Последовательное включение емкостей. Соединения конденсаторов при последовательном включении

Практически на любой электронной плате применяются конденсаторы, устанавливаются они и в силовых схемах. Для того чтобы компонент мог выполнять свои функции, он должен обладать определёнными характеристиками. Иногда возникает ситуация, когда необходимого элемента нет в продаже или его цена неоправданно завышена.

Выйти из сложившегося положения можно, используя несколько элементов, а необходимые характеристики получают, применяя параллельное и последовательное соединения конденсаторов между собой.

Немного теории

Конденсатор - пассивный электронный компонент, с переменной или постоянной величиной ёмкости, которое предназначено для накопления заряда и энергии электрического поля.

При выборе этих электронных компонентов руководствуются двумя основными характеристиками:

Условное обозначение неполярного постоянного конденсатора на схеме, показано на рис. 1, а. Для полярного электронного компонента дополнительно отмечают положительный вывод - рис. 1, б.

Способы соединения конденсаторов

Составление батарей конденсаторов позволяет изменить суммарную ёмкость или рабочее напряжение. Для этого могут применяться такие способы соединения:

  • последовательное;
  • параллельное;
  • смешанное.

Последовательное соединение

Последовательное подключение конденсаторов показано на рис. 1, в. Применяют такое соединение в основном для увеличения рабочего напряжения. Дело в том, что диэлектрики каждого из элементов расположены друг за другом, поэтому при таком соединении напряжения складываются.

Суммарная ёмкость последовательно соединённых элементов можно рассчитать по формуле, которая для трёх компонентов будет иметь вид, показанный на рис. 1, е.

После преобразования в более привычную для нас форму, формула примет вид рис. 1, ж.

Если, соединённые последовательно, компоненты имеют одинаковые ёмкости, то расчёт значительно упрощается. В этом случае суммарную величину можно определить, разделив номинал одного элемента на их количество. Например, если требуется определить, какова ёмкость при последовательном соединении двух конденсаторов по 100 мкФ, то эту величину можно рассчитать, разделив 100 мкФ на два, то есть суммарная ёмкость равна 50 мкФ.

Максимально упростить расчёты последовательно соединённых компонентов , позволяет использование онлайн-калькуляторов, которые без проблем можно найти в сети.

Параллельное подключение

Параллельное подключение конденсаторов показано на рис. 1, г. При таком соединении рабочее напряжение не изменяется, а ёмкости складываются. Поэтому для получения батарей большой ёмкости, используют параллельное соединение конденсаторов. Калькулятор для расчёта суммарной ёмкости не понадобится, так как формула имеет простейший вид:

С сум = С 1 + С 2 + С 3.

Собирая батарею для запуска трёхфазных асинхронных электродвигателей, часто применяют параллельное соединение электролитических конденсаторов. Обусловлено это большой ёмкостью этого типа элементов и небольшим временем запуска электродвигателя. Такой режим работы электролитических компонентов допустим, но следует выбирать те элементы, у которых номинальное напряжение минимум в два раза превышает напряжение сети.

Смешанное включение

Смешанное подключение конденсаторов - это сочетание параллельного и последовательного соединений .

Схематически такая цепочка может выглядеть по-разному. В качестве примера рассмотрим схему, изображённую на рис. 1, д. Батарея состоит из шести элементов, из которых С1, С2, С3, соединены параллельно, а С4, С5, С6 - последовательно.

Рабочее напряжение можно определить сложением номинальных напряжений С4, С5, С6 и напряжения одного из параллельно подключённых конденсаторов. Если параллельно соединённые элементы имеют разные номинальные напряжения, то для расчёта берут меньшее из трёх.

Для определения суммарной ёмкости, схему разбивают на участки с одинаковым соединением элементов, производят расчёт для этих участков, после чего определяют общую величину.

Для нашей схемы последовательность вычислений следующая:

  1. Определяем ёмкость параллельно соединённых элементов и обозначаем её С 1-3.
  2. Рассчитываем ёмкость последовательно соединённых элементов С 4-6.
  3. На этом этапе можно начертить упрощённую эквивалентную схему, в которой вместо шести элементов изображаются два - С 1-3 и С 4-6. Эти элементы схемы соединены последовательно. Остаётся произвести расчёт такого соединения и мы получим искомую.

В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям.

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное .

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение

Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С 1 – ёмкость первого;

С 2 – ёмкость второго;

С 3 – ёмкость третьего;

С N – ёмкость N -ого конденсатора;

C общ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C 1 , C 2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте .

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C 1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор , замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.


Последовательное соединение электролитов

Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены:)

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Параллельное соединение конденсаторов – это батарея, где конденсаторы находятся под одинаковым напряжением, а суммарный ток равен полной алгебраической сумме токов указанных элементов.

Основные тезисы

При параллельном включении конденсаторов их ёмкости складываются, позволяя быстро вычислить результат. Рабочее напряжение конденсаторов одинаковое, а заряды складываются воедино. Это следует из формулы, выведенной Вольтой в XVIII веке:

C = q/U, тогда C1 + C2 + … = q1 + q2 + …/U.

Параллельное включение конденсаторов превращается в единственный конденсатор большой ёмкости.

Зачем включать конденсаторы параллельно

  • В радиоприёмниках подстройка под частоту волны выполняется коммутацией блоков конденсаторов, обеспечивая ввод резонансного контура в резонанс.
  • В фильтрах мощных блоков питания за рабочий цикл предстоит запасать массу энергии. Строить его на индуктивностях экономически нецелесообразно. Применяют параллельный набор из больших электролитических конденсаторов.
  • Параллельное включение конденсаторов встречается в измерительных схемах. Эталоны ответвляют на себя часть тока, по величине оценивается номинал — размер ёмкости исследуемого конденсатора.
  • Параллельно периодически устанавливаются компенсаторы реактивной мощности. Это устройства, блокирующие выход лишней энергии в питающую сеть. Что предотвращает образование помех, перегрузку генераторов, трансформаторов и избыточный нагрев проводки.

Реактивная мощность сети

Когда работает асинхронный двигатель, происходит расхождение тока и напряжения по фазе. Это отмечается по причине наличия обмотки, показывающей индуктивное сопротивление. Как результат, часть мощности отражается обратно в цепь. Эффект возможно устранить, если индуктивное сопротивление компенсировать ёмкостным. Иной способ – использование синхронных двигателей, эффективен при напряжениях 6 — 10 кВ.

По возможности предприятия должно потреблять всю произведённую собственную реактивную мощность. Но синхронные двигатели не всегда подходят условиям технологических процессов. Тогда ставят конденсаторные установки. Их реактивное сопротивление предвидится равным индуктивностям двигателей. Конечно, в идеале, ведь на производстве условия постоянно меняются и сложно отыскать золотую середину.

Если использовать параллельное соединение конденсаторов и коммутировать при помощи реле должным образом, задача просто решается. Отдельные предприятия за отражённую реактивную мощность тоже платят. При неиспользовании предвидятся экономические потери. Поставщиков энергии можно понять: реактивная мощность забивает линию ЛЭП, нагружает трансформаторы и тогда оборудование не способно выдавать полную нагрузку. Если каждое предприятие станет загружать канал лишним током, экономическое положение энергетиков немедленно пошатнётся.

Реле реактивной мощности массово распространены и помогут определить, какую часть конденсаторов включить в работу. Пример графика расчёта затрат приведён на рисунке. Имеется оптимальная точка, перешагивать которую экономически нецелесообразно. Но допускается сделать из-за иных мотивов.

Схема соединения компенсирующих установок

В трёхфазных сетях компенсирующие конденсаторы ставят тройками по двум общеизвестным схемам:

  1. Звезда.
  2. Треугольник.

Реактивная мощность в этих случаях вычисляется по формулам, представленным на рисунке. Через греческую омегу обозначена круговая частота сети (2 х Пи х 50 Гц). Из соотношений получается, что схема включения конденсаторов треугольником выгоднее: мощность выросла в 3 раза. Объяснение — звезда использует фазное напряжение, в 1,73 раза меньше линейного. Компенсируемая реактивная мощность зависит от квадрата этого параметра.

Из этих соображений трёхфазные конденсаторы всегда изготавливаются треугольником, а под звезду нужно выпросить индивидуальный заказ (три однофазных конденсатора). Есть оборотная сторона медали: на вольтаж 1,05; 3,15; 6,3; 10,5 кВ все конденсаторы однофазные. Допустимо соединять, как заблагорассудится. У звезды, к примеру, меньше рабочее напряжение, значит, каждый конденсатор в отдельности выйдет дешевле. Обе схемы нельзя отнести к параллельным включениям, подобные тройки, впрочем, объединяются в:

  • группы;
  • секции;
  • установки.

И внутри объединений однофазные конденсаторы могут включаться последовательно и параллельно, а трёхфазные – исключительно параллельно. Рекомендуется номиналы всех отдельных элементов выбирать одинаковы. Это упрощает расчёт, уравнивает нагрузку по частям электрической схемы. Известны установки, где присутствует смешанное соединение по каждой фазе. Образуются параллельные ветви .

Установки выполняют однофазными или трёхфазными. В сетях с напряжением 380 В всегда применяется параллельное соединение конденсаторов. Исключением признаётся случай использования оборудования с одной фазой на 220 В (фазное) и 380 В (линейное). Тогда под прибор ставится индивидуальная установка (или группа), компенсирующая реактивную мощность. В осветительных сетях конденсаторы по большей части ставят уже после выключателя по очевидным причинам. В прочих случаях – в зависимости от особенностей функционирования объекта.

Для напряжений 3, 6 и 10 кВ однофазные конденсаторы включаются обычной или двойной звездой (см. рис.). Один вывод бывает заземлен (глухозаземленная нейтраль). По этой причине допускается использование однофазных конденсаторов, включая с единственным изолированным выводом. В последнем случае нужно убедиться, что нулевой проводник выходит на корпус изделия.

Главный выключатель ставится в определённой секции защищаемого оборудования (территориально) и управляет цепью компенсации в общем, задействует или убирает дополнительное реактивное сопротивление. Если в конкретном секторе технологическое оборудование простаивает, главный выключатель разорвёт цепь компенсации. Конденсаторные установки обычно стоят в выделенном помещении вместе, электрически соединены параллельно. Перед каждой стоит выключатель цепи релейной регуляции для повышения или уменьшения общей ёмкости компенсаторов.

В зависимости от оборудования, используемого предприятием, объем реактивной мощности обусловливает помощь конденсаторных установок, гибко подстраиваемых под имеющиеся нужды. В итоге:

  1. Секции оборудования включены параллельно. Это легко понять, если представить бытовые приборы, питаемые одним удлинителем. Все включены параллельно. Но установлены, к примеру, в разных цехах, секторах и пр. Встречаются случаи, когда одна крупная энергетическая установка (допустим, генератор ГЭС) делится на сравнительно независимые секции.
  2. Конденсаторные установки включены параллельно, но, как правило, в одном месте, чтобы удавалось автоматически или вручную легко регулировать общую ёмкость посредством коммутации выключателей облегчённого типа. Один конденсатор может работать для компенсации реактивной мощности любой из секций либо сразу обеих.

Особенности конденсаторной защиты

Главные выключатели, как правило, используются при авариях и вырубают сразу целую секцию оборудования. Конденсаторные установки набираются в секции параллельным включением. Тогда главный выключатель сразу вырубит подобную «батарею». А прочие секции конденсаторных установок останутся в действии. Важно понять, что защитное оборудование, как и защищаемое, удаётся группировать разными методами. В зависимости от удобства и экономической обоснованности.

Облегчённые выключатели применяются, как правило, в цепях регуляции. Управляются через реле и повышают или понижают общую ёмкость конденсаторных установок. В качестве главного выключателя выбирается вакуумный или элегазовый.

Особенностью цепей выше 10 кВ считается использование однофазных конденсаторов, собираемых по схеме звезды или треугольника, в каждой ветви которых стоит параллельно-последовательная группа ёмкостей (см. рис.). При наличии изделий с высоким рабочим напряжением допустимо делать наоборот, применять последовательно-параллельно включение. Тогда рабочие напряжения конденсаторов выбираются так, чтобы количество групп, включенных друг за другом оказалось минимальным. Напряжение на каждом из элементов, естественно, увеличивается. Для справки: .

Если сделать все по описанному распорядку, при выходе из строя любого элемента цепи компенсации реактивной мощности прочие продолжат работать в относительно щадящем режиме. Разумеется, параметры цепи нужно контролировать, а эксплуатирующий персонал, согласно методикам, ведёт проверку конденсаторных установок на исправность. При проектировании нужно учесть небольшую особенность:

Чем больше в цепи компенсации последовательных групп конденсаторов, тем сложнее для каждой обеспечить равномерное распределение напряжения. В частности, возможны частые перегрузки определённого сегмента.

Вдобавок сложные электрические соединения непросто проверять обслуживающему персоналу. Витиеватая схема плохо поддаётся монтажу, часты ошибки. Идеальным считается параллельное соединение конденсаторных блоков по каждой фазе. Тогда и монтировать легко, и методика проверки упрощается максимально.

Разряд конденсаторов

Включенные параллельно конденсаторы обладают большой ёмкостью, при прекращении работы на них остаётся заряд. Это возможно прочувствовать, если коснуться штекера только что выключенной старенькой дрели. В новых моделях фильтр устроен так, что цепь разряжается через резистор, и подобного не наблюдается.

Для снижения напряжения допустимо использовать и индуктивности, включенные параллельно конденсаторам. В этом случае сопротивление заземления переменному току весьма велико, а для постоянного — несложно преодолеть этот участок. В период работы оборудования ток здесь мал, потери невелики. После останова технологической линии заряд понемногу сливается через высокоомный резистор или индуктивность. Разумеется, не запрещено поставить в цепи заземления реле, замыкающее контакты только после выключения всех устройств. Конструкция дороже и требует автоматизации.

Процесс разряда цепи важен с точки зрения обеспечения безопасности. Представим: конденсатор, заряжённый от розетки, долго хранит разность потенциалов и представляет опасность для окружающих. В однофазных сетях с напряжением 220 В разряд выполняется через входные фильтры при условии, что корпус правильно заземлён. Сопротивление в цепи, включенной параллельно конденсаторам, определяется по формуле, представленной ниже.

Под Q подразумевается реактивная мощность установки в варах (ВАР), а Uф – фазное напряжение. Легко показать, что формула дана из расчёта времени разряда: Q зависит линейно от ёмкости, будучи перенесена в левую часть формулы, даст постоянную времени RC. За три таких периода батарея разряжается на 97%. Исходя из указанных условий можно найти и параметры индуктивности. А лучше – последовательно с нею включить резистор, как часто и делается в реальных схемах.

Details 03 July 2017

Господа, как-то раз чудесным летним деньком я взял ноутбук и вышел из дома на дачный участок. Там, усевшись в кресле-качалке в тени яблонь, я и решил написать данную статью. Ветерок шумел в ветвях деревьев, раскачивая их из стороны в сторону, и в воздухе была та самая атмосфера, благоприятствующая течению мыслей, которая так порой необходима…

Впрочем, хватит лирики, пора переходить непосредственно к существу обозначенного в заголовке статьи вопроса.

Итак, параллельное соединение конденсаторов… Что вообще такое параллельное соединение? Те, кто читал мои прошлые статьи, безусловно, помнят значение этого определения. Оно нам встречалось, когда мы говорили про параллельное соединение резисторов . В случае конденсаторов определение будет иметь абсолютно такой же вид. Итак, параллельное соединение конденсаторов - это такое соединение, когда одни концы всех конденсаторов соединены в один узел, а другие - в другой.

Конечно, лучше один раз увидеть, чем сто раз услышать, поэтому на рисунке 1 я привел изображение трех конденсаторов, которые соединены параллельно. Пусть емкость первого равна С1, второго - С2, а третьего - С3.

Рисунок 1 - Параллельное соединение конденсаторов

В данной статье мы разберем, по каким законам изменяются токи , напряжения и сопротивления переменному току при параллельном соединении конденсаторов, а также какова будет суммарная емкость такой конструкции. Ну и, само собой, поговорим, зачем вообще такое соединение может быть нужно.

Предлагаю начать с напряжения, ибо с ним здесь все предельно ясно. Господа, должно быть совершенно очевидно, что при параллельном соединении конденсаторов напряжения на них равны между собой. То есть напряжение на первом конденсаторе точно такое же, как на втором и на третьем

Почему, собственно, это так? Да очень просто! Напряжение на конденсаторе считается как разность потенциалов между двумя ножками конденсатора. А при параллельном соединении «левые» ножки всех конденсаторов сходятся в один узел, а «правые» - в другой. Таким образом, «левые» ножки всех конденсаторов имеют один потенциал, а «правые» другой. То есть разность потенциалов между «левой» и «правой» ногами будет одинаковая для любого конденсатора, а это как раз и значит, что на всех конденсаторах одно и то же напряжение. Чуть более строгий вывод этого утверждения вы можете глянуть вот в этой статье . В ней мы приводили его для параллельного соединения резисторов, но и здесь он будет звучать абсолютно так же.

Итак, мы выяснили, что напряжение на всех параллельно соединенных конденсаторах одно и то же. Это, кстати, верно для любого вида напряжения - как для постоянного, так и для переменного. Вы можете присоединить к трем параллельно включенным конденсаторам батарейку на 1,5 В . И на всех них будет постоянные 1,5 В . А можете присоединить к ним генератор синусоидального напряжения с частотой 50 Гц и амплитудой 310 В . И на каждом конденсатор будет синусоидальное напряжение с частотой 50 Гц и амплитудой 310 В . Важно помнить, что у параллельно соединенных конденсаторов одной и той же будет не только амплитуда, но и частота, и фаза напряжения .

И если с напряжением все вот так вот просто, то с током ситуация посложнее. Когда мы говорим про ток через конденсатор, то обычно имеем ввиду переменный ток . Вы ведь помните, что постоянные токи через конденсаторы не текут? Конденсатор для постоянного тока - это все равно, что разрыв цепи (на деле есть некоторое сопротивление утечки конденсатора, но им обычно пренебрегают, потому что оно очень велико). Переменные же токи вполне себе текут через конденсаторы, причем могут иметь при этом весьма и весьма большие амплитуды. Очевидно, что эти переменные токи вызываются некоторым переменными напряжениями, приложенными к конденсаторам. Итак, пусть у нас по-прежнему имеется три параллельно соединенных конденсатора с емкостями С1, С2 и С3. К ним приложено некоторое переменное напряжение с комплексной амплитудой . Из-за этого приложенного напряжения через конденсаторы будут течь некоторые переменные токи с комплексными амплитудами . Для наглядности давайте нарисуем картинку, на которой будут все фигурировать все эти величины. Она представлена на рисунке 2.

Рисунок 2 - Ищем токи через конденсаторы

Прежде всего надо понять, как связаны токи с суммарным током источника. А связаны они, господа, все по тому же самому первому закону Кирхгофа , с которым мы уже знакомились в отдельной статье. Да, тогда мы его рассматривали в контексте постоянного тока. Но, оказывается, первый закон Кирхгофа остается верным и в случае переменного тока! Просто в этом случае надо использовать комплексные амплитуды токов. Итак, суммарный ток трех параллельно соединенных конденсаторов связан с общим током вот так

То есть общий ток фактически просто разделяется между тремя конденсаторами, тогда как суммарная его величина остается той же самой . Важно помнить еще одну важную вещь - частота тока и его фаза будет одна и та же для всех трех конденсаторов. Точно такая же частота и фаза будет и у суммарного тока I . Таким образом, различаться они будут только лишь амплитудой, которая будет у каждого конденсатора своя. Как же найти эти самые амплитуды токов? Очень просто! В статье про сопротивление конденсатора мы связали между собой ток через конденсатор и напряжение на конденсаторе через сопротивление конденсатора. Сопротивление конденсатора мы легко можем посчитать, зная его емкость и частоту протекающего через него тока (помним, что для разной частоты конденсатор имеет разное сопротивление) по общей формуле:

Воспользовавшись этой замечательной формулой, мы можем найти сопротивление каждого конденсаторы:

Воспользовавшись этой формулой, мы легко находим ток через каждый из трех параллельно соединенных конденсаторов:

Общий ток в цепи, который втекает в узел А и вытекает потом из узла В, очевидно, равен

На всякий случай напомню еще раз, что это получилось на основании первого закона Кирхгофа . Заметьте, господа, один важный факт - чем больше емкость конденсатора, тем меньше его сопротивление и тем большая часть тока будет течь через него.

Давайте представим общий ток через три параллельно соединенных конденсатора как отношение приложенного к ним напряжения и некоторого эквивалентного общего сопротивления Z c∑ (которое нам пока неизвестно, но которое мы потом найдем) трех параллельно включенных конденсаторов:

Сокращая левую и правую части на U, получаем

Таким образом, получаем важный вывод: при параллельном соединении конденсаторов обратное эквивалентное сопротивление равно сумме обратных сопротивлений отдельных конденсаторов. Если вы помните, то точно такой же вывод мы получили и при параллельном соединении резисторов .

А что происходит с емкостью? Какая будет общая емкость у системы из трех параллельно соединенных конденсаторов? Можно ли это как-то найти? Безусловно, можно! И, более того, мы почти это сделали. Давайте в нашу последнюю формулу подставим расшифровку сопротивлений конденсаторов. Тогда у нас получится примерна такая запись

После элементарных математических преобразований, доступных даже пятикласснику, получаем, что

Это наш очередной чрезвычайной важный вывод: суммарная емкость системы из нескольких параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов.

Итак, мы рассмотрели основные моменты, касающиеся параллельного соединения конденсаторов. Давайте в сжатой форме резюмируем их все:

  • Напряжение на всех трех параллельно соединенных конденсаторах одно и то же (по амплитуде, фазе и частоте);
  • Амплитуда тока в цепи, содержащей параллельно соединенные конденсаторы, равна сумме амплитуд токов через отдельные конденсаторы. Чем больше емкость конденсатора, тем больше амплитуда тока через него. Фазы и частоты токов на всех конденсаторов одни и те же;
  • При параллельном соединении конденсаторов обратное эквивалентное сопротивление равно сумме обратных сопротивлений отдельных конденсаторов;
  • Суммарная емкость параллельно соединенных конденсаторов равна сумме емкостей всех конденсаторов.

Господа, если вы запомните и поймете эти четыре пункта, то, можно сказать, статью я писал не зря.

А теперь давайте для закрепления материала попробуем решить какую-нибудь задачу на параллельное соединение конденсаторов. Потому что, весьма вероятно, если вы ничего не слышали раньше про параллельное соединение конденсаторов, то все написанное выше может восприниматься просто как набор абстрактных буковок, которые не очень понятно как применять на практике. Поэтому, на мой взгляд, наличие приближенных к практике задач является неотъемлемой частью образовательного процесса. Итак, задача.

Допустим, у нас есть три параллельно соединенных конденсаторов с емкостями С1=1 мкФ , С2=4,7 мкФ и С3=22 мк Ф. К ним приложено переменное синусоидальное напряжение с амплитудой U max =50 В и частотой f=1 кГц . Требуется определить

а) напряжение на каждом из конденсаторов;

б) ток через каждый конденсатор и суммарный ток в цепи;

в) сопротивление каждого конденсатора переменному току и общее сопротивление;

г) общую емкость такой системы.

Начнем с напряжения. Мы помним, что на всех конденсаторах напряжение у нас одно и то же - то есть синусоидальное с частотой f=1 кГц и амплитудой U max =50 В. Предположим, что оно изменяется по синусоидальному закону. Тогда можно записать следующее

Вот мы и ответили на первый вопрос задачи. Осциллограмма напряжения на наших конденсаторах приведена на рисунке 3.



Рисунок 3 - Осциллограмма напряжения на конденсаторах

Да, мы видим, что сопротивления у нас получились не только комплексные, но еще и со знаком минус. Однако вас это не должно смущать, господа. Это значит только то, что ток через конденсатор и напряжение на конденсаторе сдвинуты по фазе друг относительно друга, причем ток опережает напряжение . Да, мнимая единичка показывает тут только фазовый сдвиг и ничего больше. Для расчета амплитуды тока нам потребуется только модуль этого комплексного числа. Про все это говорилось уже в прошлых двух статьях (раз и два ). Возможно, это не совсем очевидно и требуется какая-либо наглядная иллюстрация этого дела. Это можно сделать на тригонометрическом круге и, надеюсь, немного позже, я подготовлю отдельную статью, посвященную этому, либо вы можете сами придумать, как это показать наглядно, пользуясь данными из моей статьи про комплексные числа в электротехнике.
Теперь ничего не мешает найти обратное общее сопротивление:

Находим общее сопротивление трех наших параллельно соединенных конденсаторов

Следует помнить, что это сопротивление верно исключительно для частоты 1 кГц . Для других частот значение сопротивления, очевидно, будет другое.

Следующим шагом рассчитаем амплитуды токов через каждый конденсатор. В расчете будем использовать модули сопротивлений (отбросим мнимую единицу), помня при этом, что сдвиг фаз между током и напряжением будет 90 градусов (то есть, если напряжение у нас меняется по закону синуса, то ток будет меняться по закону косинуса). Можно вести расчет и с комплексными числами, используя комплексные амплитуды тока и напряжения, но, на мой взгляд, в данной задаче проще просто учесть потом фазовые соотношения. Итак, амплитуды токов равны

Суммарная амплитуда тока в цепи, очевидно, равна

Мы можем себе позволить вот так вот складывать амлитуды сигналов, потому что у всех токов через параллельно соединенные конденсаторы у нас одна и та же частота и фаза. В случае невыполнения этого требования вот так вот просто взять и сложить нельзя.

Теперь, помня про фазовые соотношения, нам никто не мешает записать законы изменения тока через каждый конденсатор

И суммарный ток в цепи

Осциллограммы токов через конденсаторы приведены на рисунке 4.

Рисунок 4 - Осциллограммы токов через конденсаторы

Ну и в завершении задачи самое простое - найдем общую емкость системы как сумму емкостей:

Кстати, эту емкость вполне можно использовать для расчета суммарного сопротивления трех параллельно соединенных конденсаторов. В качестве упражнения читателю предлагается самому в этом убедиться .

В заключение хотелось бы выяснить один, возможно, самый важный вопрос: а зачем вообще нужно на практике соединять конденсаторы параллельно ? Что это дает? Какие возможности нам открывает? Ниже по пунктам я обозначил основные моменты:

Ну а мы на этом заканчиваем, господа. Спасибо за внимание и до новых встреч!

Вступайте в нашу

Электрические конденсаторы широко используются в радиоэлектронной аппаратуре. Они лидируют по количеству применения в блоках аппаратуры и по некоторым критериям уступают лишь резисторам. Конденсаторы присутствуют в любом электронном устройстве и их потребность в современной электронике постоянно растет. Наряду с имеющейся широкой номенклатурой, продолжаются разработки новых типов, которые имеют улучшенные электрические и эксплуатационные характеристики.

Что такое конденсатор?

Конденсатором называется элемент электрической цепи, который состоит из проводящих электродов, изолированных друг от друга диэлектриком.

Конденсаторы отличают по емкости, а именно по отношению заряда к разности потенциалов, который передается этим зарядом.

В международной системе СИ за единицу емкости принимают емкость конденсатора с возрастанием потенциала на один вольт при сообщении заряда в один кулон. Эта единица называется фарадой. Она слишком велика для применения в практических целях. Поэтому принято использовать более мелкие единицы измерения, такие как пикофарад (пФ), нанофарад (нФ) и микрофарад (мкФ).

Группы по виду диэлектрика

Диэлектрики применяют для изоляции пластин друг от друга. Они изготавливаются из органических и неорганических материалов. Нередко, в качестве диэлектрика, применяют оксидные пленки металлов.

По виду диэлектрика элементы делят на группы:

  • органические;
  • неорганические;
  • газообразные;
  • оксидные.

Элементы с органическим диэлектриком изготавливают путем намотки тонких лент специальной бумаги или пленки. Также применяют комбинированный диэлектрик с фольговыми или металлизированными электродами. Такие элементы могут быть как высоковольтные (свыше 1600 В), так и низковольтные (до 1600 В).

В изделиях с неорганическим диэлектриком используют керамику, слюду, стекло и стеклокерамику, стеклоэмаль. Их обкладки состоят из тонкого слоя металла, который нанесен на диэлектрик путем металлизации. Бывают высоковольтные, низковольтные и помехоподавляющие.

В качестве газообразного диэлектрика используют сжатый газ (фреон, азот, элегаз), воздух или вакуум. По характеру изменения емкости и выполняемой функции такие элементы бывают постоянными и переменными.

Наибольшее распространение получили элементы с вакуумным диэлектриком. Они имеют большие удельные емкости (по сравнению с газообразным диэлектриком) и более высокую электрическую прочность. Элементы с вакуумным диэлектриком обладают стабильностью параметров при температурных изменениях окружающей среды.

Область применения – передающие устройства, работающие на коротких, средних и длинных волнах диапазонов с частотой до 30-80 МГц.

Элементы с оксидным диэлектриком бывают:

  • общего назначения;
  • пусковые;
  • импульсные;
  • неполярные;
  • высокочастотные;
  • помехоподавляющие.

Диэлектриком является оксидный слой, который наносится на анод электрохимическим путем.

Условные обозначения

Элементы обозначаются по сокращенной и полной системе.

При сокращенной системе наносятся буквы и цифры , где буквой обозначается подкласс, цифрой - группа в зависимости от применяемого диэлектрика. Третий элемент указывает регистрационный номер типа изделия.

При полном условном обозначении указываются параметры и характеристики в следующей последовательности:

  • условное обозначение конструктивного исполнения изделия;
  • номинальное напряжение изделия;
  • номинальная емкость изделия;
  • допустимое отклонение емкости;
  • температурная стабильность емкости изделия;
  • номинальная реактивная мощность изделия.

Подбор номинала

Конденсаторы могут соединяться друг с другом различными способами.

На практике нередко возникают ситуации, когда при монтаже схемы или замене неисправного элемента, приходится использовать ограниченное количество радиодеталей. Не всегда удается подобрать элементы нужного номинала.

В этом случае приходится применять последовательное и параллельное соединение конденсаторов.

При параллельной схеме соединения, их суммарная величина составит сумму емкостей отдельных элементов. При этой схеме подключения все обкладки элементов соединяются по группам. Один из выводов каждого элемента соединяется в одну группу, а другой вывод в другую группу.

При этом напряжение на всех обкладках будет одинаково , потому что все группы подключены к одному источнику питания. Фактически получается одна емкость, суммарной величины всех емкостей в данной цепи.

Чтобы получить большую емкость, применяют параллельное соединение конденсатора.

Например, необходимо подключить двигатель с тремя фазами к однофазной сети 220 В. Для рабочего режима двигателя необходима емкость величиной в 135 мкФ. Ее найти очень трудно, но можно получить, применив параллельное соединение элементов на 5, 30 и 100 мкФ. В результате сложения получаем необходимую единицу в 135 мкФ.

Последовательно соединение конденсаторов

Последовательное соединение конденсаторов используют, если необходимо получить емкость меньшую емкости элемента. Такие элементы выдерживают более высокие напряжения. При последовательном соединении конденсаторов, обратная величина общей емкости равняется сумме обратных величин отдельных элементов. Для получения требуемой величины нужны определенные конденсаторы, последовательное соединение которых даст необходимую величину.

При последовательном соединении конденсаторов каждый его вывод соединяется с одним выводом другого элемента. Получается некая цепочка из последовательно соединенных конденсаторов, где крайние выводы подключаются к источнику питания.

Емкость общей батареи всегда меньше минимальной емкости элементов, входящих в нее. То есть, половина от емкости каждой из этих емкостей.

При последовательном соединении конденсаторов увеличивается расстояние между обкладками элементов.

Например, при последовательном соединении двух элементов напряжением 200 В можно смело включать в схему напряжением до 1000 В.

Данный метод соединения используется гораздо реже , потому что емкости такой величины и рабочего напряжения можно приобрести в магазинах.

Таким образом, зная принцип общего расчета параллельного и последовательного соединения конденсаторов, всегда можно выйти из затруднительного положения, имея под рукой ограниченное количество номиналов.