-либо коэффициентом по отношению к частоте FSB. Большинство современных материнских плат дают определённую гибкость в этом отношении, позволяя выбирать более одного коэффициента. Северный мост чипсетов 945 и 955x предлагает четыре соотношения частоты: 1:1, 3:4, 3:5 и 2:1. Если взять за основу базовую частоту FSB 200 МГц (FSB800), то можно получить DDR2-400, DDR2-533, DDR2-667 и DDR2-800. Последний вариант возможен уже достаточно давно, но неофициально.

Если вы желаете "разогнать" систему без увеличения частоты памяти, то повышайте частоту FSB, одновременно переходя на меньший коэффициент. Конечно, при этом следует следить ещё и за тем, чтобы частота CPU не вышла за допустимые параметры, так как она зависит от частоты FSB. Например, 3,2-ГГц Pentium 4 640 получает указанную частоту на 200-МГц FSB через множитель 16. Если частота FSB достигнет 240 МГц, то CPU придётся работать на 3,84 ГГц. Очень немногие процессоры способны справиться с такой частотой.

Чтобы получить память DDR2-1066 без "разгона" системы, мы использовали коэффициент 1:1 (шина памяти к FSB), при этом увеличили частоту FSB до 266 МГц. В качестве процессора мы взяли 3,73-ГГц Pentium 4 Extreme Edition.


Мы выбрали 3,73-ГГц Pentium 4 Extreme Edition, поскольку он работает с частотой FSB 266 МГц (FSB1066). При соотношении частот шина памяти/FSB 1:1, память будет работать в режиме DDR2-1066.

Высокая частота или низкие задержки?


AData маркирует свои DIMM как DDR2-800, в то время как Corsair ограничивается 675 МГц. В любом случае, работают задержки CL3-2-2-8.

Мы решили протестировать как низкие, так и большие задержки памяти. Как показывает наш опыт с памятью DDR1, выбор часто следует делать именно в сторону низких задержек. Как раз по этой причине AMD отложила внедрение сокета M2 и памяти DDR2 до CeBIT 2006 - инженеры компании считают преимущества DDR2 на частоте 800 МГц слишком незначительными, чтобы менять систему сегодня.

В то же время, производители памяти движутся в разных направлениях. AData указывает, что её DDR2 DIMM способны работать на частоте 800 МГц. И надо сказать, что это заявление подтверждается на практике. Но для подобных частот необходимо увеличить задержки памяти. Corsair пошла другим путём: у топовых модулей памяти DDR2 указана максимальная частота 675 МГц, но при этом даны оптимальные задержки CL3-2-2-8. Это позволяет Corsair достичь более высокой производительности по сравнению с модулями DDR2-800.

Больше мощности, меньше время жизни

Так как ограничения техпроцесса не позволяют выпускать коммерчески выгодные 400-МГц чипы, для повышения тактовых частот необходимо поднимать напряжение питания. Модули DDR1 требуют по номиналу 2,5 В, поэтому оверклокеры "разгоняют" их до 3,0 В и выше. Но для DDR2 базовая частота составляет 1,8 В. В принципе, 2,0 В для модулей - не слишком высокая нагрузка, да и более высокие уровни напряжения тоже иногда выставляют. Эта тема сегодня горячо обсуждается на форумах.

Подъём входного напряжения увеличивает толерантность памяти, в результате чего она позволяет выставлять более высокие тактовые частоты и агрессивные задержки. Но за всё приходится платить: повышение напряжения снижает время жизни модулей памяти.


Хотя компания AData занимает сильное положение на рынке США, произошла она из Тайваня. Ассортимент продукции AData схож с другими производителями и включает многие типы памяти SDRAM и флэш.

На web-сайте компании можно обнаружить различные типы модулей DDR2, вплоть до DDR2-1066, которые AData питает от 1,95 В. Однако модули DIMM, высланные в нашу лабораторию, смогли достичь режима DDR2-1066 только при подъёме напряжения до 2,4 В. В отличие от многих других производителей, продукция AData направлена на экстремально высокие частоты, именно поэтому модули сертифицированы на задержку CAS в 5 тактов. Хотя меньшие задержки тоже могут работать, их AData не гарантирует.

Мы протестировали модули AData, причём каждый раз устанавливали задержки вручную. В классе DDR2-1066 самыми быстрыми оказались 1-Гбайт модули, поскольку они поддерживали задержки CL4-5-5-10. Режим DDR2-800 заработал с CL4-4-4-8, DDR2-709 - с CL4-3-3-8 и DDR2-533 - CL3-3-3-8.


Corsair гарантирует рабочую частоту модулей 675 МГц. Мы запустили модули в режиме DDR2-1066, однако его нельзя назвать полностью стабильным. В отличие от AData, Corsair выбрала минимальные задержки: CL3-2-2-8 для DDR2-667 - самые лучшие задержки, которые мы встречали. Кроме того, как показывают наши тесты, производительность при низких задержках оказывается часто выше, чем при увеличенной тактовой частоте (и больших задержках). Для обеспечения лучшей совместимости значения SPD-ROM установлены на CL4-4-4-12. То есть модули заработают на всех материнских платах. Если вы пожелаете установить большие задержки, то их следует ввести в CMOS самостоятельно.

Модули Corsair заработали и в режиме DDR2-800. Хотя производитель рекомендует напряжение 2,1 В для DDR2-667, где обеспечиваются задержки CL3-2-2-8, для DDR2-800 нам пришлось поднять напряжение до 2,2 В. Подняв напряжение до 2,3 В, мы смогли получить 533 МГц (DDR2-1066), но полученный уровень стабильности уже не улучшался при повышении напряжения. Следует подчеркнуть, что при частоте 333 МГц (DDR2-667) эти DIMM способны посостязаться с более высокочастотными конкурентами.

Мы выбрали модули Corsair DIMM для нашего проекта, главным образом, из-за низких задержек. Результаты Corsair в наших диаграммах помечены именем производителя, а все остальные результаты относятся к AData DIMM.


Впечатляющие задержки памяти Corsair.


Процессор
Одноядерные CPU Intel Pentium 4 Processor 660
(3,6 ГГц, кэш L2 2 Мбайт)
Память
Платформа Intel (DDR2-667) 2x 512 Мбайт - DDR2-667 (333 МГц)
Corsair CM2X512A-5400UL (XMS5400 V1.2)
(CL3-2-2-8-1T @ 333 МГц)
2x 256 Мбайт - DDR2-800 (400 МГц)
A-DATA M2OEL6F3G3160A1D0Z
(CL4-5-5-10 @ 533 МГц)
Материнская плата
Платформа Intel Gigabyte 8I955X Royal
Чипсет Intel 955X
Системное аппаратное обеспечение
Графическая карта (PCIe) nVidia Geforce 6800 GT (эталонная плата)
GPU: nVidia GeForce 6800 GT (350 МГц)
Память: 256 Мбайт DDR-SDRAM (500 МГц)
Жёсткий диск Western Digital WD740 Raptor
74 Гбайт, кэш 8 Мбайт, 10000 об/мин
Сеть 3Com 3C905B
DVD-ROM Gigabyte GO-D1600C (16x)
Блок питания Tagan TG480-U01, ATX 2.0, 480 Вт
Программное обеспечение
Драйверы чипсета Intel Inf 7.0.0.1019
Графический драйвер nVidia Forceware 71.84
DirectX Version: 9.0c (4.09.0000.0904)
ОС Windows XP Professional 5.10.2600,
Service Pack 2

Тесты и настройки

Тесты и настройки
OpenGL
Doom III Version: 1.0.1262
1280x1024, 32 Bit
Video Quality = High Quality
demo1
Graphics detail = High Quality
Wolfenstein
Enemy Territory
Version: 2.56 (Patch V 1.02)
1280x1024, 32 Bit
timedemo 1 / demo demo4
Geometric detail = high
Texture detail = high
DirectX 9
FarCry Version 1.1 Build 1378
1280x1024 - 32 Bit
qualtity options = High
Видео
Pinnacle Studio 9 Plus Version: 9.4.1
from: 352x288 MPEG-2 41 MB
to: 720x576 MPEG-2 95 MB
Encoding and Transition Rendering to MPEG-2/DVD
no Audio
Auto Gordian Knot
DivX 5.2.1
XviD 1.0.3
Version: 1.95
Audio = AC3 6ch
Custom size = 100 MB
Resulution settings = Fixed width
Codec = XviD and DivX 5
Audio = CBR MP3, kbps 192
182 MB VOB MPEG2-source
Аудио
Lame MP3 Version 3.97.1 Multi-threaded Alpha
Wave 17:14 minutes (182 MB) to mp3
32 - 320 kbit
VBR = level 3
Приложения
WinRAR Version 3.40
283 MB, 246 Files
Compression = Best
Dictionary = 4096 kB
3DS Max 7 Characters "Dragon_Charater_rig"
1600x1200
Rendering Single
Синтетические
PCMark 2004 Pro Version: 1.3.0
CPU and Memory Tests
SiSoftware Sandra Pro Version 2005, SR1
CPU Test = Multimedia Benchmark
Memory Test = Bandwidth Benchmark

Заключение: преимущество высоких частот памяти невелико

Синтетические тесты дают хорошую разницу между разными частотами DDR2.

Но даже если частоты модулей DIMM AData и Corsair впечатляют, результаты производительности - не очень.

Как мы считаем, переход от DDR-533 на DDR2-667 имеет смысл только при сохранении низких задержек (Corsair). Переход на DDR2-800 даёт минимальный прирост производительности, а DDR2-1066, с ещё более высокими задержками, тоже не впечатляет. Причём, цена скоростных модулей совершенно не оправдывает прирост производительности, который они обеспечивают.

Для бизнес-приложений установка скоростных модулей DDR2 DIMM не оправдывает себя по ценовым причинам, и даже геймерам мы рекомендуем лучше потратить эти деньги на high-end графическую карту. В любом случае, мы рекомендуем покупать фирменные модули памяти, поскольку именитые производители уделяют больше внимания тестированию и сертификации своих продуктов.