Как проверить импульс на открытие тиристоров. Методы проверки тиристоров на исправность

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Подробнее от том, как работают диоды и тиристоры читайте здесь: ,

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.

Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки

При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.

Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

Тиристор - это полупроводниковый элемент, выполненный на базе монокристалла полупроводника, имеющий три или более p-n-переходов и два устойчивых состояния: состояние низкой проводимости, которое называют закрытым; и состояние высокой проводимости - открытое.

Начинающий радиолюбитель может задать вопрос: «Как проводится проверка тиристора?» В этой статье мы рассмотрим методику проверки этого полупроводникового элемента. Также разберем, какой нужен прибор для проверки тиристоров.

Существует несколько методов проверки Предварительная проверка тиристора может проводиться с помощью следующих приборов: тестера или омметра. Мультиметр необходимо включить в режим «прозвонки» диодов, а тестер в режим измерения сопротивления. С помощью этих приборов возможно проверить переходы тиристора между управляющим электродом и катодом, а также между Величина сопротивления перехода полупроводникового элемента между управляющим электродом и катодом должна составлять 50-500 Ом. Значение этого сопротивления примерно одинаково как при прямом, так и при обратном измерении. Чем выше значение сопротивления, тем чувствительнее полупроводниковый тиристор. Другими словами, прибору необходимо малое значение тока на управляющем электроде, чтобы перейти из закрытого в открытое состояние. Исправный тиристор имеет значение сопротивления между электродами анод-катод как при прямом, так и при обратном замере, стремящемся к бесконечности.

Предварительная проверка тиристора дает вероятность того, что бывший в употреблении полупроводниковый элемент может содержать прогоревший переход катод-анод. Измерительными приборами такую неисправность не определить.

Основная проверка тиристора проводится с использованием дополнительных При такой операции полностью исключается неисправность полупроводникового прибора. Тиристор переходит в открытое состояние, если через катод - управляющий электрод - пропустить кратковременный импульс, необходимый для открытия элемента. Для этого собирается схема для проверки тиристоров. Таких схем можно собрать множество, рассмотрим самую элементарную. Для этого воспользуемся источником питания, двумя выключателями и резистором. Схему можно собрать на испытательной плате, либо навесным монтажом. Собираем схему: минус источника питания (5-25 В) подаем на катод тиристора. Плюс источника через нормально закрытую кнопку К1 и через индикаторную лампу на анод прибора.

К выходу управляющего электрода присоединяем резистор, второй контакт которого через нормально открытую кнопку К2 подсоединяем между лампой и кнопкой К1. Величина сопротивления подбирается с тем расчетом, чтобы протекающий ток был достаточным для включения прибора. Все, схема готова, начинаем проверку. Для этого замыкаем кнопку К2, управляющий ток пойдет по цепи: от плюса, через кнопки К1 и К2, через резистор, через управляющий электрод, на катод и на минус источника. Тиристор открывается. Кнопку К2 отпускаем. Загорается индикаторная лампа. Нажимаем нормально закрытую кнопку К1, цепь тока нагрузки через тиристор обрывается, и он закрывается. Лампа тухнет, схема приходит в исходное состояние.

Любые электроприборы и электрические платы основаны на комплексе различных радиоэлементов, которые являются основой для нормального функционирования всего многообразия электротехники. Одним из основных элементов любой электросхемы является симистор , который представляет собой один из видов тиристора.

Говоря тиристор, мы также будем подразумевать и симистор. Его предназначение заключается в коммутации нагрузки в сети переменного тока. Внутреннее устройство включает три электрода для передачи электрического тока: управляющий и 2 силовых.

Предназначение и использование симисторов в радиоэлектронике

Особенность тиристора заключается в пропускании тока от одного контакта (анода) к другому (катоду) и в обратном направлении. Любой тиристор управляется как положительным, так и отрицательным током. Для его работы нужно подать низковольтный импульс на управляющий контакт. После такой сигнальной подачи симистор открывается и переходит из закрытого состояния в открытое, пропустив, через себя ток. Во время прохождения отпирающего тока через управляющий контакт он открывается. А также отпирание происходит, когда напряжение между электродами превышает определённую величину.

При подаче переменного тока смена состояния тиристора вызывает изменение полярности напряжения на силовых электродах. Он закрывается, при смене полярности между силовыми выводами, а также когда рабочий ток ниже, чем ток удержания. Для предотвращения ложного срабатывания симистора, вызванное различными радиомеханическими помехами, использующиеся приборы имеют дополнительную защиту. Для этого обычно используется демпферная RC цепочка (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора. Иногда используется индуктивность . Она служит для ограничения скорости изменения тока при коммутации.

Симисторы в электросхеме

Если говорить о симисторах, необходимо принять во внимание и тот факт, что это один из видов тиристора, который тоже имеет три и более p — n переходов . Их различие лишь в управляющем катоде, который определяет соответственные переходные характеристики пропускаемого тока и в принципе работы в электросхемах. Обычно они начинают свою работу сразу после запуска подводящего напряжения на нужный контакт.

Схема управления симистора

Схема управления на тиристоре проста и надёжна. Они намного упрощают принципиальную схему своим присутствием, освобождая её от лишних электродеталей и дорожек. Тем самым облегчая и дальнейший ремонт (проверка и прозвонка) в случае необходимости или выхода из строя радиоэлектронных блоков с их участием.

Тиристоры как отдельный вид полупроводников, относится к категории диодов. Но в отличие от них, у тиристора есть третий вывод, предназначенный для выполнения задач управляющего электрода.

В фактическом понимании – диод с тремя выводами. Такие полупроводниковые устройства широко применяются и в бытовых приборах, и в регуляторах мощности всевозможных источников света.

Учитывая масштабы использования тиристора, многие домашние мастера сталкиваются с проблемой выхода устройства из строя, но, как и чем его протестировать не знают. Итак, для начала, нужно понять, что это такое и каков его принцип действия.

Что такое тиристор

Тиристор представляет собой одну из разновидностей полупроводниковых приборов, использующих в основе своей работы p-n – переходы. Это электронный ключ, при помощи которого можно регулировать мощную нагрузку с использованием слабых сигналов.

На рынке электротоваров полупроводниковые устройства представлены в достаточно широком ассортименте, классификация которых осуществляется с учетом метода управления и от проводимости:

  • Динистор (диодный радиоэлемент) – оснащен двумя выводами, а переключение в открытое положение происходит за счет импульсов напряжения с конкретной амплитудой;
  • Триодный прибор – не способен пропускать в обратном направлении, он функционирует за счет пульсации тока управления, а процесс выключения происходит или при подаче обратного напряжения, или отключением тока в открытом положении. Учитывая коммутационные параметры, устройства бывают и низкочастотными, и высокочастотными, и быстродействующими, и импульсными;
  • Запираемый тиристор – отключение производится за счет импульсов тока управления (относительно триодного прибора отключается быстрее);
  • Комбинированно-выключаемый радиоэлемент – отключается при подаче импульса тока управления при одновременном приложении обратного анодного напряжения;
  • Симистор-устройство с тремя электродами с пятислойной структурой, которое способно в открытом состоянии пропускать ток, и в прямом направлении, и в обратном;
  • Оптотиристор-радиоэлемент со встроенным светодиодом, за счет которого происходит управление от светового сигнала.

Полупроводниковые приборы данной категории активно используются в составе электронных ключей, выпрямителей, преобразователей, электронном зажигании, регуляторах мощности.

Принцип работы

Тиристоры подразделяются на:

  • устройства, пропускающие ток в прямом направлении – от «анода» к «катоду»;
  • устройства, пропускающие ток в обоих направлениях.

Работа переключающегося радиоэлемента сводится к выполнению функции ключа. На управляющий электрод подается команда, благодаря которой устройство получает соответствующее положение: открытый или закрытый.

Помимо этого, устройства данной категории классифицируют на запираемые и незапираемые.

Функционирование запираемых радиоэлементов было описана выше. Незапираемые полупроводниковые изделия переводятся в закрытый режим не за счет команды на управляющем электроде, а при условии, что проходящий через «анод» и «катод» ток принимает величину меньшую, чем ток удержания.

Чем можно проверить

Протестировать работоспособность полупроводника можно следующими способами:

  • Метод с применением обычной низковольтной лампочки и батарейки. Для этого потребуются: лампочка, три проводка и блок питания с постоянным током. Первым делом выставляется конкретное для загорания лампочки напряжение на блоке питания. Затем к каждому из электродов нужно припаять проводок. Посредством блока питания подается плюс на анод, а минус на катод. После чего, посредством батарейки на 1,5В происходит подача напряжения на управляющий электрод. В качестве индикатора здесь выступает лампочка, если она засветилась, то, переключающийся радиоэлемент функционирует в штатном режиме.
  • Метод с использованием мультиметра, омметра или тестера. Это наиболее привычный и стандартный способ проверки, где анод и управляющий электрод (его контакты) подключаются к измерительному прибору. Здесь в качестве источника тока выступают батареи прибора, а отклонение стрелки (у аналоговых моделей) либо цифровые показания на экране (у цифровых изделий) используются как показатели исправности/неисправности устройства. Если прибор показывает большое сопротивление, значит, устройство закрыто, если же указывает на небольшие величины – открыто.
  • Метод с применением двух стрелочных тестеров – омметров. В этом случае два отрицательных вывода с омметров подключаются к катоду тиристора. Положительный вывод одного из омметров подключается к аноду. Сопротивление на табло этого омметра стремится к бесконечности. Как только, положительный вывод другого омметра кратковременно подключается к управляющему электроду тиристора сопротивление предыдущего омметра сразу уменьшается до нескольких десятков Ом поскольку происходит отпирание тиристора.

Как проверить

Учитывая частый выход радиоэлемента из строя, для своевременного нахождения причины неисправности, желательно иметь удобный комбинированный измерительный прибор либо упрощенной модификации, либо цифрового исполнения.

Чтобы получить достоверный результат при проверке, рекомендуется собрать специальное приспособление по предложенной схеме.

Описание схемы

Структура тиристора включает в себя, четыре чередующихся слоя p и n типа проводимости p1n1p2n2. Между слоями образуются электронно-дырочные переходы. Слои p1 и n2 и переходы p1n1 и p2n2 получили название эмиттерных, внутренние слои n1 и p2 и переход между ними являются базовыми, а переход между ними – коллекторный.

Подключение к схеме тиристора возможно благодаря трем выводам:

  • «Анод» – отвод от слоя p1. На него подается сигнал положительной полярности;
  • «Катод» – отвод от слоя n2. К нему подключается провод с отрицательной полярностью;
  • «Управляющий электрод» – отвод от слоя n1. На него подается управляющий сигнал, благодаря которому данный радиоэлемент приводится в рабочее состояние. (Исключение составляют динисторы – у них только два вывода и нет управляющего вывода).

Для проверочных работ над устройствами малой и средней мощности необходимо произвести подачу напряжения на выводы «анод» и «катод», а на управляющий электрод пустить кратковременный сигнал для открытия проводимости между «анодом» и «катодом».

В мультиметре при установке положения измерения сопротивления между щупами возникает напряжение. Можно воспользоваться им при тестировании прибора.

Пошаговое руководство

  1. На катодный отвод тиристора подсоединить черный щуп с отрицательным значением.
  2. На анодный конец тиристора прикрепить красный щуп с положительным значением.
  3. К управляющему электроду подключить выключатель, а другой конец выключателя подсоединить к мультиметру в гнездо с красным щупом.
  4. Установить мультиметр в положение измерения сопротивления в пределах не более 2000 Ом.
  5. Включить выключатель кратковременно и через несколько секунд отключить его.
  6. Проверить удерживается ли прохождение тока. Если да, то тиристор исправен. Для отключения его достаточно прекратить подачу напряжения на «катод» или «анод».
  7. Если данная процедура не дала результата, т.е. проводимость не удерживается, то необходимо выключатель переставить на черный щуп вместо красного и снова повторить пункты 4-6.
  8. Если и в этом случае нет удержания прохождения тока, то тиристор не годится к применению.

Как проверить не выпаивая

Для проверки полупроводникового прибора без выпаивания почти из любой схемы вполне может подойти вышеуказанный метод с применением мультиметра, только необходимо отключить управляющий электрод из цепей схемы.

  1. Прежде чем, начать тестировать тиристор, необходимо ознакомиться с его техническими характеристиками и принципом работы. Именно эти познания помогут точно оценить результаты проверки.
  2. Стандартный мультимер вполне подходит для проверки работоспособности данного радиоэлемента, но современный цифровой прибор отличается не только точностью показаний, но и удобством при эксплуатации.
  3. Собирать измерительное приспособление нужно в полном соответствии с предложенной схемой.
Итак, продолжим...
Вначале хотелось бы отметить ещё один нюанс. Вы, sofrina , не правы, когда пишите (пост от 24.07.14. в 22:12), потому как у тиристора, помимо максимально допустимого среднего тока в открытом состоянии (в данном случае - 320 А) есть ещё и такой параметр, как повторяющееся импульсное обратное напряжение и повторяющееся импульсное напряжение в закрытом состоянии и оно характеризуется классом тиристора (как правило в силовых устройствах порядка 8-го, и, во всяком случае, - не ниже 6-го класса; то есть порядка 800 и не ниже 600 вольт). И этот параметр, как и ток, входит в маркировку тиристора. Поэтому мегером на 500 вольт они спокойно проверяются, безо всякого риска для тиристора. Что касается меня, то я всегда пользуюсь тиристорами не ниже 10-го класса (1000 вольт), если, конечно, специфика оборудования не требует большего. Поэтому я их проверяю мегером на 1000 вольт, в "прямом" и "обратном" направлении. Ещё стоит отметить, что переход управляющий электрод - катод мегомметром не проверяют, так как тиристор может выйти из строя. Для этой цели используют обычный омметр, так как там сопротивление порядка 10 - 50 Ом в одном и другом направлении; редко, когда больше.
Теперь о сути вопроса. Для начала я решил проверить зависимость тока утечки от температуры. Я исходил из следующих соображений: 1) при работе тиристоры никогда не нагреваются до температуры 100 градусов имени Цельсия (КЗ по выходу тиристоров в данном случае не рассматривается); 2) максимально допустимая температура p-n перехода полупроводниковой структуры тиристора имеет значение 125-140 градусов имени Цельсия (см. книгу М.И.Абрамовича и компани "Диоды и тиристоры в преобразовательных установках"). Поэтому, я взял несколько тиристоров: один с сопротивлением в обеих направлениях более 10 ГОм (такие редко, но бывают), второй с сопротивлением более 100 МОм и третий не ниже 50 МОм. (Я при покупке всегда их меряю, и с сопротивлением ниже 50 МОм не беру.) После этого положил их в кастрюлю с водой и прокипятил в течении получаса. (Следует отметить, что рекомендация Lenchik а (пост от 01.08.14. в 16:48) является профанацией, так как при этом способе вполне вероятен локальный перегрев, да и контроль температуры сомнителен.) Затем достал, просушил строительным феном, и снова измерил сопротивление тиристоров в обеих направлениях. Тот, что был более 10 ГОм таким и остался, 100 МОмный показал значение порядка 90 МОм (в "прямом" направлении). Самое худшее значение показал тиристор 50 МОм - у него значение упало до чуть ниже 30 МОм (в "прямом" направлении). НО НИ У ОДНОГО ИЗ НИХ сопротивление не упало до сотен кОм. В заключение я их поставил в электрическую схему и проверил работоспособность. Все три прекрасно включали и выключали нагрузку 1 кВт (электрическую лампочку).
И, наконец, мои соображения о самовосстановлении тиристоров. Для начала следует вспомнить, что собой представляет тиристор как полупроводниковая структура. Если рассматривать её, то от анода (А ) к катоду (К ) идут следующие слои. Слой P1 - прилегает непосредственно к А . Это сильно-легированная область полупроводника. Затем следует слой N1 - слабо-легированная область полупроводника. Затем слой P2 - ещё одна слабо-легированная область полупроводника (однако концентрация примесей у неё больше, чем у слоя N1) . К ней крепится вывод управляющего электрода (УЭ ). Затем идёт слой N2 - сильно-легированная область полупроводника, к которой крепится К . Далее. Поскольку слои N1 и P2 слабо-легированные, а значит высокоомные, то именно они и определяют сопротивление тиристора. Но, заметим, что слой P2 является ещё и самой тонкой структурой из всех четырёх слоёв. При пробое тиристора (как правило, это сначала лавинный пробой) происходит легирование этого слоя (P2) полупроводника (впрочем как и слоя N1), в результате их сопротивление падает и, как следствие, падает сопротивление всего тиристора. Однако, после снятия воздействия, эти слои (N1 и P2), в силу различной толщины (и разной, изначально, концентрации примесей), могут оказаться повреждены в различной степени. Или даже слой N1 может быть вообще не повреждён. А слой P2 повреждён незначительно и только в некоторых местах. Но этого будет достаточно, чтобы при измерении мегомметром в "прямом" направлении, т.е. "+" на А , а "-" на К мегер показал сопротивление сотни кОм. Ведь слои будут идти p-n-p(легированный из-за пробоя, то есть с пониженным сопротивлением)-n. Затем, со временем, вследствие диффузии, после распределения инжектированных примесей по всему слою, а также их (примесей) рекомбинации возможен возврат слоя P2 в высокоомное состояние. Таковы мои соображения по поводу проблемы самовосстановления тиристоров.
Теперь, почему я считаю это проблемой. Поскольку "восстановленные" таким образом тиристоры мегером не бракуются, а надёжность их сомнительна, встаёт вопрос как их определить, дабы не "втулили". На дворе как-никак "дикий капитализЬм". И всякое стучание поставщика себя коленом в грудь и рисование креста на пузе не гарантирует от грандиозного шухера. Для себя я решаю её следующим образом. Во-первых, как уже отмечал, беру тиристоры с сопротивлением не ниже 50 МОм в обеих направлениях. Во-вторых, стараюсь брать у проверенных годами поставщиков. И в-третьих, всегда оговариваю возможность возврата тиристоров в недельный срок, если у них упало сопротивление до сотен кОм.
На этом пока все. Если у кого есть аргументированные возражения вышеизложенному, с удовольствием их выслушаю.
Ну а пока - пока.