Защита ламп накаливания. Блоки защиты ламп

В освещении существует злободневная проблема – быстро перегорают лампы различных типов. Сгорание происходит тогда, когда нить лампы холодная, ее значение сопротивления мало, происходит резкий скачок тока и мощности. Изготовители лампочек обещают, что время работы ламп окажется не менее, чем 8000 часов. На практике лампы перегорают гораздо быстрее. Чтобы как-то увеличить время работы ламп, создали блоки защиты ламп. Его принцип работы прост: включают лампу и блок последовательно между собой, при этом уменьшая скачок тока при включении. В первые секунды после включения яркость света и ток медленно возрастают.

Если быстро выходят из строя лампы, то приобретите специальный прибор, который обеспечит их долговременную работу. Разберем работу одной схемы подобного типа – блок защиты ламп под названием «Гранит».

Назначение

Блок выполнен с инновационной системой, обеспечивающей плавное увеличение света лампы. Прибор защищает лампу от резких изменений значений электрического тока при включении. Такие скачки становятся причиной выхода из строя ламп всех типов. Блоки защиты ламп «Гранит» создают хорошую защиту аппаратуры освещения от чрезмерного напряжения домашней сети. Применяя такой блок защиты, период эксплуатации осветительной лампы возрастает в несколько раз.

Блоки защиты ламп можно использовать для ламп разного принципа действия и вида, включая , и других. Чтобы осуществить защиту низковольтного освещения, выполняют подключение блока на низкой стороне трансформатора или источника питания. В случае использования питающего блока с электронной начинкой приобретают защитный блок с обозначением буквой «Т» на маркировке.

Технические данные

Когда выбираете в магазине блоки защиты ламп, то нельзя забывать о том, что существуют критерии выбора, руководствуясь условиями эксплуатации и данными ламп. Устройства, защищающие лампы освещения, как и все электрооборудование, выполняется для определенных значений нагрузки и сети питания. В нашем случае прибор рассчитан на питание напряжением 170-260 В. На нагрузке потребителя напряжение не должно превышать 230 вольт.

Прибор можно применять практически при любых температурных режимах, от -20 градусов до +40 градусов. Устройством можно пользоваться для освещения на улице, а также для создания внутреннего освещения внутри зданий. Важным критерием приобретения защитного устройства является номинальная мощность. Рассматриваемые блоки защиты ламп производятся для потребителей с мощностью 150-3000 ватт.

Метод подключения

Ничего сложного в подключении инновационного прибора защиты нет. Устройство подключается на провод, идущий перед выключателем аппаратуры освещения, а именно, в его разрыве. Другими словами, получается последовательная схема освещения с прибором защиты ламп. Выключатель света имеет свой корпус (коробку). В этот корпус можно и установить устройство защиты. Схема с монтажной платой легко разместится в нем, так как габариты у блока небольшие.

Для начала нужно отключить провод, подающий напряжение на выключатель, соединить его с нашим устройством защиты. Далее, нужно отрезать короткий кусок провода и подключить один конец к прибору защиты, второй конец подключить к.

Перед тем, как выполнять подключение защитного устройства, не нужно забывать о безопасных приемах работы. Обязательно перед работой отключите питающее напряжение, которое подходит к освещению.

Оптимальным решением по монтажу блока защиты ламп была бы установка его на потолке, рядом с лампой. Если лампочек несколько, то устройство монтируют перед 1-й лампой. Также удобно монтировать схему в коробке под выключателем, если имеется место, при мощности потребителя до 300 ватт. Мощность блока защиты необходимо рассчитать, основываясь на сумме мощности потребителей, состоящих из ламп освещения. При этом сделать запас на 50%.

Чтобы не было неприятных моментов, связанных со сбоем функционирования лампы из-за замыкания нити вследствие сотрясения или удара, необходимо соблюдать некоторые правила:
  • Устанавливать блоки защиты ламп в легкодоступных местах, так как неисправности неизбежны, а монтаж в герметично закрытом месте значительно усугубит процесс ремонта.
  • При расчете не следует забывать о запасе мощности для обеспечения надежности схемы.
  • Оптимальным решением будет монтаж отдельного автоматического выключателя на каждую линию освещения.

Блоки защиты ламп ощутимо сократят ваши расходы на электроэнергию, сэкономят бюджет вашей семьи. Если подключать к каждой лампе освещения блок защиты, то вы потратите немало денег, но в скором будущем ваши расходы окупятся длительной работой освещения без возникновения неисправностей. Менять лампы для вас станет забытым делом.

Блоки защиты ламп накаливания

Блоки защиты могут использоваться не только совместно с , но и для защиты каких-либо электрических приборов, питающихся от напряжения 220 вольт. Принцип работы схемы простой.

В конструкции нет дефицитных деталей. Она может быть собрана любым радиолюбителем. Основными силовыми элементами схемы являются полевые транзисторы. Остальные детали классические: резисторы, диоды, стабилитрон и т.д. отдельно можно остановиться на полевых транзисторах. От их параметров зависит мощность нагрузки, которую мы сможем подключить. Мощность нагрузки будет составлять 75 ватт.

Если нужно подключить лампу накаливания с мощностью 100 или 200 ватт, то в таком случае полевые транзисторы можно заменить на IRF450. Необходимо подбирать транзисторы под ту нагрузку, которая будет подключаться.

Плату вытравливаем и лудим жидким оловом. Сначала на плату устанавливаем мелкие детали, затем транзисторы, а потом уже самые крупные. Печатную плату можно корректировать по своему желанию.

Припаиваем вход и выход к устройству. Почистим плату от остатков флюса. Теперь необходимо протестировать устройство. Подключаем патрон с лампой накаливания. При тестировании не забываем о безопасности, нельзя дотрагиваться до элементов платы, ее дорожек, так как они находятся под напряжением. В результате проверки устройство работает нормально. Задержку включения можно не заметить, так как она составляет около 0,3 секунды.

Теперь проверяем работу устройства с энергосберегающей лампой. С этой лампой устройство также работает нормально.

Особенности выбора

Чтобы выбрать такое устройство, нужно учесть полную нагрузку сети. Ее рассчитывают по мощности ламп. К результату добавляют небольшой запас, лучше добавить 25% мощности. Это увеличивает срок службы прибора. Надо знать, что применение таких устройств, как блоки защиты ламп, ведет к падению напряжения.

Нужно помнить, что если на лампу освещения подать напряжение меньше нормы на 10%, то поток света будет уменьшаться на 44%. Устройство защиты снижает поток света на 70%.

Зная такие особенности, нужно брать лампы с увеличенной мощностью, и по ней выбирать защитное устройство. Работа прибора очень простая. При включении света на лампу подходит напряжение, которое в течение нескольких секунд достигает номинального значения (а не мгновенно). Таким методом уменьшается резкий скачок пускового тока, что позволяет повысить длительность срока службы осветительных ламп накаливания.

Еще схема для самоделки

Схема медленного запуска освещения простая. Однако необходимо учесть ряд особенностей и нормативов по устройствам электротехники. Не каждая схема выдаст хороший результат. Разберем оригинальную схему из возможных вариантов.

На схеме показано медленное включение освещения лампами с помощью устройства. Полярность проводов соблюдать не обязательно. Более важным является подключение прибора в разрыве фазы, создав соединение по последовательной схеме с выключателем с одной клавишей.

Работа схемы
  • В начале цикла полевой транзистор закрыт, на него поступает напряжение для стабилизации, так как он является составной частью диодного моста, его диагонали. Лампа в этом случае не горит.
  • Емкость С1 заряжается через сопротивление и диод, до уровня величиной в 9,1 вольта. Этот уровень не увеличится, так как ограничен стабилитроном.
  • При достижении напряжения нужного уровня, наступает начало медленного открытия транзистора, которое сопровождается повышением величины тока. При этом разность потенциалов будет снижаться, и начнется медленный накал нити лампы освещения.
  • Второй резистор необходим для того, чтобы разрядить конденсатор после выключения напряжения на лампу накаливания. На стоке в это время присутствует небольшое напряжение 0,8 вольта, сила тока 1 ампер.

Важным моментом является то, что если работать по такой схеме плавного запуска освещения, она действует без мерцания. Это необходимо для создания комфортного нахождения в помещении. Такую схему применяют для обычного напряжения на 220 вольт, а также для низковольтного напряжения.

Места установки защиты

Габариты такой схемы устройства дают возможность встроить ее в любых местах. Однако нужно сделать удобный доступ к устройству, для возможного ремонта или замены. Охлаждение прибора необходимо для его элементов, в корпусе нужны отверстия или прорези для прохода воздуха. Обычно располагают блоки защиты на потолке в распредкоробке или подрозетнике.

Высокая влажность места установки защитного блока недопустима. Устройства защиты повышают ресурс ламп, однако необходимо соблюдать некоторые правила и нормы для монтажа электроприборов. Лучше всего для установки блоков защиты ламп обратиться к специалистам.

Лампы накаливания до сих пор остаются популярными, благодаря низкой цене. Они широко применяются во вспомогательных помещениях, где требуется частое переключение света. Устройства постоянно развиваются, в последнее время стали часто применять галогенную лампу. Чтобы увеличить их срок эксплуатации и уменьшить энергопотребление, применяют плавное включение ламп накаливания. Для этого подаваемое напряжение должно плавно возрастать в течение короткого промежутка времени.

Плавное включение лампы накаливания

У холодной спирали электрическое сопротивление в 10 раз ниже по сравнению с разогретой. В результате при зажигании лампочки на 100 Вт ток достигает 8 А. Не всегда нужна высокая яркость свечения тела накала. Поэтому возникла необходимость создать устройства плавного включения.

Принцип действия

Для равномерного нарастания подаваемого напряжения достаточно, чтобы фазовый угол увеличивался всего за несколько секунд. Бросок тока сглаживается, и спирали плавно разогреваются. На рисунке ниже приведена одна из простейших защитных схем.

Схема устройства защиты от перегорания галогенных ламп и накаливания на тиристоре

При включении отрицательная полуволна подается на лампу через диод (VD2), питание составляет всего половину напряжения. В положительный полупериод конденсатор (С1) заряжается. Когда величина напряжения на нем поднимется до величины открывания тиристора (VS1), на лампу подается напряжение сети полностью, и пуск завершается свечением в полный накал.

Схема устройства защиты от перегорания лампы на симисторе

Схема на рисунке выше работает на симисторе, пропускающем ток в обоих направлениях. При включении лампы отрицательный ток проходит через диод (VD1) и резистор (R1) на электрод управления симистора. Тот открывается и пропускает одну половину полупериодов. В течение нескольких секунд заряжается конденсатор (С1), после чего происходит открытие положительных полупериодов, и на лампу полностью подается напряжение сети.

Устройство на микросхеме КР1182ПМ1 позволяет производить пуск лампы с плавным наращиванием напряжения от 5 В до 220 В.

Схема устройства: пуск ламп накаливания или галогенных с фазовым регулированием

Микросхема (DA1) состоит из двух тиристоров. Развязка между силовой частью и схемой управления производится симистором (VS1). Напряжение в схеме управления не превышает 12 В. К его управляющему электроду сигнал подается с вывода 1 фазового регулятора (DA1) через резистор (R1). Пуск схемы происходит при размыкании контактов (SA1). При этом конденсатор (С3) начинает заряжаться. От него начинает работать микросхема, повышая ток, проходящий к управляющему электроду симистора. Он начинает постепенно открываться, увеличивая напряжение на лампе накаливания (EL1). Временная выдержка на ее загорание определяется величиной емкости конденсатора (С3). Слишком большую ее делать не следует, поскольку при частых переключениях схема не будет успевать подготавливаться к новому запуску.

При замыкании вручную контактов (SA1) начинается разрядка конденсатора на резистор (R2) и плавное отключение лампы. Время ее включения изменяется с 1 до 10 сек при соответствующем изменении емкости (С3) от 47 мкф до 470 мкф. Время гашения лампы определяется величиной сопротивления (R2).

Схема защищена от помех резистором (R4) и конденсатором (С4). Печатная плата со всеми деталями помещается на задних клеммах выключателя и устанавливается вместе с ним в коробку.

Пуск лампы происходит при отключении выключателя. Для подсветки и индикации напряжения установлена лампа тлеющего разряда (HL1).

Устройства плавного включения (УПВЛ)

Моделей выпускается много, они различаются по функциям, цене и качеству. УПВЛ, которое можно приобрести в магазине, подключается последовательно к лампе на 220 В. Схема и внешний вид показаны на рисунке ниже. Если напряжение питания светильников составляет 12 В или 24 В, устройство подключается перед понижающим трансформатором последовательно к первичной обмотке.

Схема работы УПВЛ для плавного включения ламп на 220 В

Устройство должно соответствовать подключаемой нагрузке с небольшим запасом. Для этого подсчитывается количество ламп и их общая мощность.

Из-за небольших габаритов УПВЛ помещается под колпаком люстры, в подрозетнике или в соединительной коробке.

Устройство “Гранит”

Особенностью устройства является то, что оно дополнительно защищает светильники от скачков напряжения в домашней сети. Характеристики “Гранита” следующие:

  • номинальное напряжение – 175-265 В;
  • температурный диапазон – от -20 0 С до +40 0 С;
  • номинальная мощность –от 150 до 3000 Вт.

Подключение прибора производится также последовательно со светильником и выключателем. Устройство помещается вместе с выключателем в монтажной коробке, если его мощность позволяет. Также его устанавливают под крышкой люстры. Если провода к ней подводятся напрямую, защитное устройство устанавливают в распределительном щитке, после автоматического выключателя.

Диммеры или светорегуляторы

Целесообразно применять устройства, которые создают плавное включение ламп, а также обеспечивают регулирование их яркости. Модели диммеров имеют следующие возможности:

  • задание программ работы ламп;
  • плавное включение и отключение;
  • управление с помощью пульта, хлопком, голосом.

При покупке следует сразу определиться с выбором, чтобы не платить лишние деньги за ненужные функции.

Перед монтажом нужно выбрать способы и места управления лампами. Для этого необходимо сделать соответствующую электропроводку.

Схемы подключений

Схемы могут быть разной сложности. При любой работе сначала отключается напряжение с необходимого участка.

Простейшая схема подключения изображена на рисунке ниже (а). Светорегулятор можно установить вместо обычного выключателя.

Схема подключения диммера в разрыв питания лампы

Устройство подключается в разрыв фазного провода (L), а не нулевого (N). Между нулевым проводом и диммером располагается лампа. Соединение с ней получается последовательным.

На рисунке (б) обозначена схема с выключателем. Подключение остается прежним, но к нему добавляется обычный выключатель. Его можно установить около двери в разрыв между фазой и диммером. Светорегулятор располагается около кровати с возможностью управления освещением, не вставая с нее. Выходя из комнаты, свет выключается, а при возвращении производится пуск лампы с настроенной прежде яркостью.

Для управления люстрой или светильником можно применять 2 диммера, расположенные в разных местах комнаты (рис. а). Между собой они подключаются через распределительную коробку.

Схема управления лампой накаливания: а – с двумя диммерами; б – с двумя проходными выключателями и диммером

Такое подключение позволяет независимо регулировать яркость с двух мест, но проводов понадобится больше.

Проходные выключатели нужны для включения света с разных сторон помещения (рис. б). Диммер при этом нужно включить, иначе лампы на выключатели не будут реагировать.

Особенности диммеров:

  1. Экономия электроэнергии с помощью диммера достигается небольшая – не более 15 %. Остальная часть потребляется регулятором.
  2. Устройства чувствительны к повышению температуры среды. Их не нужно эксплуатировать, если она поднимется выше 27 0 С.
  3. Нагрузка должна быть не ниже 40 Вт, иначе срок службы регулятора сокращается.
  4. Диммеры применяются только для тех типов устройств, которые указаны в паспортах.

Включение. Видео

Как происходит плавное включение ламп накаливания, расскажет это видео.

Устройства плавного пуска и отключения ламп накаливания и галогенных позволяют значительно повысить срок их эксплуатации. Целесообразно применять диммеры, которые к тому же позволяют регулировать яркость свечения.

Главная и, пожалуй, единственная причина выхода из строя обыкновенных ламп накаливания, галогенных и люминесцентных лампочек – перегорание спирали. С точки зрения физики этот процесс легко объясним. С раскалённой спирали постоянно испаряются атомы вольфрама.

В обыкновенных лампах быстрее, в галогенных – медленнее. После выключения часть испарившихся атомов оседает назад на спираль, часть на колбу. Как следствие неравномерного оседания, со временем образуются истончённые участки. А что приводит в негодность светодиодные лампы?

Почему лампы перегорают?

Все лампы со спиралью накаливания работают по принципу термоэлектронной эмиссии, то есть при прохождении тока спираль раскаляется, излучая свет видимой части спектра. Интенсивность тепловыделения обратно пропорциональна толщине проводника, соответственно истончённые зоны спирали нагреваются значительно сильнее, теряя прочность. На этих участках и происходят разрывы.

В качестве методов борьбы с этой «болезнью» разработано множество схем плавного розжига спирали, что действительно способно значительно увеличить срок её службы. Все эти схемы относятся к устройствам защиты.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали…

Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.

Наконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Защита лампы накаливания при включении

Предлагаемое простое устройство (рис.1), лишено многих недостатков перед подобными схемами и обеспечивает плавное зажигание бытовой лампы накаливания.

Рис.1

Подбирая соответствующие емкости и диоды, можно здесь подключить лампочку практически любой мощности и любого напряжения без понижающего трансформатора. Например, для сети 220В и 60 - ваттной лампы с теми же полупроводниковыми вентилями нужны конденсаторы, соответственно, по 5 мкФ.

Кружков.В

г. Орел

Ограничитель броска тока при включении лампы

Устройство, собранное по схеме на рис.2, задерживает подачу на лампу полного напряжения сети приблизительно на 0,2 секунды - продолжительность зарядки установленного в нем конденсатора.


Рис.2

Этого вполне достаточно для эффективного ограничения броска тока через холодную спираль лампы. Остаточное падение напряжения на огарничителе - около 5 В.

Первоначально в ограничителе применялись резисторы МЛТ - 0,5, транзистор КТ940А, диода КД105Б, симистора КУ208Г. В дальнейшем в схеме использовались малогабаритные детали, типы которых указаны на схеме, и резисторы меньшей мощности. Такой вариант ограничителя можно смонтировать на печатной плате изображенной на рис.2.

При мощности лампы EL 1 более 100 Вт симистор МАС97 необходимо заменить на более мощным ВТ137 или ВТА12-600. Если такой тиристор снабдить теплоотводом, а вместо транзистора MJE 13001 установить MJE 13003, допустимая мощность нагрузки достигнет 2 кВт. Емкость конденсатора С1 можно увеличить до 470 мкФ.

Штепенко Е.

г. Северодонецк

Луганской обл.

Двухступенчатое включение лампы

Резкое включение лампы накаливания при помощи обычного выключателя вредно как для глаз (резкий скачок света), так и для самой лампы, разрушающее воздействуя на ее нить накала.


Рис.3

Схема показанная на рисунке 3 обеспечивает двухступенчатое включение лампы. При включении S 1, первые 1-2 секунды лампа HL 1 горит в пол накала, потому что через нее протекает ток только одной полуволны сетевого напряжения (через VD 1). Одновременно, начинает заряжаться С1 через VD 2 и R 2, и, примерно, через 1-2 секунды напряжение на нем достигает порога открывания тиристора VS 1, что и происходит. Через тиристор начинает на лампу поступать и вторая полуволна сетевого напряжения, - лампа зажигается в полный накал.

Мизин С.

Чтобы лампа стала «вечной»

Известно, что осветительная лампа чаще всего выходит из строя в момент зажигания. Именно в этот момент сопротивление нити лампы мало (примерно в 10 раз меньше раскаленной), и на ней рассеивается мощность, значительно превышающая номинальную. Нить не выдерживает и перегорает. Особенно часто такое случается с лампами до 500 Вт.

Чтобы продлить срок службы лампы, нужно сначала подать на нее пониженное напряжение и немного разогреть нить лампы, а через некоторое время довести напряжение до номинального. Для этой цели используют автомат двухступенчатой подачи напряжения, который включают последовательно с сетевым выключателем, не нарушая остальной проводки. В квартирах и рабочих помещениях автомат может быть вмонтирован в той же коробке, что и выключатель.

Схема автомата приведена на рис.4.


Рис.4

При налаживании автомата, сначала отключают от деталей анод тиристора VS 1. Подбором резистора R 3 (вместо него удобно временно установить переменный резистор сопротивлением 15 кОм) добиваются на лампе напряжения примерно 200В (точнее всего измерения можно провести прибором тепловой системы) - несколько пониженное по сравнению с сетевым напряжение питания которое продлевает срок службы лампы. Затем измеряют сопротивление введенной части переменного резистора и впаивают в устройство постоянный резистор такого же или ближайшего номинала.

Далее подключают тиристор VS 1 и подбором резистора R 1 добиваются, чтобы тиристор VS 1 открывался раньше VS 2. Это нетрудно определить по зажиганию лампы - сначала она должна гореть «вполнакала». Если автомат работает неустойчиво (лампа мигает), значит установлен очень «чувствительный» тиристор VS 1 (включается при малом токе через управляющий электрод). В этом случае между управляющим электродом и катодом тиристора нужно включить резистор 1…2 кОм либо заменить тиристор.

В схеме можно использовать тиристор VS 1 - любой серии КУ201, КУ202, VS 2 - КУ202К, КУ202Н. Диоды серии КД105Б. С этими деталями автомат способен управлять лампой мощностью до 60 Вт. Если же заменить диоды более мощными, например Д247, и установить их и тиристор VS 2 на радиаторы, автомат можно использовать с лампами мощностью до 1 кВт.

Першиков В.

г. Белорецк

Чаще всего лампочка перегорает при включении, когда нить накаливания еще не разогрелась и ей присуще небольшое сопротивление. Чтобы избежать такого развития событий, придумано аппаратное устройство - блок защиты ламп (его еще называют устройством плавного пуска). Главная задача блока - предотвратить ущерб, причиняемый лампочке в результате скачков напряжения в сети.

Причины перегорания ламп

Лампы накаливания функционируют согласно принципу термоэлектронной эмиссии. При попадании тока в спираль она нагревается, в результате чего продуцируется свет видимой части спектра. Причем мощность тепловыделения обратной пропорциональна диаметру проводника. Вследствие этого утончившиеся участки спирали накаляются очень быстро, что приводит к потере их прочности. Именно истонченные места являются слабым звеном, где и происходит перегорание.

Галогенные лампочки также склонны к перегоранию в результате скачков напряжения. Имеется у таких источников света особенность, присущая только им, - склонность к перегреванию. Чрезмерно разогретая лампочка может перегореть в любой момент.

В защите нуждаются не только лампы накаливания и галогенные светильники, но и светодиодные лампы. На первый взгляд это выглядит странно, ведь у светодиодов отсутствует спираль, и свечение кристалла возникает в результате возбуждения электронов, а не разогревания спирали. Однако в основе принципа действия светодиодов также имеется термоэлектронная эмиссия. По прошествии нескольких лет полупроводниковый участок выгорает и, если присмотреться к ЛЕД-лампе, на ней заметны тусклые кристаллы с пробитым слоем полупроводника.

Принцип работы блока

Блок защиты запускается последовательно с прибором освещения и ограниченно пропускает электричество. Увеличение тока осуществляется постепенно - в течение 1–2 секунд. Без блока ток поступает мгновенно, что часто приводит к перегоранию лампы.

Устройство блока простейшее. Для его функционирования не имеют значения вход-выход, фаза-земля, а также полярность. Устройство следует подключать в последовательном режиме с выключателем, установленным в разрыв фазы.

Прибор плавного включения позволяет:

  1. Избежать негативного влияния перепадов напряжения при подключении светильника.
  2. Стабилизировать ток в лампочках после воздействия на них пускового электричества.
  3. Продлить срок службы источника света.

Немаловажный плюс защитного прибора состоит в том, что он предотвращает мигание лампы. Благодаря этому находиться в освещенном помещении комфортно, так как на глаза не оказывается чрезмерной нагрузки.

Установка и подключение

Монтаж защитного блока обычно осуществляется на потолке, то есть там, где закреплены приборы освещения. Если лампочка не единственная, устройство плавного пуска устанавливают до первого источника света.

Также блоки размещают в монтажных коробах под переключателем света. Однако следует иметь в виду, что для размещения блока в монтажной коробке существует ограничение: максимальная мощность устройства не должна превышать 300 Вт.

Обратите внимание! Какое бы место для установки блока ни было выбрано, к устройству должен быть обеспечен беспрепятственный доступ для проведения ремонтных работ.

Типичная схема подключения блока показана на рисунке ниже.

В случае с переключателем с подсветкой параллельно блоку подключают резистор. Уровень сопротивления для резистора должен находиться в пределах 33–100 кОм, а мощность - не превышать 2 Вт.

Для ламп на 12 вольт также необходим блок защиты. При использовании электромагнитного трансформатора блок ставят в разрыв первичной обмотки. Для электронного трансформатора понадобится специальный блок с четырьмя вводами.

Уровень мощность блока выбирается исходя из суммарной мощности всех потребителей. При этом необходим некоторый запас мощности, обычно в пределах 50% от номинала всех приборов освещения.

Для нормальной работы защитного блока необходимо его охлаждение. Чтобы добиться поступления воздуха, в корпусе создают специальные отверстия.

Меры предосторожности

При перегорании лампочки происходит размыкание нити накаливания, что ведет к короткому замыканию. Вследствие этого существует опасность выхода из строя защитного блока. Чтобы не допустить этого, выполняют следующие действия:

  1. Защитное устройство устанавливают на максимально доступном участке (подрозетник или щиток). До потолочного блока добраться будет значительно сложнее.
  2. Устанавливают по выделенному автоматическому выключателю на каждую линию. Номинальный показатель выключателя подбирается с небольшим запасом, поскольку перепады тока при данном варианте подключения не принимаются во внимание.
  3. Не допускается установка защитного блока в помещениях с повышенным уровнем влажности.

Выбор защитного блока

При подборе подходящего устройства плавного пуска рекомендуется учитывать два фактора - мощность и производителя. О мощности блока сказано выше. Что касается брендов, наибольшей известностью обладают такие компании:

  • «Feron» (КНР);
  • «Camelion» (КНР);
  • «Шепро» (Россия);
  • «Гранит 1000», «Гранит 500» (Беларусь);
  • «Композит» (Россия);
  • «Вжик» (совместное производство России и Китая).

Самые популярные модели выпускаются компаниями «Feron» и «Гранит». Продукция китайского производителя отличается невысокими ценами. Как и большая часть изделий из Китая, блоки от компании «Feron» считаются не слишком качественными. Для них характерны следующие недостатки:

  • просадки напряжения, что нарушает работу светильника;
  • мигание лампы при подключении и в процессе функционирования;
  • регулярные помехи;
  • среднее качество пайки;
  • экономия на материалах, из которых изготовлен блок.

Продукция белорусской компании считается значительно более качественной. Однако «Гранит» не отличается компактностью, что в некоторых случаях является критически важным недостатком (например, при размещении в подрозетнике выключателя). Также следует отметить стоимость «Гранита» - более высокую, чем у китайских производителей.

Изготовление блока защиты

Схема плавного подключения к сети лампы накаливания довольно проста. Однако в ходе изготовления блока своими руками следует принимать во внимание некоторые технические нюансы. Также нужно соблюдать нормативные акты, касающиеся электротехнических приборов. В качестве примера ниже приведена схема, по которой работает самостоятельно изготовленный блок защиты.

На схеме, изображенной выше, показано плавное включение лампы накаливания. Причем полярность в расчет не принимается. Прибор подключается в разрыв фазы, чтобы создать последовательное подключение с переключателем. Последний должен быть одноклавишным.

При создании блока также необходимо учитывать такие обстоятельства:

  1. Полевой транзистор в начале работы прибора должен быть закрыт. Данный элемент принимает напряжение стабилизации, так как он включен в диагональ диодного моста.
  2. Конденсатор С1 получает заряд при прохождении напряжения по резистору R1 и диоду VD1 до достижения уровня 9,1 В. Данный уровень является предельным благодаря ограничивающему действию стабилитрона.
  3. Когда напряжение доходит до нужного уровня, транзистор понемногу открывается, что приводит к возрастанию тока и сокращению напряжения на стоке. Далее начинается плавный нагрев нити накаливания лампочки.
  4. Для нормального запуска необходим второй резистор, так как он дает возможность разрядки конденсатора после выключения электропитания светильника. В этот момент напряжение на стоке небольшое - порядка 0,85 В при силе тока около 1 Ампера.

Блок будет работать как в сетях со стандартным напряжением 220 В, так и при пониженном напряжении.

Приборы плавного пуска дают возможность существенно увеличить рабочий ресурс лампочек. Однако их установка сопряжена с соблюдением технических регламентов и требует хотя бы минимальных познаний в электротехнике. Если таковых не имеется, для выполнения монтажа лучше пригласить профессионала.