Корреляционный характеристик сигнал. Сигналы и линейные системы

Вид алгоритма оптимального приема, а также качественные показатели системы передачи дискретных сообщений существенно зависят от характеристики

которую будем называть взаимокорреляционной функцией позиции комплексного опорного сигнала и комплексного принимаемого поля, соответствующего позиции, где временной сдвиг между ними, обусловленный несогласованностью во времени.

Функция является мерой «различия» (или «близости») сигналов с индексами Если в ансамбль сигналов включить и все реализации помехи в канале, то эта функция определит также меру «различия» («близости») между сигналом и помехой, а также между отдельными реализациями помехи. Такая характеристика различимости сигнала и помехи использована в ряде работ, например .

При выводе последних формул учтены соотношения, следующие из равенства Парсеваля:

Функции будем называть соответственно функцией взаимной корреляции принимаемых сигналов и функцией взаимной корреляции сопряженных сигналов в месте приема. Первая из них определяет свойства оптимального когерентного приема, в то время как для характеристики оптимального приема при неопределенной фазе сигнала (некогерентный прием) требуется знание только модуля (огибающей) комплексной функции корреляции

Комплексный опорный сигнал, используемый в схемах оптимального когерентного приема (см. ниже)

где функция, являющаяся решением интегрального уравнения

где корреляционная функция аддитивной помехи. Поскольку корреляционная функция может быть разложена в билинейный ряд по своим собственным функциям

где собственные числа, то решение интегрального уравнения (1.52) можно записать в виде

В том случае, когда помеха является суммой двух частей - сосредоточенной и флуктуационной, некоррелированных между собой, разлагая корреляционную функцию сосредоточенной части помехи в ряд (1.53), получаем

где собственные числа и собственные функции, соответствующие Поскольку корреляционная функция белого шума со спектральной плотностью для любого ортонормированного базиса представима в виде

(все собственные числа одинаковы и равны N), то

С учетом (1.51) функцию будем также называть взвешенной [с весом комплексной взаимокорреляционной

функцией двух реализаций комплексных сигналов в месте приема Выражение (1.51) можно записать в виде

Предполагай весовую функцию однородной, т. е. можно показать, что и связаны между собой парой преобразований Гильберта. Ансамбли сигналов, для которых

будем называть ортогональными в месте приема при произвольных временных сдвигах Если выполняется условие то будем говорить об ортогональной системе сигналов в месте приема.

Если в (1-47) то будем называть корреляционной функцией принимаемых комплексных сигналов. Фактически можно говорить лишь о приближенном выполнении условия (1.59), так как его строгое выполнение возможно лишь при использовании сигналов, спектры которых нигде не перекрываются, что неосуществимо. На практике условия (1.59) часто выполняются при любых лишь при значениях

В этом случае будем говорить, что при несовпадении индексов выполняется условие узости для взаимокорреляционной функции, а при совпадении индексов - условие узости корреляционных функций.

Введем нормированные корреляционные функции при

Энергетическое отношение (сигнал/помеха) для сигнала в месте приема. Можно показать, что Следовательно, нормированная корреляционная функция (1.61) удовлетворяет условию Аналогично можно показать, что такому же условию удовлетворяет и нормированная функция корреляции сопряженных принимаемых сигналов

При неопределенной фазе сигнала в некоторых случаях свойства приемника характеризуются огибающей (1.50) и соответственно нормированной огибающей

Назовем систему принимаемых сигналов, для которой

ортогональной в усиленном смысле при произвольных временных сдвигах

Очень часто мы имеем дело с системой сигналов, удовлетворяющих условию которую будем, пользуясь терминологией , называть ортогональной в усиленном смысле (в месте приема).

На практике условия (1.64) обычно выполняются лишь в границах (1.60).

Аналогично введенным характеристикам принимаемых сигналов можно ввести взвешенные корреляционные и взаимокорреляционные характеристики передаваемых сигналов:

Это условие обеспечивает также ортогональность принимаемых сигналов в усиленном смысле при произвольных сдвигах во времени.

При определенном фазировании в канале для обычной ортогональности принимаемых сигналов достаточна ортогональность передаваемых сигналов (с тем же весом).

Для однолучевого канала ортогональность и ортогональность в усиленном смысле принимаемых сигналов при любых временных сдвигах эквивалентны соответственно ортогональности и ортогональности в усиленном смысле при любых временных сдвигах передаваемых сигналов с весом

Для узкополосных передаваемых и принимаемых сигналов ортогональность в усиленном смысле при произвольных ненулевых сдвигах равносильна обычной ортогональности при любых сдвигах. Однако для таких сигналов ортгональность в усиленном смысле (при ) не эквивалентна обычной ортогональности.


Корреляционная функция сигнала – это временная характеристика,

дающая представление о скорости изменения сигнала во времени, а также о длительности сигнала без разложения его на гармонические составляющие.

Различают автокорреляционную и взаимнокорреляционную функции. Для детерминированного сигнала f (t ) автокорреляционная функция определяется выражением

где – величина временного сдвига сигнала.

характеризует степень связи(корреляции) сигнала f (t ) со своей

копией, сдвинутой на величину по оси времени. Построим автокорреляционную функцию (АКФ) для прямоугольного импульса f (t ) . Сигнал сдвинут на в сторону опережения, как показано на рис. 6.25.

На графике каждому значению соответствует свое произведение и площадь под графиком функции . Численные

значения таких площадей для соответствующих τ и дают ординаты функции

С увеличением τ убывает (не обязательно монотонно) и при

Т. е. больше, чем длительность сигнала, равна нулю.

– периодический сигнал, то АКФ K f (t ) =

f (t ) × f t(+ t ) dt и

является также периодической функцией с периодом T .

Рассмотрим основные свойства автокорреляционной функции:

1. АКФ является четной функцией , т. е. и с увеличением функция убывает.

2. АКФ достигает max при , так как любой сигнал полностью коррелирован с самим собой. При этом максимальное значение АКФ равно энергии

сигнала, т. е.

E = K f (0 ) = ò f 2 (t ) dt . Для периодического сигнала

средняя мощность сигнала.

и квадрат модуля спектральной плотности

между собой прямым и обратным преобразованием Фурье.

Чем шире спектр сигнала, тем меньше интервал корреляции, т.е. величина сдвига , в пределах которого корреляционная функция отлична от нуля. Соответственно, чем больше интервал корреляции сигнала, тем уже его спектр.

Корреляционная функция может быть использована и для оценки степени связи между двумя различными сигналами f 1 (t ) и f 2 (t ) сдвинутыми на время

В этом случае она называется взаимной корреляционной функцией(ВКФ) и определяется выражением:

Взаимно-корреляционная функция не обязательно является чётной относительно τ и не обязательно достигает максимума при. Построение ВКФ для двух треугольных сигналов f 1 (t ) и f 2 (t ) приведено на рис. 6.26. При сдвиге

сигнала f 2 (t ) влево (t > 0, рис. 6.26, а) корреляционная функция сигнала сначала возрастает, затем убывает до нуля при. При сдвиге сигнала f 2 (t ) вправо (t < 0, рис. 6.26, б) корреляционная функция сразу убывает. В результате получается нессиметричная относительно оси ординат ВКФ , показанная на рис. 6.26, в.

f1 (t)

f2 (t)

0 Т t

0 t -Т Т

f 1 (t ) × f 2 (t + t)

f1 (t)

f2 (t)

0 Т

Т Т + t

f 1 (t ) × f 2 (t - t)

6.9. Понятие о модулированных сигналах. Амплитудная модуляция

Для передачи информации на расстояние применяются высокочастотные сигналы. Передаваемая информация должна быть тем или иным способом -за ложена в высокочастотное колебание, которое называется несущим. Выбор ча-

стоты ω несущего сигнала зависит от многих факторов, но в любом случае ω

должна быть намного больше, чем наивысшая частота спектра передаваемого сообщения, т. е.

В зависимости от характера несущей различают два вида модуляции:

непрерывную – при гармоническом непрерывном во времени переносчике;

импульсную – при переносчике в виде периодической последовательности импульсов.

Сигнал, несущий в себе информацию, можно представить в виде

Если и – постоянные величины, то это простое гармоническое колебание, не несущее информации. Если и подвергаются принудительному изменению для передачи сообщения, то колебание становится модулированным.

Если изменяется A (t ), то это амплитудная модуляция, если угол – угловая. Угловая модуляция подразделяется на два вида: частотную (ЧМ) и фазовую (ФМ).

Так как , то и – медленно меняющиеся функции времени. Тогда можно считать, что при любом виде модуляции параметры сигнала

(1) (амплитуда, фаза и частота) изменяются настолько медленно, что в пределах одного периода высокочастотное колебание можно считать гармоническим. Эта предпосылка лежит в основе свойств сигналов и их спектров.

Амплитудная модуляция (АМ). При АМ огибающая амплитуд несущего сигнала изменяется по закону, совпадающему с законом изменения передаваемого сообщения, частота не изменяется, а начальная фаза может быть различной в зависимости от момента начала модуляции. Общее выражение (6.22) можно заменить на

Графическое представление амплитудно-модулирован-ного сигнала приведено на. 6.27. Здесь S (t ) – передаваемое непрерывное сообщение, амплитуда несущего гармонического ы- сокочастотного сигнала. Огибающая A (t ) изменяется по закону, воспроизводящему сообщение

S (t ).

Наибольшее, причём . – частота модулирующей функции, – начальная фаза огибающей. Такая модуляция называ-

ется тональной (6.28).

повторяет закон изменения исходного сигнала (рис. 6.28, б).

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

B s (t) = s(t) s(t+t) dt. (2.4.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1):

B s (0) = s(t) 2 dt = E s .

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.4.1):

B s (t) = s(t) s(t-t) dt = s(t-t) s(t) dt = B s (-t).

С учетом четности, графическое представление АКФ обычно производится только для положительных значений t. Знак +t в выражении (2.4.1) означает, что при увеличении значений t от нуля копия сигнала s(t+t) сдвигается влево по оси t. На практике сигналы обычно также задаются на интервале положительных значений аргументов от 0-Т, что дает возможность продления интервала нулевыми значениями, если это необходимо для математических операций. В этих границах вычислений более удобным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.4.1) функции s(t-t):

B s (t) = s(t) s(t-t) dt. (2.4.1")

По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю:

Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

B s (t) = A 2 dt = A 2 (T-t).

При сдвиге копии импульса влево, при -T≤t<0 сигналы перекрываются на интервале от 0 до Т-t. Скалярное произведение:

B s (t) = A 2 dt = A 2 (T+t).

При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

Обобщая вычисления, можем записать:

B s (t) = .

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах этого периода:

B s (t) = (1/Т) s(t) s(t-t) dt.

При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов при этом также является периодической функцией с тем же периодом Т. Так, для сигнала s(t) = A cos(w 0 t+j 0) при T=2p/w 0 имеем:

B s (t) = A cos(w 0 t+j 0) A cos(w 0 (t-t)+j 0) = (A 2 /2) cos(w 0 t).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств КФ.

Для сигналов, заданных на определенном интервале , вычисление АКФ также производится с нормировкой на длину интервала :

B s (t) = s(t) s(t+t) dt. (2.4.2)

В пределе, для непериодических сигналов с измерением АКФ на интервале Т:

B s (t) = . (2.4.2")

Автокорреляция сигнала может оцениваться и коэффициентом автокорреляции, вычисление которого производится по формуле (по центрированным сигналам):

r s (t) = cos j(t) = ás(t), s(t+t)ñ /||s(t)|| 2 .

Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает степень сходства сдвинутых экземпляров двух разных сигналов и их взаимное расположение по координате (независимой переменной), для чего используется та же формула (2.4.1), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

B 12 (t) = s 1 (t) s 2 (t+t) dt. (2.4.3)

При замене переменной t = t-t в формуле (2.4.3), получаем:

B 12 (t) = s 1 (t-t) s 2 (t) dt = s 2 (t) s 1 (t-t) dt = B 21 (-t)

Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.4.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.4.3) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).

На ранних этапах развития радиотехники вопрос о выборе наилучших сигналов для тех или иных конкретных применений не был очень острым. Это обусловливалось, с одной стороны, относительно простой структурой передаваемых сообщений (телеграфные посылки, радиовещание); с другой, практическая реализация сигналов сложной формы в комплексе с оборудованием для их кодирования, модуляции и обратного преобразования в сообщение оказывалась трудно осуществимой.

В настоящее время ситуация в корне изменилась. В современных радиоэлектронных комплексах выбор сигналов диктуется прежде всего не техническими удобствами их генерирования, преобразования и приема, а возможностью оптимального решения задач, предусмотренных при проектировании системы. Для того чтобы понять, как возникает потребность в сигналах со специально выбранными свойствами, рассмотрим следующий пример.

Сравнение сигналов, сдвинутых во времени.

Обратимся к упрощенной идее работы импульсного радиолокатора, предназначенного для измерения дальности до пели. Здесь информация об объекте измерения заложена в величине - задержке по времени между зондирующим и принятым сигналами. Формы зондирующего и и принятого и сигналов одинаковы при любых задержках.

Структурная схема устройства обработки радиолокационных сигналов, предназначенного для измерения дальности, может выглядеть так, как это изображено на рис. 3,3.

Система состоит из набора элементов, осуществляющих задержку «эталонного» передаваемого сигнала на некоторые фиксированные отрезки времени

Рис. 3.3. Устройство для измерения времени задержки сигналов

Задержанные сигналы вместе с принятым сигналом подаются на устройства сравнения, действующие в соответствии с принципом: сигнал на выходе появляется лишь при условии, что оба входных колебания являются «копиями» друг друга. Зная номер канала, в котором происходит указанное событие, можно измерить задержку, а значит, и дальность до цели.

Подобное устройство будет работать тем точнее, чем в большей степени разнятся друг от друга сигнал и его «копия», смещенная во времени.

Таким образом, мы получили качественное «представление о том, какие сигналы можно считать «хорошими» для данного применения.

Перейдем к точной математической формулировке поставленной проблемы и покажем, что этот круг вопросов имеет непосредственное отношение к теории энергетических спектров сигналов.

Автокорреляционная функция сигнала.

Для количественного определения степени отличия сигнала и и его смещенной во времени копии принято вводить автокорреляционную функцию (АКФ) сигнала , равную скалярному произведению сигнала и копии:

В дальнейшем будем предполагать, что исследуемый сигнал имеет локализованный во времени импульсный характер, так что интеграл вида (3.15) заведомо существует.

Непосредственно видно, что при автокорреляционная функция становится равной энергии сигнала:

К числу простейших свойств АКФ можно отнести ее четность:

Действительно, если в интеграле (3.15) сделать замену переменных то

Наконец, важное свойство автокорреляционной функции состоит в следующем: при любом значении временного сдвига модуль АКФ не превосходит энергии сигнала:

Этот факт непосредственно вытекает из неравенства Коши - Буняковского (см. гл. 1):

Итак, АКФ представляется симметричной кривой с центральным максимумом, который всегда положителен. При этом в зависимости от вида сигнала автокорреляционная функция может иметь как монотонно убывающий, так и колеблющийся характер.

Пример 3,3. Найти АКФ прямоугольного видеоимпульса.

На рис. 3.4,а изображен прямоугольный видеоимпульс с амплитудой U и длительностью Здесь же представлена его «копия», сдвинутая во времени в сторону запаздывания на . Интеграл (3.15) вычисляется в данном случае элементарно на основании графического построения. Действительно, произведение и и отлично от нуля лишь в пределах интервала времени, когда наблюдается наложение сигналов. Из рис. 3.4, о видно, что этот временной интервал равен если сдвиг не превышает длительности импульса. Таким образом, для рассматриваемого сигнала

График такой функции - треугольник, изображенный на рис. 3.4,б. Ширина основания треугольника в два раза больше длительности импульса.

Рис. 3.4. Нахождение АКФ прямоугольного видеоимпульса

Пример 3.4. Найти АКФ прямоугольного радиоимпульса.

Будем рассматривать радиосигнал вида

Зная заранее, что АКФ четна, вычислим интеграл (3.15), полагая . При этом

откуда легко получаем

Естественно, что при величина становится равной энергии этого импульса (см. пример 1.9). Формула (3.21) описывает АКФ прямоугольного радиоимпульса при всех сдвигах , лежащих в пределах Если абсолютное значение сдвига превышает длительность импульса, то автокорреляционная функция будет тождественно обращаться в нуль.

Пример 3.5. Определить АКФ последовательности прямоугольных видеоимпульсов.

В радиолокации широко используются сигналы, представляющие собой пачки из одинаковых по форме импульсов, следующих друг за другом через одинаковый интервал времени. Для обнаружения такой пачки, а также для измерения ее параметров, например положения во времени, создают устройства, которые аппаратурным образом реализуют алгоритмы вычисления АКФ.

Рис. 3.5. АКФ пачки из трех одинаковых видеоимпульсов: а - пачка импульсов; б - график АКФ

На рис. 3.5, в изображена пачка, состоящая из трех одинаковых видеоимпульсов прямоугольной формы. Здесь же представлена ее автокорреляционная функция, вычисленная по формуле (3.15) (рис. 3.5, б).

Хорошо видно, что максимум АКФ достигается при Однако если задержка оказывается кратной периоду последовательности (при в нашем случае), наблюдаются побочные лепестки АКФ, сравнимые по высоте с главным лепестком. Поэтому можно говорить об известном несовершенстве корреляционной Структуры данного сигнала.

Автокорреляционная функция неограниченно протяженного сигнала.

Если требуется рассматривать неограниченно протяженные во времени периодические последовательности, то подход к изучению корреляционных свойств сигналов должен быть несколько видоизменен.

Будем считать, что такая последовательность получается из некоторого локализованного во времени, т. е. импульсного, сигнала, когда длительность последнего стремится к бесконечности. Для того чтобы избежать расходимости получаемых выражений, определим иовую АКФ как среднее значение скалярного произведения сигнала и его копии:

При таком подходе автокорреляционная функция становится равной средней взаимной мощности этих даух сигналов.

Например, желая найти АКФ для неограниченной во времени косинусоиды можно воспользоваться формулой (3.21), полученной для радиоимпульса длительностью а затем перейти к пределу при учитывая определение (3.22). В результате получим

Эта АКФ сама является периодической функцией; ее значение при равно

Связь между энергетическим спектром сигнала и его автокорреляционной функцией.

При изучении материала настоящей главы читатель может подумать, что методы корреляционного анализа выступают как некоторые особые приемы, не имеющие связи с принципами спектральных разложений. Однако это не так. Легко показать, что существует тесная связь между АКФ и энергетическим спектром сигнала.

Действительно, в соответствии с формулой (3.15) АКФ есть скалярное произведение: Здесь символом обозначена смещенная во времени копия сигнала и ,

Обратившись к обобщенной формуле Рэлея (2.42), можно записать равенство

Спектральная плотность смещенного во времени сигнала

Таким образом, приходим к результату:

Квадрат модуля спектральной плотности, как известно, представляет собой энергетический спектр сигнала. Итак, энергетический спектр и автокорреляционная функция связаны преобразованием Фурье:

Ясно, что имеется и обратное соотношение:

Эти результаты принципиально важны по двум причинам. Во-первых, оказывается возможным оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Чем шире полоса частот сигнала, тем уже основной лепесток автокорреляционной функции и тем совершеннее сигнал с точней зрения возможности точного измерения момента его начала.

Во-вторых, формулы (3.24) и (3.26) указывают путь экспериментального определения энергетического спектра. Часто удобнее вначале получить автокорреляционную функцию, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Такой прием получил распространение при исследовании свойств сигналов с помощью быстродействующих ЭВМ в реальном масштабе времени.

Соотношением совтк Отсюда следует, что интервал корреляции

оказывается тем меньше, чем выше верхняя граничная частота спектра сигнала.

Ограничения, накладываемые на вид автокорреляционной функции сигнала.

Найденная связь между автокорреляционной функцией и энергетическим спектром дает возможность установить интересный и на первый взгляд неочевидный критерий существования сигнала с заданными корреляционными свойствами. Дело в том, что энергетический спектр любого сигнале, по определению, должен быть положительным [см. формулу (3.25)]. Данное условие будет выполняться далеко не при любом выборе АКФ. Например, если взять

и вычислить соответствующее преобразование Фурье, то

Эта знакопеременная функция не может представлять собой энергетический спектр какого-либо сигнала.

Понятие корреляция означает схожесть. Корреляционная функция сигнала является функцией и определяется выражением

где τ – временной сдвиг сигнала.

При выражение (2.65) принимает вид

где Е - энергия сигнала. Таким образом, при нулевом временном сдвиге корреляционная функция равна энергии сигнала.

Кроме корреляционной функции (2.65) существует взаимно корреляционная функция, которая характеризует взаимную связь между значениями двух сигналов и определяется выражением:

Когда U1(t) и U2(t) являются одним и тем же сигналом U(t), то взаимно корреляционная и корреляционная функция совпадают.

Корреляционная функция принимает максимальное значение только при . Взаимно корреляционная функция двух одинаковых сигналов также достигает максимума при . Для различных сигналов U1(t) и U2(t) максимальное значение функции может достигать не при . Например, взаимно корреляционная функция косинусоиды имеет максимальное значение при .

Рассмотрим корреляционные функции типовых сигналов.

Прямоугольный видеосигнал и его корреляционная функция показаны на рис. 2.24.

Корреляционная функция периодического видеосигнала с периодом Т на основании (2.66) имеет вид:

(2.67)

Корреляционная функция гармонического сигнала равна:

Сигнал и его корреляционная функция показаны на рис 2.25.

Рис. 2.25. Гармонический сигнал (а) и его корреляционная функция (б).

Взаимно корреляционная функция двух гармонических сигналов одинаковой частоты и имеет вид:

(2.69)

Если и , то взаимно корреляционная функция (2.68) равна корреляционной функции гармонического сигнала (2.69).

Взаимно корреляционная функция двух гармонических сигналов с различными частотами равна нулю. Следовательно, гармонические сигналы с различными частотами являются некоррелированными (не схожими) между собой.