Оценка статистической значимости модели. Статистическая значимость логит и пробит-моделей и факторов этих моделей

Проверка значимости модели при помощи теста отношения правдоподобия(тест Вальда), начинается с выдвижения основной гипотезы:

Для проверки данной гипотезы вычисляется выборочная статистика

Здесь lnL величина максимального значения логарифма функции правдоподобия, а lnL0- величина логарифма функции правдоподобия в случае справедливости основной гипотезы.

Если основная гипотеза верна, то выборочная статистика (4.7.1) распределена по закону 2 с (m-1) степенью свободы. Границу правосторонней критической области К2 ищут по таблицам критических точек хи-квадрат по уровню значимости (1-б) и (m-1) степени свободы. Если выполняется неравенство:

то основную гипотезу отвергают, принимают альтернативную гипотезу и говорят, что модель статистически значима. В противном случае принимают гипотезу о не значимости модели и переходят к ее пересмотру.

Для моделей бинарного выбора, значимость факторов проверяется при помощи тестирования для каждого фактора хi, i=1,…, (m-1) гипотез вида:

Выборочные статистики, которые используются для тестирования этих гипотез, имеют асимптотически нормальное распределение и называются z-статистиками. Границу двусторонней критической области ищут по таблицам Лапласа по заданному уровню значимости (1-б).

Если выполняется неравенство:

К 1

то принимают основную гипотезу о незначимом отличии от нуля коэффициента i и делают вывод, что соответствующий ему фактор незначим для модели.

Для моделей бинарного выбора не определяется понятие коэффициента детерминации. Однако для них определяют так называемый псевдо коэффициент детерминации, который уже не характеризует объясняющую силу модели

Определение 4.7.1. Псевдо - коэффициентом детерминации называют следующую величину:

Определение 4.7.2. Индексом отношения правдоподобия Макфаддена (McFadden) называют характеристику:

Следует подчеркнуть, что если параметры модели бинарного выбора незначимо отличаются от нуля, то оба введенных коэффициента равны нулю.

На лекции мы рассмотрели нелинейные регрессионные модели, в частности, модели для бинарной зависимой переменной. Эти модели мы рассмотрели для двух функций регрессий: логит (использовали логистическую функцию) и пробит (использовали функцию распределения стандартного нормального закона распределения). Оценки параметров таких функций регрессии получают при помощи метода максимального правдоподобия. Модель тестируют при помощи теста Вальда, в основе которого статистика, имеющая хи-квадрат распределение. При изучении многофакторных регрессионных моделей мы интерпретировали оценки параметров вj, как предельный эффект влияния независимых переменных на у. Вернемся к моделям бинарного выбора. Если мы попытаемся найти производную от P{Y=1|X}, то придем к следующему выражению:

где Z= 0+1х1+...m-1xm-1.

По теореме о производной сложной функции, и из свойства плотности (производная от функции распределения это плотность распределения f(Z)), получаем:

или, используя второе обозначение для оценок параметров:

P{Y=1|X}=вjf(Z)

Как и раньше, через вj обозначены оценки неизвестных параметров.

Тогда, мы можем рассуждать следующим образом: плотность распределения всегда неотрицательна, поэтому знак производной

будет зависеть только от знака оценки параметров, но будет являться функцией всех независимых переменных. Причем, если оценка параметра будет положительной, то увеличение переменной xj будет приводить к увеличению вероятности

а если оценка параметра будет отрицательной, то, соответственно, к уменьшению указанной вероятности.

Замечание. Если фактор х является бинарной переменной, то для него нельзя ввести понятие предельного эффекта.

Для каждой переменной х (количественной!!!) вводят так называемый средний предельный эффект. Для этого вычисляют выборочные средние для количественных переменных и процент «1» для бинарных, и подставляют их в выражение для плотности распределения вместо переменных.

Еще один вопрос для обсуждения: как после оценивания параметров логит (пробит) модели прогнозировать значение у? Поступают, например, следующим образом. Подставляют найденные значения оценок параметров и значения хj в Z и вычисляют значение переменной. Если Z>0, то считают, что У=1, если Z<0, то считают, что У=0. Замечание. Мы рассмотрели ситуацию, когда переменная у была измерена в номинальной шкале, но принимала всего два значения: 0 и 1. В общем случае, когда у может принимать несколько значений, например 0, 1, 2, 3, используют множественный (по у!!) логит или пробит. Кроме того, у может быть измерен в порядковой шкале, тогда в Стате используют порядковый логит (пробит) ologit (oprobit).

Замечание. Очень часто в исследованиях приходится проводить исследования на усеченной выборке. Например, если изучают доходы домохозяйств, то бывают ситуацию, когда респондентов с очень большим доходом (например, больше 1 млн.рубл.) следует исключить из исследования, то есть

То в таких случаях используют Тобит-модели.

F(0+1х1+...m-1xm-1)

F(0+1х1+...m-1xm-1)

F(0+1х1+...m-1xm-1)

F(0+1х1+...m-1xm-1) - (F(0+1х1+...m-1xm-1))2

Для оценки значимости параметров уравнения множественной регрессии используют критерий Стьюдента. Напомним, что значимость параметров означает их отличие от нуля с высокой долей вероятности. Нулевой гипотезой в данном случае является утверждение

Фактическое значение t-критерия определяется по формуле

(2.27)

В формуле (2.27) под оценкой параметра понимается как коэффициент регрессии, так и свободный член (при ). Величина среднего квадратического отклонения оцениваемого параметра определяется как корень из дисперсии , рассчитанной по формуле (2.25). Величину называют стандартной ошибкой параметра .

Формулу для оценки коэффициента регрессии (т.е. для ) можно привести к виду

(2.28)

где – среднее квадратическое отклонение результативной переменной ; – среднее квадратическое отклонение объясняющей переменной , являющейся сомножителем коэффициента ; – коэффициент детерминации, найденный для уравнения зависимости переменной от переменных , включая ; – коэффициент детерминации, найденный для уравнения зависимости переменной от других переменных , входящих в рассматриваемую модель множественной регрессии.

Теоретическое значение t-критерия находят по таблице значений критерия Стьюдента для уровня значимости а и числа степеней свободы . Уровень значимости а представляет собой вероятность ошибки первого рода, т.е. вероятность отвергнуть гипотезу , когда она верна. Как правило, а выбирают равным 0,1; 0,05 или 0,01.

Нулевая гипотеза о незначимости параметра : отвергается, если выполняется неравенство

(2.29)

где – теоретическое значение критерия Стьюдента.

На основе выражения (2.29) можно построить также доверительный интервал для оцениваемого параметра :

Выражение (2.30) позволяет как оценить значимость параметра, так и дать его экономическую интерпретацию (если оценивается коэффициент регрессии). Очевидно, что параметр будет значим, если в доверительный интервал (2.30) не входит нуль, т.е. с большой долей вероятности оцениваемый параметр не равен нулю.

Так как коэффициент регрессии является абсолютным показателем силы связи, границы доверительного интервала и для него также можно интерпретировать аналогичным образом: с вероятностью при единичном изменении независимой переменной зависимая переменная у изменится не меньше, чем на , и не больше, чем на .

Рассмотрим результаты оценки значимости параметров для примера 2.1. Стандартные ошибки параметров равны

Напомним, что под знаком корня в квадратных скобках стоит элемент матрицы , который находится на пересече-

нии j-й строки и j-го столбца, номер; равен номеру оцениваемого параметра.

Фактическое значение критерия Стьюдента равно

Табличное значение t-критерия для и уровне значимостисоставляет 2,0153, следовательно, все параметры, кроме свободного члена, значимы .

Найдем границы доверительных интервалов для коэффициентов регрессии.

Отметим, что, руководствуясь значениями границ доверительных интервалов, можно сделать те же выводы о значимости коэффициентов регрессии (так как нуль не попадает в доверительный интервал). Выводы в данном случае и не могли быть иными, чем при сравнении фактического и табличного значений критерия Стьюдента, так как формула (2.30) является следствием формулы (2.29). Дадим экономическую интерпретацию границ доверительных интервалов для коэффициентов регрессии.

Коэффициент является характеристикой силы связи между объемом поступления налогов и количеством занятых. С учетом значений границ доверительного интервала дляможно сказать, что изменение количества занятых на 1 тыс. человек приведет к изменению (с вероятностью 0,95 ()) поступления налогов не менее чем на 3,56 млн руб. и не более чем на 21,34 млн руб. при неизменном объеме отгрузки в обрабатывающих производствах и производстве энергии. Для двух других коэффициентов регрессии выводы будут следующими.

Изменение объема отгрузки в обрабатывающих производствах на 1 млн руб. приведет к изменению (с вероятностью 0,95 ()) поступления налогов не менее чем на 0,028 млн руб. и не более чем на 0,092 млн руб. при неизменных значениях количества занятых и производства энергии.

При изменении производства энергии на 1 млн руб. поступление налогов изменится (с вероятностью 0,95 ()) не менее чем на 0,13 млн руб. и не более чем на 0,18 млн руб. при неизменных значениях количества занятых и объема отгрузки в обрабатывающих производствах.

Как было отмечено в параграфе 2.2, при построении модели регрессии с использованием центрированных переменных коэффициенты регрессии не отличаются от коэффициентов регрессии в натуральной форме. Это утверждение относится также к величине стандартных ошибок коэффициентов регрессии и, следовательно, к фактическим значениям критерия Стьюдента.

При использовании стандартизованных переменных меняется масштаб их измерения, что приводит к другим, чем в исходной регрессии, значениям параметров (стандартизованных коэффициентов регрессии) и их стандартных ошибок. Однако фактические значения критерия Стьюдента для параметров уравнения в стандартизованном масштабе совпадают с теми значениями, которые были получены по уравнению в натуральном масштабе.

Для оценки значимости всего уравнения регрессии в целом используется критерий Фишера (F-критерий) , который в данном случае называют также общим F-критерием . Под незначимостью уравнения регрессии понимается одновременное равенство нулю (с высокой долей вероятности) всех коэффициентов регрессии в генеральной совокупности:

Фактическое значение F-критерия определяется как соотношение факторной и остаточной сумм квадратов, рассчитанных по уравнению регрессии и скорректированных на число степеней свободы:

(2.31)

где – факторная сумма квадратов; – остаточная сумма квадратов.

Теоретическое значение F-критерия находят по таблице значений критерия Фишера для уровня значимости α, числа степеней свободы и . Нулевая гипотеза отвергается, если

где – теоретическое значение критерия Фишера.

Отметим, что если модель незначима, то незначимы и показатели корреляции, рассчитанные по ней. Действительно, если

и линия регрессии параллельна оси абсцисс. Кроме того, из системы нормальных уравнений, полученной по методу наименьших квадратов (2.8), следует, что .

При нулевых значения всех коэффициентов регрессии имеем выражение

т.е. при равенстве всех коэффициентов регрессии нулю (их статистической незначимости) коэффициент детерминации также будет равен нулю (статистически незначим).

Формулу (2.31) расчета F-критерия можно преобразовать, разделив факторную и остаточную суммы квадратов на общую сумму квадратов:

После простых преобразований получаем выражение

Расчет общего F-критерия можно оформить в виде таблицы дисперсионного анализа (табл. 2.2).

Таблица 2.2. Анализ статистической значимости модели множественной регрессии

Источники вариации

Число степеней свободы df

Сумма квадратов SS

Дисперсия на одну степень свободы MS = SS/df

F-критерий Фишера

фактическое значение

табличное значение для а = 0,05

Аналогичную таблицу дисперсионного анализа можно увидеть в результатах компьютерной обработки данных. Ее отличие

от приведенной выше таблицы заключается в содержании последнего столбца. В нашем случае это теоретическое значение критерия Фишера. В компьютерных вариантах в последнем столбце приводится значение вероятности допустить ошибку первого рода (отвергнуть верную нулевую гипотезу), которая соответствует фактическому значению F-критерия. В Excel эта величина называется "значимость F". Обозначим величину, выдаваемую компьютером в таблице дисперсионного анализа, как . Ее значение можно проинтерпретировать следующим образом: если теоретическое значение F-критерия равно его фактическому значению, то вероятность ошибки первого рода (уровень значимости) равна .

Выбирая для определения табличного значения критерия некий уровень значимости, мы соглашаемся на величину ошибки, равную. Следовательно, если , то фактическая ошибка будет меньше запланированной и можно говорить о значимости уравнения регрессии при заданном уровне значимости .

Проверим на статистическую значимость уравнение регрессии, полученное в примере 2.1. Фактическое значение F-критерия равно

Табличное значение критерия Фишера для а = 0,05, числа степеней свободы и равно 2,82. Так как фактическое значение F-критерия больше табличного, уравнение регрессии значимо с вероятностью Следовательно, значим также коэффициент детерминации, т.е. он с большой долей вероятности отличен от нуля.

При использовании опции "Регрессия" в ППП Excel для данного примера получена следующая таблица дисперсионного анализа (табл. 2.3).

Таблица 2.3. Таблица дисперсионного анализа, полученная при применении опции "Регрессия" в ППП Excel

Фактическое значение F-критерия содержится в предпоследнем столбце данной таблицы. Отметим, что его значение отличается от приведенного выше из-за ошибок округления. В последнем столбце табл. 2.3 приведена вероятность допустить ошибку первого рода. Она равна 1,10224Е -12, т.е. 0,00000000000110224. Нами задана максимальная величина этой вероятности, равная 0,05. Так как фактическое значение вероятности допустить ошибку первого рода меньше (значительно меньше) установленного нами максимального, нулевая гипотеза о незначимости уравнения регрессии должна быть отвергнута.

Построенных на основе уравнений регрессии , начинается с проверки значимости каждого коэффициента регрессии с помощью Г-критерия Стьюдента  

Можно показать, что для парной линейной модели оба способа проверки значимости с использованием F- и /-критериев равносильны, ибо эти критерии связаны соотношением F = /2.  

При несоблюдении основных предпосылок МНК приходится корректировать модель, изменяя ее спецификацию, добавлять (исключать) некоторые факторы, преобразовывать исходные данные для того, чтобы получить оценки коэффициентов регрессии , которые обладают свойством несмещенности, имеют меньшее значение дисперсии остатков и обеспечивают в связи с этим более эффективную статистическую проверку значимости параметров регрессии . Этой цели, как уже указывалось, служит и применение обобщенного метода наименьших квадратов , к рассмотрению которого мы и переходим в п. 3.11.  

Предложенные методы информационного моделирования технологических цепей и операций, реализованные в соответствующих методиках, не отличаются по форме от корреляционно-регрессионного анализа . Расчет и обоснование моделей проходят по классической схеме решение систем уравнений, оценка значимости коэффициентов, проверка идентичности модели. Типичными являются и задачи, решаемые с помощью моделей оценка взаимосвязей между параметрами ТП, выявление параметров, обладающих наибольшей нормативностью или влиятельностью на другие параметры, возможность расчета межоперационных допусков. Однако с позиций управления технологическими процессами информационные модели более просты, лаконичны и, следовательно, более приемлемы для целей управления.  

Нам необходимо решить, будет ли проверка значимости "односторонней" или "двусторонней". Это решение должно быть принято еще до того, как станут известны результаты рефессии. Выбор определяется теоретическим обоснованием модели связи X и Y, проверяемой с помощью рефессии.  

Проверка значимости скорректированного Л2 - это также проверка значимости связи между зависимой переменной Y и любой из независимых переменных X,-. Действительно, если регрессионная модель имеет высокую степень предоставления объяснения формирования взаимосвязи, изменение зависимой переменной происходит из-за изменений независимых переменных , и суммы квадратов отклонений , объясняемые регрессией (СКР) будут относительно больше остаточной суммы квадратов отклонений (СКО). Если же модель имеет низкую степень предоставления объяснения, изменение зависимой переменной происходит из-за изменения значения ошибки, и СКО будет относительно больше СКР.  

Для проверки значимости (пригодности) полученного уравнения регрессии применяют специальные приемы. Такую проверку называют проверкой адекватности модели.  

Объяснить природу и методы двумерного регрессионного анализа и описать модель, процедуры оценки параметров , нормирование коэффициента регрессии , проверки значимости, процедуру определения точности прогноза, анализ остатков и перекрестную проверку модели.  

Hi) В попытке устранить до некоторой степени недостатки, описанные в пунктах (i) и (it), мы можем разработать модель прогнозирования исходя из усеченного набора имеющихся исторических данных. Например, если у нас есть показатели объема продаж за период с 1990 по 1997 гг., мы можем выработать модель на основе значений только за 1990-1996 гг. Остальные показатели, т. е. показатели за 1997 г., можно использовать для сравнения с прогнозными показателями, полученными с помощью этой модели. Такого рода проверка более реалистична, так как она фактически моделирует прогнозную ситуацию. Недостаток этого метода состоит в том, что самые последние, а следовательно, и наиболее значимые показатели исключены из процесса формирования исходной модели.  

Можно продолжить этот перечень, мы только привели некоторые из возможных факторов. После анализа и проверки существенности всех факторов отбираются наиболее значимые, которые и должны войти в состав многофакторной корреляционной экономико-математической модели определения потребности в машинах напольного безрельсового электротранспорта. Применение такого метода расчета представляется в данном случае наиболее целесообразным. При долгосрочном прогнозировании следует также учитывать факторы научно-технического прогресса , методика определения и учета которых широко изложена в .  

Проверка выдвинутых гипотез дала значительное количество интересных и противоречивых результатов, которые часто указывали на наличие связей, обратных предсказанным. Регрессионная модель показывает все связи, которые проявили себя как достаточно значимые по отношению к основной зависимой переменной , т.е. использованию методов активного трансфера технологий.  

Самое важное решение, которое должен принять аналитик, - это выбор совокупности переменных для описания моделируемого процесса. Чтобы представить себе возможные связи между разными переменными, нужно хорошо понимать существо задачи. В этой связи очень полезно будет побеседовать с опытным специалистом в данной предметной области . Относительно выбранных вами переменных нужно понимать, значимы ли они сами по себе, или же в них всего лишь отражаются другие, действительно, существенные переменные . Проверка на значимость включает в себя кросс-корреляционный анализ . С его помощью можно, например, выявить временную связь типа запаздывания (лаг) между двумя рядами. То, насколько явление может быть описано линейной моделью , проверяется с помощью регрессии по методу наименьших квадратов (OLS). Полученная после оптимизации невязка R может принимать значения от 0 (полное несоответствие) до 1 (точное соответствие). Часто бывает так, что для линейных систем OLS-метод дает такие результа-  

В целом, можно сказать, что предварительная обработка через формирование совокупности переменных и проверку их значимости существенно улучшает качество модели . Если никаких теоретических методов проверки в распоряжении нет, переменные можно выбирать методом проб и ошибок, или с помощью формальных методов типа генетических алгоритмов , .  

Другим известным приемом является вычеркивание связей в чрезмерно связанном графе с целью изучения поведения системы и ее элементов в новых условиях. Устойчивость системы может означать верность гипотезы. Решение об уничтожении той или иной связи модели может быть принято или на основании критерия статистической значимости, или на основании произвольно установленного порогового критерия величины коэффициента причинного влияния. Проверкой правильности гипотез и корректности модели должно служить ее подтверждение при испытаниях на контрольных данных.  

Как показывает рис. 6.3, в случае вероятностных моделей расчет коэффициентов регрессии с использованием выражений (6.7) и (6.8) дает одну оценку величины Y, т.е. E(Yt). Оценки коэффициентов регрессии также предположительно нормально распределены. Нам нужно знать, статистическую значимость этих коэффициентов. Данная задача решается проверкой того, что коэффициенты регрессии значимо отличаются от нуля.  

Из анализа Калдора в его статье Модель экономического роста кажется очевидным, что он (в первом приближении) трактует sw и Sp как константы в течение длительных промежутков времени. Конечно, возможно, что теория Калдора могла бы быть эмпирически значимой, даже когда sp и s изменяются часто. В этом случае проверка теории будет заключаться в наблюдении за динамикой ковариации sp/sw и I/Y. Однако у нас нет наблюдений за sp и sw в различные моменты времени, и поэтому, если теория проверяется на временных рядах , необходимо допускать постоянство sw и sp. Конечно, возможно также, что когда соответствующие данные станут доступными, эта теория сможет быть полезной в объяснении международных или межрегиональных изменений в относительных долях, независимо от временных колебаний sp и s ,.  

Вследствие вышесказанного все выводы, получаемые на основе соответствующих t- и F-статистик, а также интервальные оценки будут ненадежными. Следовательно, статистические выводы , получаемые при стандартных проверках качества оценок , могут быть ошибочными и приводить к неверным заключениям по построенной модели . Вполне вероятно, что стандартные ошибки коэффициентов будут занижены, а следовательно, t-статистики будут завышены. Это может привести к признанию статистически значимыми коэффициентов, таковыми на самом деле не являющимися.  

В целом, говоря о разделении временного интервала на части, отметим, что оно необходимо в тех случаях, когда значения параметров а, менялись во времени (что нарушало предпосылку модели линейной регрессии об их неизменности). Если изменялись они более или менее скачкообразно, то, разделяя временной интервал моментами таких "скачков", можно разбить его на несколько интервалов, на каждом из которых предпосылки модели выполнялись Для проверки статистической значимости различия коэффи-  

Довольно часто гипотеза конвергенции неоклассической модели роста тестируется на примере регионов одной страны. Несмотря на то что возможно наличие расхождений между регионами по уровню развития технологий, предпочтений, и т.д., данные различия будут существенно менее значимыми, чем различия между странами. Поэтому вероятность наличия абсолютной конвергенции между регионами существенно выше, нежели между странами. Вместе с тем при использовании регионов для проверки гипотезы абсолютной сходимости нарушается важная предпосылка неоклассической модели роста - закрытость экономики . Очевидно, что культурные, лингвистические, институциональные и формальные барьеры для перемещения факторов оказываются менее значимыми для группы регионов одной страны. Однако показано, что даже в случае мобильности факторов и, таким образом, нарушения предпосылок исходной модели динамические свойства закрытой экономики и экономики со свободным  

Оцененные коэффициенты статистически значимы, коэффициент детерминации высокий, проверка на адекватность не выявляет нарушений стандартных предположений классической линейной модели регрессии.  

Следует отметить не совсем удачный перевод на русский язык термина dummy variables как фиктивная переменная . Во-первых, в модели регрессионного анализа мы уже имеем фиктивную переменную X при коэффициенте Ро> всегда равную единице. Во-вторых, и это главное - все процедуры регрессионного анализа (оценка параметров регрессионной модели , проверка значимости ее коэффициентов и т. п.) проводятся при включении фиктивных переменных так же, как и обычных, количественных объясняющих переменных. Фиктивность же переменных 2/ состоит только в том, что они количественным образом описывают качественный признак.  

Кроме проверки значимости всей модели, необходимо провести проверки значимости коэффициентов регрессии по /-критерию Стюдента. Минимальное значение коэффициента регрессии Ьг должно соответствовать условию bifob- t, где bi - значение коэффициента уравнения регрессии в натуральном масштабе при i-ц факторном признаке аь. - средняя квадратическая ошибка каждого коэффициента.  

Вернемся к общему (негауссовскому) случаю. Практика многомерного статистического анализа показала, что частные коэффициенты корреляции , определенные соотношениями (1.22) - (1.23), являются, как правило, удовлетворительными измерителями очищенной линейной связи между х(1) и при фиксированных значениях остальных переменных и в случае, когда распределение анализируемых показателей ((0), x(l . .., х(р>) отличается от нормального. Определив с помощью формулы (1.22) частный коэффициент корреляции в случае любого исходного распределения признаков (х(0 х(1 . .., х(р)), включим его в общий математический инструментарий корреляционного анализа линейных моделей . При этом их можно интерпретировать как показатели тесноты очищенной связи, усредненные по всевозможным значениям фиксируемых на определенных уровнях мешающих переменных. 1.2.3. Статистические свойства выборочных частных коэффициентов корреляции (проверка на статистическую значимость их отличия от нуля, доверительные интервалы). При исследовании статистических свойств выборочного частного коэффициента корреляции порядка k (т. е. при исключении опосредованного влияния k мешающих переменных) следует воспользоваться тем (см., например, ), что он распределен точно так же, как и обычный (парный) выборочный коэффициент корреляции между теми же переменными с единственной поправкой объем выборки надо уменьшить на k единиц, т. е. полагать его равным п - , а не я. Поэтому  

Для probit- или /опроверка гипотез о наличии ограничений на коэффициенты, в частности, гипотез о значимости одного или группы коэффициентов, может проводиться с помощью любого из трех тестов - Вальда, отношения правдоподобия , множителей Лагранжа , рассмотренных в главе 10 (п. 10.6). Большинство эконометрических пакетов, в которых реализованы probit- или /о

Пусть мы приступаем к эксперименту, полагая, что адекватна модель , содержащая только k главных эффектов , или, в терминологии регрессионного анализа , мы имеем модель первого порядка. Если взять насыщенный план разрешения III, то можно точно подогнать модель, но нельзя проверить ее адекватность. Однако, если (k + 1) не кратно четырем, план разрешения III будет не насыщенным, или, если все же (k + 1) кратно четырем, можно взять план разрешения IV. В обоих случаях мы сможем оценить несколько (смешанных) первых взаимодействий. Далее, если одна или несколько экспериментальных точек дублировалось, мы независимо оценим а2 и сможем проверить значимость наших парных взаимодействий. Пусть одни взаимодействия окажутся значимыми, а другие- - нет. Тогда может иметь смысл взять модель со всеми взаимодействиями. Несмотря на то что некоторые взаимодействия незначимы, их несмещенные МНК-оценки с минимальной дисперсией не равны нулю (хотя и малы). Так, если все факторы количественные , мы можем взять полином второго порядка (со всеми парными взаимодействиями плюс полные квадраты) вместо модели первого порядка. Сравните также с обсуждением в и в , где рассмотрена практика проверки отдельных параметров. Итак, вместо раздельной проверки эффектов мы можем получить их общую (объединенную) сумму квадратов и сравнить ее средний квадрат с независимой оценкой сг2.20  

Если мы отбрасываем гипотезу о корректности нашей модели, то обычно переходим к модели более высокого порядка 21. Это приводит к последовательному планированию . Мы можем начать с плана из очень малого числа опытов. Затем мы увидим, что планы разрешения III годятся для изучения k факторов всего в N = k + 1 опытах, если N кратно четырем, иначе мы возьмем следующий план с Nlt кратным четырем. Если АГ не" кратно четырем или же если есть некоторые дополнительные опыты, то мы можем проверить, адекватна ли модель первого порядка. Для этого мы можем подсчитать некоторые суммы квадратов взаимодействий или остаточную сумму квадратов . При наличии независимой оценки а2 (из параллельных или предварительных опытов) можно воспользоваться /""-критерием. А если взаимодействия окажутся значимыми, то мы можем перейти к плану разрешения IV. f K счастью, мы видим, что построить план разрешения IV из плана разрешения III не представляет никакого труда. Мы просто должны повторить план разрешения III с обратными знаками, т. е. помимо Ыг опытов плана22 разрешения III, которые мы уже провели, мы берем еще NI опытов. По определению, план разрешения IV дает оценки главных эффектов , которые не смешаны с парными взаимодействиями. Поэтому из плана разрешения IV мы можем надежно заключить, есть ли у какого-либо фактора главный эффект (при условии, что нет взаимодействий трех и более факторов это условие можно проверить при проверке адекватности по плану разрешения IV). Если предположить, что те факторы, у которых нет главных эффектов , не имеют и взаимодействий, то вполне возможно, что на основании плана разрешения IV мы исключим некоторые факторы. Иметь меньше факторов это значит, что сокращается число опытов, необходимых для эксперимента (ср. с табл. 8). Оставшиеся факторы можно изучить в плане разрешения V.  

Напомним (см. разд. 1.4. Главы 1), что поскольку логит-модель является нелинейной моделью , то оцененные коэффициенты имеют интерпретацию, отличающуюся от интерпретации коэффициентов в линейной модели . В связи с этим, в третьем столбце табл. 1 приведены значения предельного эффекта для переменных со статистически значимыми оценками коэффициентов, вычисленные при средних значениях объясняющих переменных на рассмотренном периоде. Так, значение 0.060 предельного эффекта для дамми переменной end of period означает, что если аукцион проводится в конце периода между проверками выполнения требований в отношении резервов, то (при неизменных значениях остальных объясняющих переменных) шансы за то, что банк примет участие в аукционе, против того, что банк не примет участие в аукционе, возрастают в среднем приблизительно на 6%.  

Лекция 2. Корреляционно-регрессионный анализ. Парная регрессия

1. Сущность корреляционно-регрессионного анализа и его задачи.

2. Определение регрессии и ее виды.

3. Особенности спецификации модели. Причины существования случайной величины.

4. Методы выбора парной регрессии.

5. Метод наименьших квадратов.

6. Показатели измерения тесноты и силы связи.

7. Оценки статистической значимости.

8. Прогнозируемое значение переменной у и доверительные интервалы прогноза.

1. Сущность корреляционно-регрессионного анализа и его задачи. Экономические явления, будучи весьма разнообразными, характеризуются множеством признаков, отражающих определенные свойства этих процессов и явлений и подверженных взаимообусловленным изменениям. В одних случаях зависимость между признаками оказывается очень тесной (например, часовая выработка работника и его заработная плата), а в других случаях такая связь не выражена вовсе или крайне слаба (например, пол студентов и их успеваемость). Чем теснее связь между этими признаками, тем точнее принимаемые решения.

Различают два типа зависимостей между явлениями и их признаками:

    функциональная (детерминированная, причинная) зависимость . Задается в виде формулы, которая каждому значению одной переменной ставит в соответствие строго определенное значение другой переменной (воздействием случайных факторов при этом пренебрегают). Иными словами,функциональная зависимость – это связь, при которой каждому значению независимой переменной х соответствует точно определенное значение зависимой переменной у. В экономике функциональные связи между переменными являются исключениями из общего правила;

    статистическая (стохастическая, недетерминированная) зависимость – это связь переменных, на которую накладывается воздействие случайных факторов, т.е. это связь, при которой каждому значению независимой переменной х соответствует множество значений зависимой переменной у, причем заранее неизвестно, какое именно значение примет у.

Частным случаем статистической зависимости является корреляционная зависимость.

Корреляционная зависимость – это связь, при которой каждому значению независимой переменной х соответствует определенное математическое ожидание (среднее значение) зависимой переменной у.

Корреляционная зависимость является «неполной» зависимостью, которая проявляется не в каждом отдельном случае, а только в средних величинах при достаточно большом числе случаев. Например, известно, что повышение квалификации работника ведет к росту производительности труда. Это утверждение часто подтверждается на практике, но не означает, что у двух и более работников одного разряда / уровня, занятых аналогичным процессом, будет одинаковая производительность труда.

Корреляционная зависимость исследуется с помощью методы корреляционного и регрессионного анализа.

Корреляционно-регрессионный анализ позволяет установить тесноту, направление связи и форму этой связи между переменными, т.е. ее аналитическое выражение.

Основная задача корреляционного анализа состоит в количественном определении тесноты связи между двумя признаками при парной связи и между результативными и несколькими факторными признаками при многофакторной связи и статистической оценке надежности установленной связи.

2. Определение регрессии и ее виды. Регрессионный анализ является основным математико-статистическим инструментом в эконометрике.Регрессией принято называть зависимость среднего значения какой-либо величины (y) от некоторой другой величины или от нескольких величин (x i).

В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.

Простая (парная) регрессия представляет собой модель, где среднее значение зависимой (объясняемой) переменной у рассматривается как функция одной независимой (объясняющей) переменной х. В неявном виде парная регрессия – это модель вида:

В явном виде:

,

где aиb– оценки коэффициентов регрессии.

Множественная регрессия представляет собой модель, где среднее значение зависимой (объясняемой) переменной у рассматривается как функция нескольких независимых (объясняющих) переменных х 1 , х 2 , … х n . В неявном виде парная регрессия – это модель вида:

.

В явном виде:

где aиb 1 ,b 2 ,b n – оценки коэффициентов регрессии.

Примером такой модели может служить зависимость заработной платы работника от его возраста, образования, квалификации, стажа, отрасли и т.д.

Относительно формы зависимости различают:

      линейную регрессию;

      нелинейную регрессию, предполагающую существование нелинейных соотношений между факторами, выражающихся соответствующей нелинейной функцией. Зачастую нелинейные по внешнему виду модели могут быть приведены к линейному виду, что позволяет их относить к классу линейных.

3. Особенности спецификации модели. Причины существования случайной величины. Любое эконометрическое исследование начинается соспецификации модели , т.е. с формулировки вида модели, исходя из соответствующей теории связи между переменными.

Прежде всего из всего круга факторов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы. Парная регрессия достаточна, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной. Уравнение простой регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений. В уравнении регрессии корреляционная связь представляется в виде функциональной зависимости, выраженной соответствующей математической функцией. Практически в каждом отдельном случае величина у складывается из двух слагаемых:

,

где у – фактическое значение результативного признака;

– теоретическое значении результативного признака, найденное исходя из уравнения регрессии;

случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.

Случайная величина называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения. Присутствие в модели случайной величины порождено тремя источниками:

    спецификацией модели,

    выборочным характером исходных данных,

    особенностями измерения переменных.

К ошибкам спецификации будут относиться не только неправильный выбор той или иной математической функции, но и недоучет в уравнении регрессии какого-либо существенного фактора (использование парной регрессии вместо множественной).

Наряду с ошибками спецификации могут иметь место ошибки выборки, поскольку исследователь чаще всего имеет дело с выборочными данными при установлении закономерностей связи между признаками. Ошибки выборки имеют место и в силу неоднородности данных в исходной статистической совокупности, что, как правило, бывает при изучении экономических процессов. Если совокупность неоднородна, то уравнение регрессии не имеет практического смысла. Для получения хорошего результата обычно исключают из совокупности единицы с аномальными значениями исследуемых признаков. И в этом случае результаты регрессии представляют собой выборочные характеристики. Исходных данных

Однако наибольшую опасность в практическом использовании методов регрессии представляют ошибки измерения. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки – увеличивая объем исходных данных, то ошибки измерения практически сводят на нет все усилия по количественной оценке связи между признаками.

4. Методы выбора парной регрессии. Предполагая, что ошибки измерения сведены к минимуму, основное внимание в эконометрических исследованиях отводится ошибкам спецификации модели. В парной регрессии выбор вида математической функции
может быть осуществлен тремя методами:

    графическим;

    аналитическим, т.е. исходя из теории изучаемой взаимосвязи;

    экспериментальным.

При изучении зависимости между двумя признаками графический метод подбора вида уравнения регрессии достаточно нагляден. Он основан на поле корреляции.Основные типы кривых, используемых при количественной оценке связей




Класс математических функций для описания связи двух переменных достаточно широк, также используются и другие типы кривых.

Аналитический метод выбор типа уравнения регрессии основан на изучении материальной природы связи исследуемых признаков, а также визуальной оценке характера связи. Т.е. если мы говорим о кривой Лаффера, показывающей зависимость между прогрессивностью налогообложения и доходами бюджета, то речь идет о параболической кривой, а в микроанализе изокванты представляют собой гиперболы.

5. Метод наименьших квадратов. Линейная регрессия находит широкое применение в эконометрике в виду четкой экономической интерпретации ее параметров и сводится к нахождению уравнения вида:

,

где х – объясняющая (независимая) переменная – неслучайная величина;

у – объясняемая (зависимая) величина;

– случайный член (ошибка регрессии);

 и β – параметры уравнения.

Теоретические значения представляют линию регрессии. Построение линейной регрессии сводится к оценке параметров a и b уравнения
.

Оценки параметров линейной регрессии могут быть найдены разными способами.

Метод наименьших квадратов (МНК) – классический подход к оцениванию параметров линейной регрессии.

Обратимся к полю корреляции.

По графику можно определить значения параметров. Параметр а – точка пересечения линии регрессии с осью Оу, а параметр b оценивается исходя из угла наклона линии регрессии , где dy – приращение фактора у, а dx – приращение фактора х.

МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака у от расчетных (теоретических) значений минимальна:

Т.е. линия регрессии выбирается таким образом, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальна.

где
.

Вычислим частные производные по каждому из параметров a и b.

Разделим обе части уравнений на n и получим систему уравнений, из которой можно вычислить оба параметра.

Из МНК можно получить две другие формулы для нахождения параметра b:

1.

2.
или

Оценка параметра а находится одинаковым способом во всех случаях:

.

Параметр b называется коэффициентом регрессии и показывает, на сколько единиц в среднем изменится переменная у при увеличении переменной х на 1 единицу. Знак при коэффициенте регрессии показывает направление связи: при b < 0 – связь обратная, при b > 0 – связь прямая.

Параметр а формально представляет собой значение у при х = 0. Если х не имеет или не может иметь нулевого значения, то а не имеет смысла. Он может и не иметь экономического смысла. При а<0 экономическая интерпретация может оказаться абсурдной.

Интерпретировать можно знак при параметре а. Если а>0, то относительное изменение результата происходит медленнее, чем изменение фактора. Если а<0, то изменение результата опережает изменение фактора.

6. Показатели измерения тесноты и силы связи . Уравнение регрессии всегда дополняется показателем тесноты связи.

Качество парной регрессии определяется с помощью парного линейного коэффициента корреляции:

или

,

где
,

– среднеквадратические отклонения, которые показывают разброс значений в множестве значений х и у. Большое значение среднеквадратического отклонения показывает большой разброс значений в представленном множестве со средней величиной множества; маленькое значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Линейный коэффициент корреляции находится в пределах:

1 < < 1.

Если коэффициент корреляции положительный (рис. а), то связь между признаками прямая, т.е. с увеличением (уменьшением) x признак y увеличивается (уменьшается). Если коэффициент корреляции отрицательный (рис. б), то связь между признаками обратная, т.е. с увеличением (уменьшением) x признак y уменьшается (увеличивается).

Чем ближе значение коэффициента корреляции к 1, тем теснее связь (рис. б), чем ближе к 0, тем слабее (рис. а).

Если 0 < || <0,3, то связь между признаками практически отсутствует,

если 0,3 < || <0,5, то связь слабая,

если 0,5 < || <0,7, то связь умеренная,

если 0,7 < || <1, то связь сильная.

И, наконец, при r = 0 линейная корреляционная связь отсутствует. При этом линия регрессии параллельна оси Ох.

Следует отметить, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в ее линейной форме. Поэтому близость абсолютной величины коэффициента корреляции к нулю еще не означает отсутствие связи между признаками. При иной спецификации модели связь между признаками может оказаться достаточно тесной.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции R 2 , называемыйкоэффициентом детерминации . Он характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака.

Соответственно величина 1 – R 2 характеризует долю дисперсии у, вызванную влиянием остальных не учтенных в модели факторов.

В силу своего определения R 2 принимает значения между 0 и 1, т.е.

0 ≤ R 2 ≤ 1.

Если R 2 = 0, то это означает, что регрессия ничего не дает, т.е х не улучшает качество предсказания у по сравнению с тривиальным предсказанием
.

Другой крайний вариант R 2 = 1 означает точную подгонку модели: все точки наблюдений лежат на регрессионной прямой (все=0). Чем ближеR 2 к 1, тем лучше качество подгонки модели и тем точнее.

Параметре регрессии b хотя и показывает, на сколько единиц в среднем изменится переменная у при увеличении переменной х на 1 единицу, но использовать для непосредственной оценки влияния факторного признака на результативный нельзя из-за различия единиц измерения исследуемых показателей. Для этих целей используют коэффициент эластичности . Коэффициент эластичности показывает, на сколько процентов изменяется результативный признак у при изменении факторного признака х на 1%, и вычисляется по формуле:

,

где
– первая производная, характеризующая соотношение приростов результата и фактора для соответствующей формы связи.

В силу того того, что коэффициент эластичности для линейной функции не является величиной постоянной, а зависит от соответствующего значения х, то обычно рассчитывается средний коэффициент эластичности:

.

Несмотря на широкое использование в эконометрике коэффициентов эластичности, возможны случаи, когда их расчет не имеет экономического смысла. Это происходит тогда, когда для рассматриваемых признаков бессмысленно определение изменения значений в процентах (например, на сколько процентов изменится урожайность пшеницу, если качество почвы улучшится на 1%).

Коэффициенты эластичности для ряда математических функций

7. Оценки статистической значимости. После того как найдено уравнение регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения в целом. Оценка значимости уравнения регрессии в целом дается с помощьюF-критерия Фишера и служит для выяснения того, что полученное значение коэффициента детерминации
неслучайно, т.е. соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

В парной линейной регрессии проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Для проверки значимости уравнения регрессии в целом используют F-критерий Фишера. В случае парной линейной регрессии значимость модели регрессии проверяется по следующей формуле:

,

где m– количество объясняющих факторных признаков, т.е. х.

Наблюдаемые значения сравниваются с табличными.

,

где α – уровень значимости, соответствующий доверительному интервалу;

Если при заданном уровне значимости F набл >F крит, то модель считается значимой, гипотеза о случайной природе оцениваемых характеристик отрицается и признается их статистическая значимость и надежность.

Если F набл

Стандартная ошибка оценки уравнения регрессии. Хотя МНК дает нам линию регрессии, которая обеспечивает минимум вариации, не все наблюдения совпадают с линией регрессии. Поэтому необходима статистическая мера вариации фактических значений у от предсказанных значений. Мера вариации относительно линии регрессии называетсястандартной ошибкой оценки .

Стандартная ошибка оценки определяется как:

,

где у – фактические значения зависимой переменной для заданных значений независимой переменной;

– теоретические / предсказанные значения зависимой переменной для заданных значений независимой переменной;

m – количество объясняющих переменных х.

Данный коэффициент характеризует меру вариации фактических данных вокруг линии регрессии.

Проверка значимости параметров. Кроме того, проверяется значимость параметров регрессии. Проверка значимости параметров отдельных коэффициентов регрессии проводится по t-критерию Стьюдента путем проверки гипотезы о равенстве нулю каждого коэффициента регрессии. При этом выясняют, не являются ли полученные значения параметров результатом действия случайных величин.

Значимость коэффициентов регрессии проверяется по следующим формулам. Для коэффициента b:

,

где S b – стандартная ошибка коэффициента b, которая в свою очередь определяется как:

.

Для коэффициента а аналогично:

,

где S a – стандартная ошибка свободного члена а, также находится по формуле:

.

Расчетные значения t-критерия сравниваются с табличным значением критерия , где k = n–m–1 степеням свободы и соответствующем уровне значимости α.

Если расчетное значение t-критерия превосходит его табличное значение, то параметр признается значимым, т.е. не является случайно найденным.

8. Прогнозируемое значение переменной у и доверительные интервалы прогноза. Точечный прогноз заключается в получении прогнозного значения Y*, которое определяется путем подстановки в уравнение регрессии
соответствующего прогнозного значения X*:

.

Вероятность реализации точечного прогноза практически равна нулю, поэтому рассчитывается доверительный интервал прогноза с большей надежностью.

Интервальный прогноз заключается в построении доверительного интервала прогноза, т.е. нижней и верхней – минимально и максимально возможных границ интервала, содержащего точную величину для прогнозного значения Y* с заданной вероятностью, т.е.:

У min

Доверительные интервалы прогноза определяются по следующим формулам:

где
– стандартная ошибка предсказаний для парной регрессии.

Доверительный интервал для коэффициентов регрессии определяются как:

Так как коэффициент регрессии в эконометрических исследованиях имеет четкую экономическую интерпретацию, то доверительные границы интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, -10b40 – такого рода запись указывает на то, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего быть не может. Тогда параметр принимается равным нулю.

Расчет параметров и построение регрессионных моделей

Корреляционный анализ

Его цель - определить характер связи (прямая, обратная) и силу связи (связь отсутствует, связь слабая, умеренная, заметная, сильная, весьма сильная, полная связь). Корреляционный анализ создает информацию о характере и степени выраженности связи (коэффициент корреляции), которая используется для отбора существенных факторов, а также для планирования эффективной последовательности расчета параметров регрессионных уравнений. При одном факторе вычисляют коэффициент корреляции, а при наличии нескольких факторов строят корреляционную матрицу, из которой выясняют два вида связей: (1) связи зависимой переменной с независимыми, (2) связи между самими независимыми.

Рассмотрение матрицы позволяет, во первых, выявить факторы, действительно влияющие на исследуемую зависимую переменную, и выстроить (ранжировать) их по убыванию связи; во-вторых, минимизировать число факторов в модели, исключив часть факторов, которые сильно или функционально связаны с другими факторами (речь идет о связях независимых переменных между собой).

Известно, что наиболее надежными на практике бывают одно- и двухфакторные модели.

Если будет обнаружено, что два фактора имеют сильную или полную связь между собой, то в регрессионное уравнение достаточно будет включить один из них.

Здесь стремятся отыскать наиболее точную меру выявленной связи, для того чтобы можно было прогнозировать, предсказывать значения зависимой величины Y, если будут известны значения независимых величин Х 1 , Х 2 ,.... Х n

Эту меру обобщенно выражают математической моделью линейной множественной регрессионной зависимости:

Y = a 0 + b 1 Х 1 + b 2 Х 2 + ... +b n X n

ЭВМ вычисляет параметры модели: свободный член а 0 (константа, или пересечение) и коэффициенты b п (коэффициенты регрессии). Величину у называют откликом, а Х 1 , Х 2 , .. ., Х п - факторами или предикторами.

После получения каждого варианта уравнения обязательной процедурой является оценка его статистической значимости, поскольку главная цель - получить уравнение наивысшей значимости. Однако в связи с тем, что расчеты выполняет ЭВМ, а решение на основе оценки значимости уравнения принимает исследователь (принять или отбросить уравнение), условно можно выделить третий этап этой человеко-машинной технологии как интеллектуальный немашинный этап, для которого почти все данные по оценке значимости уравнения подготавливает ЭВМ.

Статистическую значимость, т. е. пригодность постулируемой модели для использования ее в целях предсказания значений отклика. Для оценки качества полученной модели программа вычислила также целый ряд коэффициентов, которые обязан рассмотреть исследователь, сравнивая их с известными статистическими критериями и оценивая модель с точки зрения здравого смысла.



На этом этапе исключительно важную роль играют коэффициент детерминации и F-критерий значимости регрессии.

R Squared (R 2) - коэффициент детерминации - это квадрат множественного коэффициента корреляции между наблюдаемым значением Y и его теоретическим значением, вычисленным на основе модели с определенным набором факторов. Коэффициент детерминации измеряет действительность модели. Он может принимать значения от 0 до 1. Эта величина особенно полезна для сравнения ряда различных моделей и выбора наилучшей модели.

R 2 есть доля вариации прогнозной (теоретической) величины Y относительно наблюденных значений Y, объясненная за счет включенных в модель факторов. Очень хорошо, если R 2 >= 80%. Остальная доля теоретических значений У зависит от других, не участвовавших в модели факторов. Задача исследователя - находить факторы, увеличивающие R 2 , к давать объяснение вариаций прогноза, чтобы получить идеальное уравнение. Однако, коэффициент R 2 самое большее может достигнуть величины 1 (или 100%), когда все значения факторов различны. А если в данных есть повторяющиеся опыты, то величина R 2 не может достигнуть 1, как бы хороша ни была модель. Поэтому дубликаты данных следует удалять из исходной таблицы до начала расчета регрессии. Некоторые программные пакеты автоматически удаляют дубликат, оставляя лишь уникальные данные. Повторение одинаковых данных снижает надежность оценок модели. R 2 = 1 лишь при полном согласии экспериментальных (наблюденных) и теоретических (расчетных) данных, т. е. когда теоретические значения точно совпадают с наблюдаемыми. Однако это считается весьма маловероятным случаем.

Средствами регрессионного анализа, в т.ч. Excel, вычисляется F-критерий значимости регрессиидля уравнения в целом. Это рассчитанное по наблюденным данным значение Fp (F расчетный, наблюденный) следует сравнивать с соответствующим критическим значением Fк, (F критический, табличный) (см. приложение А). Fк исследователь выбирает из публикуемых статистических таблиц на заданном уровне вероятности (на том, на каком вычислялись параметры модели, например, 95%).

Если наблюденное значение Fp окажется меньше критического значения Fк, то уравнение нельзя считать значимым. В иной терминологии об этом же может быть сказано: не отвергнута нуль-гипотеза относительно значимости всех коэффициентов регрессии в постулируемой модели, т. е. коэффициенты практически равны нулю.

Электронная технология корреляционно-регрессионного анализа становится абсолютно бесполезной, если расчетные данные будут толковаться не вполне правильно.

Если полученная модель статистически значима, ее применяют для прогнозирования (предсказания), управления или объяснения.

Если же обнаружена незначимость, то модель отвергают, предполагая, что истинной окажется какая-то другая форма связи, которую надо поискать.