Головка для 3d принтера своими руками. Загибающиеся или неровные углы и края

Экструдер – это печатающая головка или, говоря простым языком, устройство для выдавливания расплавленного филамента. Понятие используется преимущественно в FDM‑принтерах, работающих с термопластическими материалами: ABS, PLA и другими видами пластика. Это ключевой элемент 3d принтера, от качества которого зависит точность и чистота печати.

Устройство условно делится на две части: hot end – нагревательный элемент с соплом, и cold end – часть экструдера, отвечающая за подачу пластика в сопло. Устройство подачи состоит из шагового двигателя (модели с несколькими обмотками с дискретными (шаговыми) перемещениями ротора) и шестереночной системы для непосредственной подачи нити в хот енд. Прицениться к комплектующим можно в каталоге http://makerplus.ru/category/extruder-3d-printer .

Типы экстудеров для 3d принтера

  • Прямой экструдер. Элементы подачи присоединены непосредственно к корпусу сопла. Пластиковая нить извлекается из катушки с помощь шестерни и прижимного ролика, и пропускается сквозь спираль нагрева непосредственно в сопло. Для предотвращения преждевременного нагрева нити между «горячим» и «холодным» концом находится теплоизолирующая вставка. Преимущества прямых экструдеров: более точная подача пластика, облегченный ретракт (обратная подача нити при холостом ходе). Недостатки: большая масса, что отражается на точности и скорости печати.
  • Боуден-экструдер. В отличие от прямого экструдера, hot end и cold end разнесены в пространстве и соединены боуден-трубкой (обычно из тефлона), по которой нить подается в сопло. Горячий конец закреплен на подвижной каретке, холодный – на раме принтера. Такой экструдер для 3d принтера имеет важное преимущество – низкую массу, благодаря чему его можно использовать в дельта-принтерах, чрезвычайно чувствительных к позиционированию. Минус такой модели – сложности с подачей пластика в обратном направлении при простое механизма.

Также существуют варианты с двойным и даже тройным соплом. Такие устройства используются для печати разноцветных моделей или несколькими видами пластика. В целом эта технология достаточно сырая, поэтому специалисты предпочитают использовать одиночные экструдеры.

Что нужно знать при выборе экструдера

Важнейший параметр – это диаметр сопла. Чем он меньше, тем точнее печать и тем больше усилий требуется для проталкивания нити. Стандартные диаметры – это 0,2-0,3 мм и 0,4-0,5 мм. Сила подачи контролируется регулировочным винтом – если его закрутить сильно, то энергия двигателя будет тратиться на преодоление сил трения, если слабо – шестерня будет проскальзывать и оставлять вмятины на прутке.

Сила трения также возникает в промежутке между механизмом подачи и соплом. В этом месте находится теплоизолирующая вставка – как правило, это металлическая втулка с фторопластовым сердечником. Дешевые модели могут не иметь фторопластового сердечника, что негативно отражается на работе экструдера.

Еще один ключевой момент – выбор шагового двигателя. У обычных моторов параметр микрошага равен 200, что явно недостаточно для печати мелких деталей. Оптимальный вариант в таком случае – двигатель с микрошагом 400 единиц.

Какой же экструдер для 3d-принтера выбрать?

Все зависит от контекста. Для моделей с декартовой системой координат лучше использовать прямой экструдер, для дельта-принтеров – с боуден-трубкой. Загляните в магазин http://makerplus.ru/ - там есть все необходимое для принтеров любого типа.

Что касается выбора производителя, то для начала можно приобрести универсальный экструдер E3D – на рынке доступны как английские оригиналы, так и китайские и российские аналоги неплохого качества. В дальнейшем можно перейти на более специализированные модели (например, с керамическими соплами) или сделать собственную сборку из доступных комплектующих.

3d печать

Экструдер (от англ. слова extrude) - это печатающая головка 3D принтера. Название этой детали (перевод термина - выдавливать) полностью соответствует принципу ее действия: экструдер выдавливает специальный материал через отверстие, тем самым создавая слои объекта. Точно также работают и клеевые пистолеты, тюбики с пастой и прочие.

В большинстве случаев 3D принтер печатает объекты из термопластика ABS и PLA (филамента по научному или пластиковой нити в обиходе), поэтому стоит проанализировать такие экструдеры.

Фактически - экструдер (печатающая головка 3D принтера) - это основной механизм и именно от него и зависит качество печати на 3D принтере. Даже если вы решили собрать полностью , то на экструдер стоит разориться и купить готовый и проверенный узел.

Печатающая головка 3D принтера состоит из двух элементов: сопла и механизма подачи филамента. Сопло имеет нагревательный элемент и называется также хот-энд (hot-end). Нагреватель выглядит как прямоугольное алюминиевое устройство.

Элемент для подачи филамента (колд-энд) - это небольшой блок, состоящий из прижимного механизма и шестерни. Такой механизм должен быть соединен со специальным электромотором (через редуктор). Принцип работы 3D принтера такой: колесо вращается и высасывает филамент, переправляя его в hot-end. Там, он плавится (благодаря нагревательному элементу) и выдавливается через сопло.

Чаще всего нагревателем является нихромовая спираль или несколько резисторов. Хот-энд изготовлен из теплопроводного металла (например, алюминия). К соплу прикрепляется специальный датчик температуры, что бы следить и регулировать состояние принтера.

Хот-энд и колд-энд разделяют теплоизолирующей стенкой, сделанной из термостойкого пластика PEEK. В часть колд-энд встроены вентиляторы, чтобы не допустить перегрев. Все это делается для того, что бы филармент не начал плавиться слишком рано. Хот-энд очень нагревается, при этом колд-энд должен оставаться достаточно холодным.

Кроме обычных экструдеров (с прямой подачей), существуют также боуден-экструдеры (Bowden extruder). Они отличаются от стандартных тем, что hot-end закреплен на подвижном элементе, а cold-end находится на раме 3D принтера. Таким образом, две эти части разделены и не соприкасаются. Филамент переходит в сопло через трубку из тефлона.

Такое строение экструдера позволяет сделать его меньшим, тем самым ускорить процесс 3D печати. При этом снижается надежность подачи пластика.

Есть несколько нюансов в строении печатающей головка 3D принтера. Во-первых, важен материал, из которого изготовлен корпус и детали. Некоторые компании производят экструдеры из некачественных, дешевых элементов. Лучше всего создавать литые детали 3D принтеров, потому что они более надежны. Результаты работы машины зависят от подачи филамента. Поэтому, механизм подачи должен быть бесперебойным и надежным.

В случае если филамент запутается (т.к. он является похожим на нить), подаватель может заклинить. Если детали качественные, филамент все равно должен выйти, только с небольшими комочками.

Из-за того, что филамент недостаточно сильно сцеплен с механизмом подачи, нить может проскользнуть и создать некоторые задержки в работе 3D принтера.

При печати можно использовать капрон или нейлон. Стандартные печатающие головки (настроенные на ABS) не способны нормально ее обработать, так как она гладкая и мягкая. Подающее колесо не может достаточно сильно «схватить» филамент. Именно поэтому, при печати с помощью капрона используют ролики с зубцами или острой насечкой.

Также в строении экструдера очень важно учитывать размер сопла, потому что от него зависит готовая работа. Обычное сопло 3D принтера имеют размер 0,4-0,5 мм. Другое сопло, меньшее по размеру (0,2-0,3 мм) делает печать объекта более детальной, чистой и четкой, потому что выдавливаемая горячая нить более тонкая.

Особое внимание стоит обратить на то, что печать с помощью маленького сопла, увеличивает время печати. Также, такое отверстие быстро забивается мелким мусором и застывшим пластиком. Подаватель должен быть более мощным, что бы протолкнуть филамент пластиковой нити через маленькое сопло.

В современных принтерах существует возможность использование сопла разного диаметра. В наше время представлены разные модели 3D принтеров с несколькими встроенными печатающими головками. Например, в модели MakerBot Replicator Dual встроены два экструдера.

Использование нескольких головок лучше всего подходит для печати двухцветных объектов, так как применяется два вида пластика. Не смотря на это, технология печати с помощью двух экструдеров изучена не досконально и имеет ряд недостатков и неточностей.

Две печатающие головки работают независимо в принтере, что позволяет печатать ими обоими параллельно. Они крепко закреплены на головке и 3D принтер использует каждую из них по мере необходимости.

Существует также новый метод одновременной 3D печати, который называется «Ditto printing». При таком способе оба экструдера печатают два идентичных объекта, работая параллельно. Однако данный метод имеет ряд ограничений: печатаются только небольшие объекты, одноцветные или же двухцветные и большие, но с определенной структурой (она должна быть повторяющейся и выполненной в виде цепи).

Также одним из недостатков принтеров с двумя печатающими головками относится их сложность и слишком большая стоимость. Установка дополнительных деталей делает экструдер большим и тяжелым, что замедляет скорость работы и позволяет создавать только маленькие объекта. В ходе печати неработающее сопло также может цепляться за готовые части объекта и портить их, оставляя потеки филамента.

У меня Anet A6 собирал его сам и полностью доволен. 3D принтер съел уже примерно 5 кг пластика без каких либо проблем и заминок. Оставляю печать на ночь и когда ухожу на работу.

Все экструдеры, печатающие пластиком из прутка, имеют одинаковый принцип действия и правила для anet A6 будут справедливы и для остальных принтеров. Нам понадобятся "нить для герметизации резьбовых соединений" (не для герметизации), термопроводящая паста и собственные

Сразу скажу, что герметизация от утечек расплавленного пластика происходит между соплом и термобарьером, больше нигде.

Если правильно собран этот узел, то никогда не будет протекать расплавленный пластик и выгорать на нагревательном элементе и сопле, а значит не будет и запаха гари.

Начнем по порядку.
Закручиваем сопло в термоблок с нагревателем не полностью, не докручиваем примерно 1 мм как на фото.

Затем вкручиваем термобарьер с уплотнительной нитью до упора в сопло

В точке соприкосновения сопла и термобарьера и происходит уплотнение.
Нить уплотнения резьбы нужна для того, чтобы во время смены сопла нагревательный блок не вращался на резьбе термобрьера, это исключает возможность отхода термопары со своего штатного места. После смены сопла его затяжку производить с усилием примерно 500 грамм на 10 см. Не стоит забывать что сопло упирается не в термоблок, а в термобарьер.

Термопроводящей пастой смазываем сам нагревательный элемент и термопару перед установкой в блок.

Это позволит вашему принтеру поддерживать заданную температуру в пределах + или - 1 градус.
А так же значительно продлит жизнь нагревательного элемента.

Надеюсь эта информация будет вам полезна. Удачи всем.

Некоторые изделия напечатанные на Anet A6

Технологии аддитивного производства развиваются семимильными темпами, а необозримые возможности этой сферы заставляют создавать и находить применение новым материалам для 3д-печати. Не так давно медицинская отрасль взялась за освоение силикона, с использованием которого связывают огромный толчок медицины в будущем. Сегодня ведется разработка надежной технологии объемной печати для работы с этим материалом. Тем временем, в Германии компания ViscoTec представила новую печатающую головку для 3d-принтера, ориентированную на работу с двухкомпонентными вязкими материалами, в частности, силиконом.

Организация главным образом специализируется на производстве систем, необходимых для дозирования, нанесения, заполнения поверхности высоковязкими жидкостями. В сферу объемной печати ViscoTec пришла в 2014-м году, когда был представлен экструдер для пастообразных материалов с собственной технологией дозирования. Ещё через год компания показала широкой общественности FDD (Fluid Dosing and Deposition – дозирование и нанесение жидкости)Starter Kit – набор инструментов для объемной печати вязкими жидкостями. И вот сейчас немецкой фирмой была представлена печатающая головкаViscoDUO-FDD 4/4.

Для изготовления 3d-моделей обычно используются термопластики и металлы, но в последнее время также начали активно применять вязкие жидкости и пасты на основе двухкомпонентного полимера. Речь идет о силиконах, эпоксидных и полиэфирных смолах, полиуретанах и акрилатах.

Печатающая головка ViscoDUO-FDD 4/4, предназначенная для работы с такими материалами, управляется с помощью встроенных в 3d-принтер программных решений. Софт обеспечивает точное соблюдение соотношения при смешивании двух материалов в процессе печати.

Уделяя особое внимание технологической обработке вязких и пастообразных материалов, ViscoTec берет во внимание принцип бесконечного поршня, на основании которого немецкой компанией были построены все решения для сферы объемной печати. Компания отмечает, что дизайн их продукта определяется порождающим производством, поскольку повторяемость является важным фактором в любой отрасли, где используется технология дозирования ViscoTec.

В основе печатающей головки ViscoDUO-FDD 4/4 лежит принцип вращающегося смещения. Благодаря специальной геометрии, точно определяется камера, в которую материал непрерывно поступает в осевом направлении. При изменении направления вращения, подача материала прекращается – таким путемудается достичь максимально чистой печати.

«Фишка» ViscoDUO-FDD 4/4 состоит в программируемом оттягивании, предназначенном для предотвращения капания материала и обеспечения высокой точности его нанесения. Двухкомпонентная печатающая головка подключается к смесительной головке через два отдельных канала. Сначала смешивание двух материалом происходит в смесительной трубке. После завершения процесса печати, смесительная трубка может быть извлечена. Печатающая головка также может заполняться в течение более длительного периода, поскольку отдельные экструдеры не позволяют материалам затвердевать.

ViscoTec приводит основные преимущества новой разработки:

  1. регулируемое и правильное соотношение смешиваемых материалов;
  2. возможность работы с широким спектром материалов;
  3. отсутствие отверждения в печатающей головке благодаря статической смесительной трубке;
  4. безопасность процесса благодаря контролю давления;
  5. различные способы отверждения материала: УФ-излучение, нагревание и т.д.

По мере того как технологии аддитивного производства продолжают фокусироваться на материалах вроде силикона, повышается точность печати и ее возможности при работе с моделями сложной геометрии.

Если Вы никогда не хотели собрать 3Д принтер с нуля, если вы купили Picaso Designer, чтобы "просто печатать"; если Ваш принтер на гарантии, если Вам добираться менее 6 часов до тех. поддержки, то НИКОГДА не разбирайте печатающую головку - идите в тех. поддержку. Остальным - посвящается...

Вот из-за этого кренделька, мои очередные 3-х часовые мучения.

Как разбирать печатающую головку принтера Picaso Designer я описывать не буду. А вот как собрать - попытаюсь вкратце озвучить (10 шагов). Фото не показывают позиций рук и расстановку пальцев во время сборки, может, кто-нибудь снимет видео на эту тему...

Приступим:
Комплектность проверять не будем: предположим, что вблизи нет ни детей, ни котов - мы в вакууме, а все винтики и планочки аккуратно лежат в разных неглубоких баночках. Рядом есть подходящий шестигранник и короткая крестовая отвертка.

Шаг I: собираем подающий механизм. Просто возвращаем на место колесо поз. 1, прижимаем его шпилькой поз. 2, прижимаем шпильку винтом поз. 3. Готово:)

Шаг II: ставим печатающую головку в принтер. Собираем круглые рельсы поз. 4 в кучу, ставим на них печатающую головку в нужном направлении. Проверяем, что все мелкие детали (особенно 4 мелкие металлические планочки в виде букв т поз. 5) на месте и под рукой. На фото серьёзная ошибка: верхняя крышка поз. 6 не откручена и не снята: надо снять. Иначе потом провод дополнительного охлаждения поз. 7 (на фото в шаге III) будет сбивать планку поз. 8. Это был последний простой шаг.

Шаг III: правая стенка поз. 10. Всё очевидно: просунуть ленты поз. 9 в отверстие в правой стенке поз. 10, закрепить ленты поз. 9 на печатающей головке с помощью двух планочек поз. 5.

Операция начинается в следующей позиции:
в левой руке
- две ленты плотно прижатые друг к другу большим и указательным пальцами в ухе печатающей головке (ухо - поз. 11);
- круглые рельсы поз. 4, придерживаемые другими пальцами и ладонью;
в правой руке:
- правая стенка поз. 10 (большим пальцем и мизинцем);
- придерживаемая ногтем указательного пальца планочка поз. 5.1, поз. 5.1 уже в отверстии правой стенки поз. 10;
- придерживаемая ногтем среднего пальца планочка поз. 5.2, поз. 5.2 уже в отверстии правой стенки поз. 10, с другой стороны ленты поз. 9.

Операция заключается в замещении пальцев левой руки на ухе поз. 11 планочками поз. 5. Сближением правой и левой рук. Автоматически в свой паз на правой крышке должен попасть выступ основания печатающей головки поз. 12. Вся конструкция должна остаться на рельсах поз. 4.

Для вставания в исходную позицию Вам может помогать другой человек, если
- он не идиот,
- он не бесит Вас, когда ведет себя как идиот;
- вместо пальцев и рук у него пинцеты, т.к. при не снятой крышке в принтере мало место (снять крышку - это 7 винтов-звездочек бОльшего размера, можно справиться прилагающимися к принтеру отвертками).
- человек не лезет своей головой все посмотреть, а слепо попадает своими пинцетами, куда нужно.
Если такого человека нет: терпение, ловкость рук и Бог Вам в помощь.

Шаг IV: вставить планку поз. 8 для крепления колеса поз. 1 в правую стенку поз. 10. Надо одеть планку поз. 8 на ось колеса поз. 1, надвинуть планку поз. 8 на ось соседнего колеса, и рискуя разрушить шаг III, вставить поз. 8 в паз правой стенки поз. 10.

Конечно, можно этот шаг включить в шаг III: просто безымянным пальцем левой рукой придерживать планку поз. 8. Если Вам помогает человек с пинцетами или если у Вас длинные пальцы пианиста.

Шаг V: задняя стенка поз. 13. Попадаем выступом задней стенки с вентилятором поз. 13 в паз правой стенки поз. 10. Все просто. Просто не сломайте шаг IV и шаг III.

Теперь в Вашей правой руке придерживаются
- правая стенка поз. 10, планочки поз. 5 все еще на месте и не вывалились: их надо контролировать;
- планка поз. 8 не падает с легким звоном на основание печатающей головки поз. 12;
- задняя стенка поз. 13;
- собственно сама печатная головка на круглых рельсах поз. 4.

Шаг VI: первый раз нам нужна отвертка (крестовая). Может быть, второй раз: в шаге I тоже была. Находим планку поз. 14, вставляем её в правую стенку поз. 10, чуть-чуть крепим винтом поз. 15 к круглой рельсе поз. 4.1. Теперь в правой руке есть еще и эта планка:)

На фото кажется, что этот шаг - первый. Чушь! Все равно планка 14 будет отваливаться каждый раз, несмотря на винт 15.

Шаг VII: левая стенка . Аналогично шагу III, но зеркально. Дополнительные сложности:
- ленту с левой стороны фиг натянешь на левое ухо поз. 16 (поз. 16 обозначена на фото в шаге V);
- конструкция в правой руке норовит распасться, ведь еще и ленту в левом ухе поз. 16 надо придерживать;

Надо попасть в 5 пазов левой стенки (в 6, на самом деле, но паз для выключателя вентилятора большой) всеми разрозненными деталями в Вашей правой руке. Одновременно. И чтобы планочки поз. 17 не вывалились, а закрепили ленту.

Та-дам!!!
Перед началом шага, проверьте провода: они должны быть все в свободном состоянии. Особенно мешает болтающийся вентилятор поз. 7. На данном шаге лучше перекинуть его назад через заднюю стенку с вентилятором поз. 14 (на фото он уже перекинут вперед). И провод нагрева тоже проверьте, чтобы он был по двигателю подачи пластика поз. 18 распределен.

Шаг VIII: укладываем провода и закрываем верхнюю крышку поз. 6 (поз. 6 обозначена на фото в шаге II). Если все хорошо, и печатающая головка выглядит идеально без щелей и зазоров, смотрим в отверстие подачи пластика: там не должно оказаться провода поз. 7! Косичка проводов поз. 19 должна быть справа от шпильки поз. 2 (см. фото шага VII - не нём не правильно: провод должен быть правее шпильки!!!). Завинчиваем все винтики. 15 штук. Вместе с вентилятором поз. 7. Не знаю в каком порядке.

Шаг IX: перед включением принтера смотрим на ленты. Они должны быть натянуты. Иначе снимаем крышку принтера, еще одну крышку и натягиваем слетевшие ленты. Фото без крышек нет: забыла сфоткать.

Шаг X: включаем принтер. Надеюсь, все получилось.

Теперь самое время вспомнить:
- как можно было провести эти 3-4 часа с бОльшей пользой: поспать, поработать, сходить в ресторан/театр;
- какой чудесный маникюр был 3-4 часа назад;
- сколько нервов и усилий пришлось приложить для создания вакуума вокруг принтера;
- зачем надо было называть идиотом человека, искренне желавшего помочь, и как с ним теперь мириться;
- как можно было всего этого избежать, если просто сдать принтер в ремонт (пусть не на 3-6 часов, а на неделю);
- как мило улыбаются менеджеры в Top3DShop, когда отдают тебе работающий, чистенький, смазанный, откалиброванный принтер, и он работает, он стопудово работает!!!

Надеюсь, у Вас принтер тоже работает:), удачи!!!