Основы спутниковой навигации системы координат. Общие принципы функционирования спутниковых навигационных систем

Определение своего местоположения, как на суше, так и на море, в лесу или в городе – вопрос такой же актуальный на сегодняшний день, как и на протяжении прошлых веков. Эпоха открытия радиоволн существенно упростило задачу навигации и открыло новые перспективы перед человечеством во многих сферах жизни и деятельности, а с открытием возможности покорения космического пространства совершился огромный прорыв в области определения координат местоположения объекта на Земле. Для определения координат используется спутниковой системы навигации, который получает необходимую информацию от спутников, расположенных на орбите.

Сейчас в мире существуют две глобальных системы определения координат – российская ГЛОНАСС и американская NavStar, более известная как GPS (аббревиатура названия Global Position System – глобальная система позиционирования).

Cистема спутниковой навигации ГЛОНАСС была изобретена в Советском союзе еще в начале 80х годов прошлого века и первые испытания прошли в 1982 г. Она разрабатывалась по заказу Министерства Обороны и была специализирована для оперативной глобальной навигации наземных передвигающихся объектов.

Американская система навигации GPS по своей структуре, назначению и функциональности аналогична ГЛОНАСС и также разработана по заказу Министерства Обороны Соединенных Штатов. Она имеет возможность с высокой точностью определять как координаты наземного объекта, так и осуществлять временную и скоростную привязку. NavStar имеет на орбите 24 навигационных спутника, обеспечивающих непрерывное навигационное поле на всей поверхности Земли.

Приемоиндикатор системы спутниковой навигации (GPS-навигатор или ) принимает сигналы от спутников, измеряет расстояния до них, и по измеренным дальностям решает задачу определения своих координат – широты, долготы и, при приеме сигналов от 4-х и более спутников – высоты над уровнем моря, скорость, направление (курс), пройденный путь. В состав навигатора входят приемник с для приема сигналов, компьютер для их обработки и навигационных вычислений, дисплей для отображения навигационной и служебной информации и клавиатура для управления работой прибора.

Такие приемники предназначены для постоянной установки в рулевых рубках и на приборных панелях. Их основными особенностями являются: наличие выносной антенны и питание от внешнего источника постоянного тока. Они имеют, как правило, крупные жидкокристаллические монохромные экраны с алфавитно-цифровым и графическим отображением информации.

:

Компактный водонепроницаемый GPS/DGPS/WAAS приемник с высокими характеристиками, спроектированный для малых судов. Этот GPS приемник от компании способен принимать и обрабатывать дополнительные сигналы дифференциальных поправок DGPS/WAAS. Эта возможность обеспечивает, принимая поправки от радиомаяка или геостационарных спутников WAAS, использовать точность выше 5 метров.

Новый (D)GPS навигатор встроенным приемником дифференциальных поправок. Технология прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

С технологией прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

Стационарные приемники имеют широкие функциональные возможности, особенно профессиональные приборы для использования на море. Они обладают большим объемом памяти, возможностью решения различных навигационных задач, а их интерфейс предоставляет возможность включения в навигационную систему судна.

:

Это современный приемоиндикатор навигационных спутниковых систем ГЛОНАСС/GPS разработанный для судов всех типов.

Разработан специалистами компании «Радио Комплекс» с использованием новейших достижений в области морской навигации. РК-2006 имеет возможность принимать сигналы уже развернутых спутниковых группировок, таких как ГЛОНАСС и GPS, но так же и перспективных европейских и азиатских систем позиционирования, это позволяет с повышенной помехоустойчивостью, и защищенностью от вывода из строя какой-либо системы, определять координаты судна и его курс и скорость.

Приёмник глобальных навигационных спутниковых систем GPS и ГЛОНАСС, от южнокорейского производителя морского радионавигационного оборудования Samyung ENC Co., Ltd - SGN-500.

При использовании ГЛОНАСС и GPS в комбинированных приёмниках (практически все ГЛОНАСС-приёмники являются комбинированными) точность определения координат практически всегда «отличная» вследствие большого количества видимых КА и их хорошего взаимного расположения.

Отображение навигационной информации

В приемниках ГЛОНАСС/ GPS используются два способа отображения информации: алфавитно-цифровой и графический (иногда используется термин «псевдографический»).

Алфавитно-цифровой способ для отображения получаемой информации использует:

  • цифры (координаты, скорость, пройденный путь и т. п.)
  • буквенные сочетания, поясняющие цифровые данные – обычно аббревиатуры фраз (например, МОВ – «Man Over Board» или, по-русски – «Человек за бортом!»
  • сокращения слов (например,SPD – speed – скорость, TRK – Track – трасса), имена путевых точек. Алфавитно-цифровое отображение информации в чистом виде использовалось на начальном этапе развития техники GPS.

Графический способ отображения осуществляется с помощью образуемых на экране рисунков, представляющих характер движения носителя (судна, автомобиля, человека). Графика в аппаратах различных фирм практически одинакова и различается, как правило, в деталях. Наиболее распространенными рисунками являются:

  • электронный компас (не путать с магнитным!)
  • графический указатель движения
  • трасса движения, маршруты
  • символы для путевых точек
  • координаты судна
  • направление на путевую точку
  • скорость

Характеристики:

Точность определения координат места

Точность определения координат места является фундаментальным показателем любой навигационной системы, от значения которого будет зависеть, насколько правильно судно будет следовать по проложенному маршруту и не попадет ли оно на находящиеся поблизости мели или камни.

Точность приборов обычно оценивают по величине среднеквадратической погрешности (СКО) – интервалу, в который попадает 72 % измерений, или по максимальной ошибке, соответствующей 95 %. Большинство фирм-производителей оценивают СКО своих приемников GPS в 25 метров, что соответствует максимальной ошибке 50 метров.

Навигационные характеристики

Навигационные возможности приемников ГЛОНАСС/GPS характеризуют количеством запоминаемых прибором путевых точек, маршрутов и содержащихся в них маршрутных точек. Под путевыми понимаются используемые для навигации характерные точки на поверхности Современные могут создавать и хранить, в зависимости от модели, от 500 до 5000 путевых точек и 20–50 маршрутов с 20–30 точками в каждом.

Помимо путевых точек в любом приемнике есть запас точек для записи и сохранения пройденной трассы. Это количество может достигать от 1000 до нескольких десятков тысяч точек в профессиональных навигаторах. Записанная трасса может быть использована для возврата по ней назад.

Количество одновременно отслеживаемых спутников

Этот показатель характеризует устойчивость работы навигатора и его возможность обеспечения наивысшей точности. Учитывая тот факт, что для определения двух координат позиции – долготы и широты – нужно одновременно отслеживать 3 спутника, а для определения высоты – четырех. Современные ГЛОНАСС/ GPS навигаторы, даже носимые, имеют 8 или 12-канальные приемники, способные одновременно принимать и отслеживать сигналы соответственно до 8 или 12 спутников.

Ключевые слова: расстояние до объекта; синхронизация часов; погрешность часов спутника и приемника; эфемериды.

В результате изучения материала второй главы студент должен:

знать

  • принципы навигационных определений в ГНСС;
  • решение задачи определения местоположения объекта;
  • факторы, влияющие на погрешность навигационных измерений;

уметь

  • обобщать и систематизировать научно-техническую информацию, касающуюся разработки спутниковых навигационных технологий место-определения объекта;
  • анализировать и интерпретировать результаты научных исследований, касающихся разработки бортовых телематических устройств, включающих модули спутниковой навигации ГЛОНАСС, GPS;

владеть

  • методами использования решений навигационной задачи для мониторинга движения автотранспортных средств;
  • навыками поиска и анализа научно-технической информации по вопросам разработки навигационной аппаратуры ГЛОНАСС, GPS для автомобильного транспорта.

ПРИНЦИПЫ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ В ГЛОБАЛЬНЫХ НАВИГАЦИОННЫХ СПУТНИКОВЫХ СИСТЕМАХ

Основной принцип, лежащий в основе системы спутниковой навигации, прост и давно используется для навигации и ориентирования: если известны местоположение какого-либо реперного ориентира и расстояние до него, то можно начертить окружность (в трехмерном случае - сферу), на которой должна быть расположена точка местоположения приемника.

Принцип определения координат объекта в системе ГНСС основан на вычислении расстояния от него до нескольких спутников, точные координаты которых известны. Информация о расстоянии как минимум до трех спутников позволяет определять координаты объекта как точку пересечения сфер, центр которых - спутники, а радиус - измеренное расстояние до каждого из спутников (рис. 2.1). Идея, лежащая в основе измерения расстояния до спут-

Спутник 1

Спутник 2

Местоположение объекта

Спутник 3

Рис. 2.1. Простейший случай спутниковой навигации

ника, основана на известном равенстве: расстояние есть скорость, умноженная на время движения .

Представим, что, находясь в автомобиле, мы хотим определить свое местонахождение на длинной и прямой улице. Предположим, в конце улицы есть радиопередатчик, посылающий тактовый импульс каждую секунду. В автомобиле есть часы, которые синхронизированы с часами радиопередатчика. Измеряя время прохождения импульса от передатчика до машины, мы можем определить позицию автомобиля на улице (рис. 2.2).

Переданный сигнал

Принятый сигнал


Расстояние й

Рис. 2.2. Определение расстояние по времени и скорости

распространения сигнала

Поскольку синхронизация часов в машине с передатчиком неидеальна, существует разница между вычисленным расстоянием и фактическим. В навигации это некорректное значение называется псевдодальность. Если ошибка по времени составляет одну микросекунду (1 мкс), то с учетом скорости распространения радиоволн погрешность составит 300 м.

Можно было бы решить данную проблему, оснастив автомобиль атомными часами, но это значительно повлияет на бюджет. Другим решением будет использование второго синхронизированного передатчика, расстояние до которого известно. Измеряя оба времени распространения, можно точно определить расстояние, несмотря на неточные бортовые часы (рис. 2.3). Чтобы точно вычислить позицию и время вдоль линии (принимаем, что линия продолжается только в одном направлении), нам необходимо использовать два передатчика сигналов времени. Покажем, что расстояние /) в этом случае вычисляется по формуле

  • (Ах! - Лт 2)с + Л
  • (2.1)

где Ат, Дт 2 - измеренное автомобильными бортовыми часами время прихода сигнала соответственно от первого и второго передатчиков; с - скорость света; А - расстояние между передатчиками.

По первому и второму измерениям псевдодальности Д и Д определятся по выражениям

Д = О + 5с; (2.2)

Д=(Л-Д + 5с, (2.3)

где 5 - погрешность часов автомобиля в секундах.

Очевидно, что если часы автомобиля спешат, то знак 5 - положительный, если отстают, то знак 5 - отрицательный.

Заменив в равенствах (2.2), (2.3) псевдодальности Д и Д их выражениями через скорость света и измеренное время прихода сигнала (соответственно Д = С Дт, Г> 2 = с - Дт 2) и выполнив очевидные преобразования, приходим к выражению (2.1).

Из приведенных рассуждений мы можем сделать следующий вывод: при несинхронизированных бортовых часах, используемых при расчете позиции, необходимо использовать число передатчиков сигналов времени, превышающее число неизвестных измерений на единицу.


Рис. 2.3.

несмотря на ошибки по времени

Навигационный приемник измеряет время, за которое радиосигнал доходит от спутника до объекта, а затем по этому времени вычисляет расстояние.

Радиоволны распространяются со скоростью света - 300 000 км/с. Если точно определить момент времени, в который спутник начал посылать свой радиосигнал, и момент, когда он получен, несложно определить время распространения радиосигнала. Умножая скорость распространения сигнала на время в секундах, получаем расстояние до спутника.

Наземные часы должны быть весьма точны, так как свет распространяется чрезвычайно быстро. Например, если бы спутник GPS находился прямо над головой, потребовалось бы всего около 65 мс для прохождения радиосигнала от спутника до наземного приемника (рис. 2.4).

Глобальная навигационная спутниковая система строится с применением способа измерения времени, основанного на атомном стандарте частоты. Относительная нестабильность стандарта частоты бортового синхронизирующего устройства навигационного спутника ГЛОНАСС (1-5) 10 -13 с за сутки .

Главной трудностью при измерении времени прохождения радиосигнала является точное выделение момента времени, в который сигнал передан со спутника. Для этого разработчики ГНСС обратились к следующей идее: синхронизировать спутники и приемники так, чтобы они генерировали один и тот же код точно в одно и то же время. Иными словами, приемник генерирует свой

Показания часов спутника Показания часов спутника

и приемника 0 мс и приемника 65 мс


Время передачи сигнала (Start time)

Время приема сигнала (Stop time)

1_ Сигнал

Рис. 2.4. Определение транзитного времени сигнала

внутренним код в то же самое время, что и передатчик спутника, т.е. в идеале он должен точно дублировать код спутника.

Далее остается принять код от спутника и посмотреть, как давно приемник сгенерировал тот же код. Для этого приемник сравнивает разницу во времени между приемом соответствующей части спутникового кода с такой же частью своего кода. Выявленный таким образом сдвиг одного кода по отношению к другому будет соответствовать времени прохождения сигналом расстояния от спутника до приемника. Зная сдвиг по времени и скорость распространения радиоволн, приемник получает расстояние до спутника, называемое псевдодальностью.

Преимуществом использования кодовых посылок (кодовых последовательностей) является то, что измерения временного сдвига могут быть проведены в любой момент времени.

Система ГНСС использует способ определения местоположения по дальности до ориентиров-спутников, которые находятся с помощью псевдослучайного кода. Как спутники, так и приемники генерируют очень сложные цифровые кодовые последовательности. Коды усложняются специально, чтобы их можно было бы надежно и однозначно сравнивать, а также по некоторым другим причинам. Так или иначе, коды настолько сложны, что они выглядят как длинный ряд случайных импульсов. В действительности они являются тщательно отобранными «псевдослучайными последовательностями», которые повторяются каждую миллисекунду.

Сегодня мы поговорим о том, что такое GPS, как работает эта система. Уделим внимание развитию данной технологии, ее функциональным особенностям. Также обсудим, какую роль в работе системы играют интерактивные карты.

История появления GPS

История появления глобальной системы позиционирования, или определения координат, началась в США еще в далеких 50-х годах при запуске первого советского спутника в космос. Бригада американских ученых, следивших за запуском, заметила, что при отдалении спутник равномерно меняет свою частоту сигнала. После глубокого анализа данных они пришли к выводу, что при помощи спутника, если говорить более подробно, то его расположения и издаваемого сигнала, можно точно определить нахождение и скорость передвижения человека на земле, как и наоборот, скорость и нахождение спутника на орбите при определении точных координат человека. К концу семидесятых годов Минобороны США запустило систему GPS в своих целях, а еще через несколько лет она стала доступна для гражданского применения. Система GPS как работает сейчас? Точно так, как и работала в то время, по тем же принципам и основам.

Сеть спутников

Более двадцати четырех спутников, находящихся на околоземной орбите, передают радиосигналы привязки. Количество спутников варьируется, но на орбите всегда находится нужное их число для обеспечения бесперебойной работы, плюс некоторые из них есть в запасе, чтобы в случае поломки первых принять их функции на себя. Так как срок службы каждого из них приблизительно около 10 лет, производится запуск новых, модернизированных версий. Вращение спутников происходит по шести орбитам вокруг Земли на высоте менее 20 тысяч км, оно образует взаимосвязанную сеть, которой управляют станции GPS. Находятся последние на тропических островах и связаны с основным координационным центром в США.

Как работает GPS-навигатор?

Благодаря этой сети можно узнать местонахождение при помощи вычисления задержки прохождения сигнала от спутников, и при помощи этой информации определить координаты. Система GPS как работает сейчас? Как и любая сеть навигации в пространстве - она совершенно бесплатна. Она с высокой эффективностью работает при любых погодных условиях и в любое время суток. Единственная покупка, которая должна у вас быть, это сам GPS-навигатор или устройство, которое поддерживает функции GPS. Собственно, принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение. Если радиус окружности велик, то замените ее прямой линией. Проведите несколько таких полос от возможного вашего расположения в сторону маркеров, точка пересечения прямых обозначит ваши координаты на карте. Вышеупомянутые спутники в таком случае как раз и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время). К слову, информация о точном времени и является наиболее нужной для получения данных о ваших координатах: происходящее вычисление отрезка времени между отдачей и приемом радиосигнала умножается на скорость самой радиоволны и путем недолговременных подсчетов рассчитывается расстояние между вашим навигационным прибором и спутником на орбите.


Сложности синхронизации

Исходя из этого принципа навигации, можно предположить, что для точного определения ваших координат могут понадобиться всего два спутника, на основе сигналов которых легко будет найти точку пересечения, и в итоге — место, где вы находитесь. Но, к сожалению, технические причины требуют применения еще одного спутника как маркера. Главная проблема заключается в часах GPS-приемника, что не позволяет провести достаточную синхронизацию со спутниками. Причиной этому является разница в отображении времени (на вашем навигаторе и в космосе). На спутниках присутствуют дорогие высококачественные часы на атомной основе, что позволяет им вести подсчет времени с предельной точностью, тогда как на обычных приемниках такие хронометры применить попросту невозможно, так как габариты, стоимость, сложность в эксплуатации не позволили бы применять их повсюду. Даже малая ошибка в 0.001 секунды может сместить координаты более чем на 200 км в сторону!


Третий маркер

Так что разработчики решили оставить обычную технологию кварцевых часов в GPS-навигаторах и пойти по другому пути, если говорить точнее - использовать вместо двух ориентиров-спутников — три, соответственно, столько же линий для последующего пересечения. Решение проблемы строится на гениально простом выходе: при пересечении всех линий с трех обозначенных маркеров, даже при возможных неточностях, создается зона в форме треугольника, за центр которого берется его середина - ваше расположение. Также это позволяет выявить отличие во времени приемника и всех трех спутников (для которых отличие будет одинаковым), что позволяет скорректировать пересечение линий ровно в центре, проще говоря — это определяет ваши координаты GPS.


Одна частота

Следует также заметить, что все спутники посылают на ваше устройство информацию на одной частоте, и это довольно необычно. Как работает GPS-навигатор и как воспринимает всю информацию корректно, если все спутники беспрерывно и одновременно посылают на него информацию? Все довольно-таки просто. Передатчики на спутнике для определения себя посылают в радиосигнале еще и стандартную информацию, в которой находится зашифрованный код. Он сообщает максимум характеристик спутника и заносится в базу данных вашего устройства, что потом позволяет сверять данные со спутника с базой данных навигатора. Даже при большом количестве спутников в зоне досягаемости очень быстро и легко их можно определить. Все это упрощает всю схему и позволяет использовать в GPS-навигаторах меньшие по размеру и более слабые антенны приема, что удешевляет и уменьшает дизайн и габариты устройств.

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности. GPS как работает в данном случае? Бесплатно, это так и продолжает оставаться в таком статусе, карты в некоторых интернет-магазинах (и не только) все же платные. Зачастую для прибора с GPS-навигатором создаются отдельные приложения для работы с картами: как платные, так и бесплатные. Разновидность карт приятно удивляет и позволяет настроить дорогу из точки A в точку Б максимально информативно и со всеми удобствами: какие достопримечательности вы будете проезжать, кратчайший путь до пункта назначения, голосовой помощник, указывающий направление и другие.


Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.


Путешествия без проблем

С каждым днем значения карты и бессменного компаса уходят все дальше в прошлое. Современные технологии позволяют человеку проложить дорогу для своего странствия с минимальными потерями времени, усилий и средств, при этом увидеть наиболее захватывающие и интересные места. То, что было фантастикой около столетия назад, сегодня стало реальностью, и воспользоваться этим может практически каждый: от военных, моряков и пилотов самолетов до туристов и курьеров. Сейчас большую популярность набирает и использование этих систем для коммерческой, развлекательной, рекламной отраслей, где каждый предприниматель может указать себя на глобальной карте мира, и его будет совсем нетрудно найти. Надеемся, что эта статья помогла всем, кто интересуется тем, GPS - как работает, по какому принципу происходит определение координат, какие его сильные и слабые стороны.

Спутниковые Навигационные Системы (СНС) - специальный комплекс космических и наземных технических средств, программного обеспечения и технологий, предназначенных для решения широкого круга актуальных задач, связанных, прежде всего с оперативным и точным определением местоположения относительно Земного сфероида человека, транспортных средств, технических систем и объектов при решении навигационных, оборонных, инженерно-геодезических, геологоразведочных, экологических и других задач.

Спутниковые навигационные комплексы, созданные впервые в США - «NAVSTAR» и в СССР - «ГЛОНАСС» (ГЛОбальная НАвигационная Спутниковая Система), вошли в международную практику решения военных, навигационных, инженерных и других проблем под названием "Global Positioning System» («GPS») или дословно - Глобальная Система Позиционирования (местоопределения). Поэтому в дальнейшем Спутниковые Навигационные Системы (СНС) будем называть, используя международную аббревиатуру («GPS»).

Возможность оперативного определения координат местоположения имеет столь существенное значение в жизни современного человечества, что системы «GPS» рассматривают как «Новое достояние цивилизации». Появление спутниковых навигационных систем, уже ставших доступными рядовому пользователю, безусловно, предопределит в ближайшем будущем качественное изменение содержания и методов производства большинства видов инженерно-геодезических работ.

Принципы функционирования «GPS» основаны на определении местоположения по расстояниям до группы высокоорбитальных навигационных искусственных спутников Земли, выполняющих роль точно координированных точек отсчета (подвижных пунктов геодезической сети).

Каждая из систем спутниковой навигации состоит из трех самостоятельных подсистем: А , В и С .

А - подсистема орбитального комплекса, состоящая из высокоорбитальных искусственных спутников Земля (ИЗС – рис. 8.1) и средств вывода их на орбиты. Каждый спутник имеет на борту несколько высокоточных атомных часов - эталонов частоты. Спутники постоянно транслируют координатные радиосигналы и навигационные сообщения и создают тем самым единое глобальное навигационное поле.



Создание в нашей стране орбитального комплекса «ГЛОНАСС» штатного состава из 24 навигационных спутников было начато в октябре 1982 г. и завершено в декабре 1995 г. Искусственные спутники «ГЛОНАСС» равномерно распределены в трех орбитальных плоскостях, разнесенных относительно друг друга на 120° (рис. 8.2 б ). Плоскостям соответствен­но присвоены номера 1, 2 и 3 с возрастанием в сторону вращения Земли, при этом номинальные значения абсолютных долгот идеальных плоско­стей зафиксированы:

215°15"00" + 120°(i-1), (8.1)

где i - номер орбитальной плоскости.

Номинальные расстояния между соседними спутниками «ГЛОНАСС» по аргументу широты составляют 45°. Спутникам 1-й орбитальной плос­кости присвоены номера с 1 по 8, спутникам 2-й орбитальной плоскости - с 9 по 16 и спутникам 3-й орбитальной плоскости - с 17 по 24. Орби­тальные плоскости сдвинуты относительно друг друга по аргументу ши­роты на 15°.

а ). Спутник NAVSTAR.

б ) Спутник ГЛОНАСС.

Рис. 8.1. Навигационные спутники.

а ) б )

Рис. 8.2. Спутниковые навигационные системы.

а ) – NAVSTAR; б ) – ГЛОНАСС.

Навигационные спутники системы NAVSTAR размещены в шести орбитальных плоскостях, по четыре спутника в каждой (рис. 8.2 б ).

Высота орбиты навигационных спутников системы «ГЛОНАСС»-19-100 км, системы «NAVSTAR»-20-180 км.

Период обращения спутников системы «ГЛОНАСС» - 11 часов 15 минут 44 секунды, системы «NAVSTAR» - 12 часов.

Наклонение орбиты системы «ГЛОНАСС» - 64,8°, системы «NAVSTAR» - 55,0°.

Такая конфигурация орбитальной структуры спутниковых навигаци­онных систем обеспечивает глобальную и непрерывную зоны действия системы, а также оптимальную геометрию взаимного расположения спутников для повышения точности определения координат.

Навигационные спутники систем «GPS» непрерывно излучают ра­диосигналы различной точности. Так, для системы «ГЛОНАСС» преду­смотрены навигационные сигналы двух типов:

Высокой точности (ВТ) - предназначен исключительно для решения задач Министерства Обороны РФ.

Стандартной точности (СТ) - доступен всем потребителям.

Для системы «NAVSTAR» предусмотрены навигационные сигналы трех типов:

Protected (P-code) - защищенный, предназначенный прежде всего для нужд МО США.

Selective Availability (S/A) - избирательной доступности, преднаме­ренно создавая значительный и непредсказуемый уход спутниковых ча­сов создает значительные ошибки в определении местоположения для общегражданского круга пользователей.

Clear Acquisition (С/А) - легкой распознаваемости, т. е. - это обще­гражданский код.

Б - наземная подсистема контроля и управления состоит из группы станций слежения, нескольких станций загрузки на ИЗС и главной стан­ции. Эта подсистема осуществляет мониторинг целостности системы и является первичным источником информации, поставляемой пользова­телям. Ее основными задачами являются:

Контроль за работой навигационных ИЗС;

Сбор информации для определения и прогноза орбит (эфемерид);

Формирование единой временной системы всего орбитального ком­плекса и ее синхронизация относительно Всемирного времени и экспор­тирование данных в память бортовых компьютеров навигационных ИЗС.

Орбитально - временная информация закладывается в память ИЗС дважды в сутки, что обеспечивает высокую точность навигационных оп­ределений.

В - подсистема пользователей состоит из комплекса аппаратно-про­граммных средств, реализующих основное назначение «GPS» - опреде­ление координат для геодезического применения.

Главными факторами широкого использования аппаратуры пользова­телей «GPS» являются:

Всепогодность;

Оперативность первого определения координат (менее 3 минут от включения приемника);

Непрерывность определения координат (каждые 0,5 с);

Малые габариты и вес приемников;

Малая энергоемкость;

Простота эксплуатации;

Высокая точность;

Сравнительно небольшая стоимость.

Данные позиционирования представляются в любом удобном для пользователя цифровом виде: в различных географических системах координат или в любой прямоугольной системе координат с возможностью описания и систематизации объектов позиционирования.

В настоящее время спутниковые навигационные системы уже нашли широкое применение в следующих областях: военной; на космическом, воздушном, морском, речном, автодорожном, железнодорожном и дру­гих видах транспорта; в геодезии, картографии, океанографии; при про­изводстве геофизических и геолого-разведочных работ; в лесном хозяй­стве и землеустройстве; рыболовном хозяйстве; в экологическом монито­ринге; в научно-исследовательских работах, в том числе, фундаменталь­ных и других сферах человеческой деятельности.

В части инженерной геодезии и инженерного дела, это безусловно, ре­волюционный прорыв в будущее, который влечет за собой как радикаль­ное изменение парка инженерно-геодезического оборудования, так и тех­нологий и методов производства работ.

Навигация это определение координатно-временных параметров объектов.

Первым эффективным средством навигации было определение местоположения по видимым небесным телам (солнце, звезды, луна). Другой простейший метод навигации это привязка к местности, т.е. определение местоположения относительно известных ориентиров (водонапорные башни , линии электропередач, шоссейные и железные дороги и др.).

Системы навигации и позиционирования предназначены для постоянного контроля за местонахождением (состоянием) объектов. В настоящее время существует два класса средств навигации и позиционирования: наземные и космические.

К наземным относят стационарные, возимые и переносные системы, комплексы, станции наземной разведки, иные средства навигации и позиционирования. Принцип их действия заключается в контроле радиоэфира посредством специальных антенн, подключаемых к сканирующим радиостанциям, и выделении радиосигналов , излучаемых радиопередатчиками объектов слежения или излучаемых самим комплексом (станцией) и отраженных от объекта слежения либо от специальной метки или кодового бортового датчика (КБД), размещенных на объекте. При использовании такого рода технических средств имеется возможность получить информацию о координатах местонахождения, направлении и скорости перемещения контролируемого объекта. При наличии на объектах слежения специальной метки или КБД устройства идентификации, подключаемые к системам, позволяют не только отмечать местоположение контролируемых объектов на электронной карте, но и соответствующим образом различать их.

Космические системы навигации и позиционирования разделяются на два типа.

Первый тип космических систем навигации и позиционирования отличает применение на мобильных объектах слежения специальных датчиков - приемников спутниковой навигационной системы типа ГЛОНАСС (Россия) или GPS (США). Навигационные приемники подвижных объектов слежения принимают от навигационной системы радиосигнал, который содержит координаты (эфемериды) спутников на орбите и отсчет времени. Процессор навигационного приемника, по данным от спутников (как минимум, от трех) рассчитывает географические широту и долготу его местонахождения (приемника). Эта информация (географические координаты) может быть визуализирована как на самом навигационном приемнике, при наличии устройства вывода информации (дисплея, монитора), так и в пункте слежения, при ее передаче от навигационного приемника подвижного объекта посредством радиосвязи (радиальной, конвенциональной, транкинговой, сотовой, спутниковой).

Второй тип космических систем навигации и позиционирования отличает сканирующий прием (пеленг) на орбите сигналов, поступающих от радиомаяков, установленных на объекте слежения. Спутник, принимающий сигналы от радиомаяков, как правило, сначала накапливает, а затем в определенной точке орбиты передает информацию об объектах слежения в наземный центр обработки данных. Время доставки информации при этом несколько увеличивается.


Спутниковые навигационные системы позволяют:

  • осуществлять непрерывный контроль и слежение за любыми подвижными объектами;
  • отображать на электронной карте диспетчера координаты, маршрут и скорость движения объектов контроля и слежения (с точностью определения координат и высоты над уровнем моря до 100 м, а в дифференциальном режиме - до 2…5 м);
  • оперативно реагировать на внештатные ситуации (изменение ожидаемых параметров на объекте контроля и слежения либо в его маршруте и графике движения, сигнал SOS и т. д.);
  • оптимизировать маршруты и графики движения объектов контроля и слежения.

В настоящее время функции специализированных систем навигации и позиционирования (автоматическое отслеживание текущего месторасположения абонентских аппаратов, терминалов связи с целью обеспечения роуминга и предоставления услуг связи) с относительной точностью могут выполнять спутниковые и сотовые (при наличии на базовых станциях аппаратуры определения местонахождения) системы радиосвязи.

Широкое внедрение систем навигации и позиционирования, повсеместная установка соответствующей аппаратуры в сетях сотовой связи России с целью определения и постоянного контроля местонахождения работающих передатчиков, патрулей, транспорта, иных объектов, представляющих интерес для органов внутренних дел, могло бы значительно расширить возможности правоохранительной деятельности.

Основной принцип определения местоположения с помощью спутниковых навигационных систем - использование спутников в качестве точек отсчета.

Для того, чтобы определить широту и долготу наземного приемника, приемник должен получать сигналы не менее чем от трех спутников и знать их координаты и расстояние от спутников до приемника (рис. 6.8). Координаты измеряются относительно центра земли, который имеет координату (0, 0, 0).

Расстояние от спутника до приемника вычисляется по измеренному времени распространения сигнала. Эти вычисления выполнить несложно, так как известно, что электромагнитные волны распространяются со скоростью света. Если известны координаты трех спутников и расстояния от них до приемника, то приемник может вычислить одно из двух возможных мест в пространстве (точки 1 и 2 рис. 6.8). Обычно приемник может определить, какая из этих двух точек действительная, так как одно значение местоположения имеет бессмысленное значение.

Рис. 6.8. Определение местоположения по сигналам от трех спутников

На практике, для исключения ошибки часов генератора, которое влияет на точность измерений разницы во времени, необходимо знать местоположение и расстояние до четвертого спутника (рис. 6.9).

Рис. 6.9. Определение местоположения по сигналам от четырех спутников

В настоящее время существуют и активно используются две спутниковые навигационные системы - ГЛОНАСС и GPS.

Спутниковые навигационные системы включают в себя три составные части (рис. 6.10):

  • космический сегмент , в который входит орбитальная группировка искусственных спутников Земли (иными словами, навигационных космических аппаратов);
  • сегмент управления, наземный комплекс управления (НКУ) орбитальной группировкой космических аппаратов;
  • аппаратура пользователей системы.

Рис. 6.10. Состав спутниковых навигационных систем

Космический сегмент системы ГЛОНАСС состоит из 24 навигационных космических аппаратов (НКА), находящихся на круговых орбитах высотой 19100 км, наклонением 64,5° и периодом обращения 11 ч 15 мин в трех орбитальных плоскостях (рис. 6.11). В каждой орбитальной плоскости размещаются по 8 спутников с равномерным сдвигом по широте 45°.

Космический сегмент навигационной системы GPS состоит из 24 основных НКА и 3 резервных. НКА находятся на шести круговых орбитах высотой около 20000 км, наклонением 55°, равномерно разнесенных по долготе через 60°.

Рис. 6.11. Орбиты спутников ГЛОНАСС и GPS

Сегмент наземного комплекса управления системы ГЛОНАСС выполняет следующие функции:

  • эфемеридное и частотно-временное обеспечение;
  • мониторинг радионавигационного поля;
  • радиотелеметрический мониторинг НКА;
  • командное и программное радиоуправление НКА.

Для синхронизации шкал времени различных спутников с необходимой точностью на борту НКА используются цезиевые стандарты частоты с относительной нестабильностью порядка 10 -13 с. На наземном комплексе управления используется водородный стандарт с относительной нестабильностью 10 -14 с. Кроме того, в состав НКУ входят средства коррекции шкал времени спутников относительно эталонной шкалы с погрешность 3-5 нс.

Наземный сегмент обеспечивает эфемеридное обеспечение спутников. Это означает, что на земле определяются параметры движения спутников и прогнозируются значения этих параметров на заранее определённый промежуток времени. Параметры и их прогноз закладываются в навигационное сообщение , передаваемое спутником наряду с передачей навигационного сигнала. Сюда же входят частотно-временные поправки бортовой шкалы времени спутника относительно системного времени. Измерение и прогноз параметров движения НКА производятся в Баллистическом центре системы по результатам траекторных измерений дальности до спутника и его радиальной скорости.

Аппаратура пользователей системы это радиотехнические устройства, предназначенные для приема и обработки радионавигационных сигналов навигационных космических аппаратов для определения пространственных координат, составляющих вектора скорости движения и поправки шкал времени потребителя глобальной навигационной спутниковой системы.

Приемник определяет местоположение потребителя, который отбирает из всех наблюдаемых спутников наиболее благоприятные в части обеспечения точности навигации. По дальностям до выбранных спутников он определяет долготу, широту и высоту потребителя, а также параметры его движения: направление и скорость. Полученные данные отображаются на дисплее в виде цифровых координат, либо отображаться на карте, предварительно скопированной в приемник.

Приемники спутниковых навигационных систем являются пассивными, т.е. они не излучают сигналы и не имеют обратного канала связи. Это позволяет иметь неограниченного количество потребителей навигационных систем связи.

Большое распространение в настоящее время получили системы мониторинга движения объектов на основе спутниковых навигационных систем. Структура такой системы показана на рис. 6.12.

Рис. 6.12. Структура системы мониторинга

Навигационные приемника, установленные на объектах слежения, принимают сигналы от спутников и вычисляют свои координаты. Но, так как навигационные приемники это пассивные устройства, то в системе необходимо предусмотреть систему передачи вычисленных координат в центр мониторинга. В качестве средств передачи данных о координатах объекта наблюдения могут служить УКВ-радиомодемы, GSM/GPRS/EDGE-модемы (сети 2G), сети третьего поколения, работающие по протоколам UMTS/HSDPA, CDMA-модемы, системы спутниковых систем связи и др.

Центр мониторинга спутниковой навигационно-мониторинговой системы предназначен для наблюдения за объектами, на которых установлено (содержится) навигационно-связное оборудование с целью контроля отдельных его параметров (местоположения, скорости, направления движения) и принятия решения на те или иные действия.

В центре мониторинга содержатся программно-технические средства обработки информации, обеспечивающие:

  • прием, обработку и хранение информации, поступающей от объектов наблюдения;
  • отображение на электронной карте местности информации о местоположении объектов наблюдения.

Навигационно-мониторинговой системой органов внутренних дел решаются следующие задачи:

  • обеспечение автоматизированного контроля персоналом дежурной части за расстановкой экипажей транспортных средств;
  • обеспечение персонала дежурной части информацией о местонахождении транспортных средств для принятия управленческих решений при организации оперативного реагирования на происшествия в зоне ответственности;
  • отображение в графическом формате информации о позиционировании транспортных средств и иной служебной информации на автоматизированное рабочее место оператор;
  • формирование и хранение архива о маршрутах движения экипажей транспортных средств в период несения ими службы;
  • выдача статистической отчетности о выполнении норм обязательного выставления сил и средств в течение дежурной смены, сводных параметрах эффективности использования сил и средств, показателях контроля зон ответственности.

Для обеспечения высокой надежности и достоверности передачи мониторинговой информации от бортового оборудования автотранспорта подразделений МВД России в дежурные чисти в составе системы необходимо использовать резервный канал передачи данных, в качестве которого можно использовать