Системы управления базами данных. Основные модели баз данных

Аспект структуры определяет, что из себя логически представляет база данных, аспект манипуляции определяет способы перехода между состояниями базы данных (то есть способы модификации данных) и способы извлечения данных из базы данных, аспект целостности определяет средства описаний корректных состояний базы данных.

Модель данных - это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы - поведение данных .

В литературе, статьях и в обиходной речи иногда встречается использование термина «модель данных» в смысле «схема базы данных » («модель базы данных»). Такое использование является неверным, на что указывают многие авторитетные специалисты, в том числе К. Дж. Дейт , М. Р. Когаловский, С. Д. Кузнецов. Модель данных есть теория , или инструмент моделирования , в то время как модель базы данных (схема базы данных) есть результат моделирования . По выражению К. Дейта соотношение между этими понятиями аналогично соотношению между языком программирования и конкретной программой на этом языке .

М. Р. Когаловский поясняет эволюцию смысла термина следующим образом. Первоначально понятие модели данных употреблялось как синоним структуры данных в конкретной базе данных . В процессе развития теории систем баз данных термин «модель данных» приобрел новое содержание. Возникла потребность в термине, который обозначал бы инструмент, а не результат моделирования, и воплощал бы, таким образом, множество всевозможных баз данных некоторого класса. Во второй половине 1970-х годов во многих публикациях, посвященных указанным проблемам, для этих целей стал использоваться все тот же термин «модель данных». В настоящее время в научной литературе термин «модель данных» трактуется в подавляющем большинстве случаев в инструментальном смысле (как инструмент моделирования) .

Тем не менее, длительное время термин «модель данных» использовался без формального определения. Одним из первых специалистов, который достаточно формально определил это понятие, был Э. Кодд . В статье «Модели данных в управлении базами данных» он определил модель данных как комбинацию трех компонентов:

См. также

  • Метамоделирование
  • Статья Метамоделирование в Викиучебнике

Примечания

Литература

  • Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. - 8-е изд. - М .: «Вильямс», 2006. - 1328 с. - ISBN 0-321-19784-4
  • Когаловский М. Р. Перспективные технологии информационных систем. - М .: ДМК Пресс; Компания АйТи, 2003. - 288 с. - ISBN 5-279-02276-4
  • Когаловский М. Р. Энциклопедия технологий баз данных. - М .: Финансы и статистика, 2002. - 800 с. - ISBN 5-279-02276-4
  • Цикритзис Д., Лоховски Ф. Модели данных = D. Tsichritzis, F. Lochovsky. Data Models. Prentice Hall, 1982. - М .: Финансы и статистика, 1985. - 344 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Модель данных" в других словарях:

    модель данных - Совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения. Примечание Для задания модели данных используется… …

    Модель данных - – способ представления данных информационной модели в вычислительной среде. [ГОСТ 2.053 2006] Рубрика термина: Технологии Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

    модель данных - 3.1.7 модель данных (Data Model; DM): Графическое и/или лексическое представление данных, устанавливающее их свойства, структуры и взаимосвязи. [ИСО/МЭК ТО 11404 3:1996, определение 3.2.11] Источник …

    МОДЕЛЬ ДАННЫХ - согласно ГОСТ 2.053–2006 ЕСКД «Электронная структура изделия», – способ представления данных информационной модели в вычислительной среде … Делопроизводство и архивное дело в терминах и определениях

    модель данных многомерная - Модель данных, оперирующая многомерными представлениями данных в виде кубов данных. Такие модели данных стали широко использоваться в середине 90 х годов в связи с развитием технологий OLAP. Операционные возможности многомерных моделей данных… … Справочник технического переводчика

    модель данных Всемирной таможенной организации - Модель данных и набор данных, разработанные во Всемирной таможенной организации на основе Справочника элементов внешнеторговых данных ООН (СЭВД ООН) [Упрощение процедур торговли: англо русский глоссарий терминов (пересмотренное второе издание)… … Справочник технического переводчика

    Иерархическая модель данных представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов… … Википедия

    - (РМД) логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка. На реляционной модели данных строятся… … Википедия

    У этого термина существуют и другие значения, см. ER. Модель сущность связь (ER модель) (англ. entity relationship model, ERM) модель данных, позволяющая описывать концептуальные схемы предметной области. ER модель используется при… … Википедия

    ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства - Терминология ГОСТ Р ИСО/МЭК 19778 1 2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа: 5.4.9 AE CE ID … Словарь-справочник терминов нормативно-технической документации

Книги

  • Модель электронного газа и теория обобщенных зарядов для описания межатомных сил и адсорбции , А. М. Долгоносов. В предлагаемой книге рассмотрены четыре ключевые темы атомной и молекулярной физики, квантовой и физической химии: описание атомного электронного газа и следующий из этого вывод основных…

Ядром любой базы данных является модель данных. Модель данных - совокупность структур данных и операций их обработки.

СУБД основывается на использовании иерархической, сетевой или реляционной модели, на комбинации этих моделей или не некотором их подмножестве.

Иерархическая модель данных.

К основным понятиям иерархической структуры относятся: уровень, элемент, связь. Узел это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчиненную никакой другой вершине и находящуюся на самом верхнем (первом) уровне (см. рис. 5).

Рис. 5. Иерархическая модель данных

К каждой записи базы данных существует только один (иерархический) путь от корневой записи. Например, для записи С4 путь проходит через записи А и В3.

Пример иерархической структуры. Каждый студент учится в определенной (только одной) группе, которая относится к определенному (только одному) факультету (см. рис. 6).

Рис. 6. Пример иерархической организации данных

Сетевая модель данных

В сетевой структуре каждый элемент может быть связан с любым другим элементом (см. рис 7).

Рис. 7. Сетевая модель данных

Пример сетевой структуры. База данных, содержащая сведения о студентах, участвующих в научно-исследовательских работах (НИРС). Возможно участие одного студента в нескольких НИРС, а также участие нескольких студентов в разработке одной НИРС (см. рис. 8).

Рис. 8. Пример сетевой организации данных

Реляционная модель данных

Эти модели характеризуются простотой структуры данных, удобным для пользователя представлением и возможностью использования формального аппарата алгебры отношений.

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица (отношение) представляет собой двумерный массив и обладает следующими свойствами:

· каждый элемент таблицы - один элемент данных;

· все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

· каждый столбец имеет уникальное имя;

· одинаковые строки в таблице отсутствуют;

· порядок следования строк и столбцов может быть произвольным.

Пример. Реляционной таблицей можно представить информацию о студентах, обучающихся в вузе.

Поле, каждое значение которого однозначно определяет соответствующую запись, называется простым ключом (ключевым полем). Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ.

Чтобы связать две реляционные таблицы, необходимо ключ первой таблицы ввести в состав ключа второй таблицы (возможно совпадение ключей); в противном случае нужно ввести в структуру первой таблицы внешний ключ - ключ второй таблицы.

Одни и те же данные могут группироваться в таблицы различными способами. Группировка атрибутов в таблицах должна быть рациональной, т.е. минимизирующей дублирование данных и упрощающей процедуры их обработки.

Нормализация отношений - формальный аппарат ограничений на формирование отношений (таблиц), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных.

Выделяют пять нормальных форм отношений. Эти формы предназначены для уменьшения избыточности информации от первой до пятой нормальных форм. Поэтому каждая последующая нормальная форма должна удовлетворять требованиям предыдущей формы и некоторым дополнительным условиям. При практическом проектировании баз данных четвертая и пятая формы, как правило, не используются.

Процедуру нормализации рассмотрим на примере проектирования многотабличной БД Продажи , содержащей следующую информацию:

· Сведения о покупателях.

· Дату заказа и количество заказанного товара.

· Дату выполнения заказа и количество проданного товара.

· Характеристику проданного товара (наименование, стоимость, марка).

Таблица 2. Структура таблицы Продажи

Таблицу Продажи можно рассматривать как однотабличную БД. Основная проблема заключается в том, что в ней содержится значительное количество повторяющейся информации. Такая структура данных является причиной следующих проблем, возникающих при работе с БД:

· Приходится тратить значительное время на ввод повторяющихся данных. Например, для всех заказов, сделанных одним покупателем, придется каждый раз вводить одни и те же данные о покупателе.

· При изменении адреса или телефона покупателя необходимо корректировать все записи, содержащие сведения о заказах этого покупателя.

· Наличие повторяющейся информации приведет к неоправданному увеличению размера БД. В результате снизится скорость выполнения запросов. Кроме того, повторяющиеся данные нерационально используют дисковое пространство компьютера.

· Любые нештатные ситуации потребуют значительного времени для получения требуемой информации.

Ядром любой базы данных есть модель данных. Модель данных представляет собой великое множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представленные объекты предметной области, взаимосвязи между ними. Модель данных - это совокупность структур данных и операций их обработки. Современная СУБД базируется на использовании иерархической, сетевой, реляционной и объектно-ориентированной моделях данных, комбинации этих моделей или на некотором их подмножестве.

Рассмотрим три основных типа моделей данных: иерархическую, сетевую, реляционнную и объектно-ориентированную.

Иерархическая модель данных. Иерархическая структура представляет совокупность элементов, связанных между собою по определенным правилам. Объекты, связанные иерархическими отношениями, образовывают ориентированный граф (перевернутое дерево). К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь. Иерархическую модель организовывает данные в виде древовидной структуры. Узел - это совокупность атрибутов данных, которые описывают некоторый объект. На схеме иерархического дерева узлы имеют вид вершин графа. Каждый узел на более низком уровне связан только с одним узлом, который находится на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), которая не подчинена никакой другой вершине. Зависимые (подчиненные) узлы находятся на втором, третьем и других уровнях. Количество деревьев в базе данных определяется числом корневых записей.

Сетевая модель данных.

Сетевая модель означает представление данных в виде произвольного графа. Достоинством сетевой и иерархической моделей данных является возможность их эффективной реализации по показателям затрат памяти и оперативности. Недостатком сетевой модели данных является высокая сложность и жесткость схемы БД, построенной на ее основе.

Реляционная модель данных. Понятие реляционный (англ. relation - отношение) связан с разработками известного американского специалиста в области систем баз данных Э.Ф. Кодда. Эти модели характеризуются простотой структуры данных, удобной для пользователя формой представления в виде таблиц и возможностью использования аппарата алгебры отношений и реляционного вычисления для обработки данных.

На языке математики отношение определяется таким образом. Пусть задано n множеств D1,D2, ...,Dn. Тогда R есть отношение над этими множествами, если R есть множеством упорядоченных наборов вида , где d1 - элемент с D1 , d2 - элемент с D2 , ... , dn - элемент с Dn. При этом наборы вида называются кортежами, а множества D1,D2, ...Dn - доменами. Каждый кортеж состоит из элементов, которые выбираются из своих доменов. Эти элементы называются атрибутами, а их значения - значениями атрибутов.

Итак, реляционнная модель ориентирована на организацию данных в виде двумерных таблиц, любая из которых имеет следующие свойства:

Каждый элемент таблицы - это один элемент данных;

Все столбцы в таблицы - однородные, т.е все элементы в столбце имеют одинаковый тип (символьный, числовой и т.п.);

Каждый столбец носит уникальное имя;

Одинаковые строки в таблицы отсутствуют.

Таблицы имеют строки, которые отвечают записям (или кортежам), а столбцы -атрибутам отношений (доменам, полям).

Следующие термины являются эквивалентными:

отношение , таблица, файл (для локальных БД );

кортеж, строка , запись;

атрибут, столбик, поле.

Объектно-ориентированные БД объединяют в себе две модели данных, реляционную и сетевую, и используются для создания крупных БД со сложными структурами данных.

Реляционная БД есть совокупностью отношений, которые содержат всю необходимую информацию и объединенную разными связями.

БД считается нормализованной , если выполняются следующие условия:

Каждая таблица имеет главный ключ;

Все поля каждой таблицы зависят только от главного ключа;

В таблицах отсутствуют группы повторных значений.

Для успешной работы с многотабличными БД, как правило, надо установить между ними связи. При этом пользуются терминами “базовая таблица» (главная) и “подчиненная таблица». Связь между таблицами получается благодаря двум полям, одно из которых находится в базовой таблице, а второе - в подчиненной. Эти поля могут иметь значение, которое повторяются. Если значение в связанном поле записи базовой таблицы и в поле подчиненной совпадают, то эти записи называются связанными.

Существуют четыре типа отношений между таблицами: один к одному , один ко многим, много к одному, много ко многим .

Отношение один к одному означает, что каждая запись в одной таблице соответствует только одной записи в другой таблице.

Отношение один ко многим означает, что одна запись из первой таблицы может быть связана более чем с одной записью из другой таблицы.

Главная таблица – это таблица, которая содержит первичный ключ и составляет часть один в отношении один ко многим .

Внешний ключ – это поле, содержащее такой же тип информации в таблице со стороны много .

Практическая работа

Известны три типа моделей описания баз данных (рис.3.7):

ü иерархическая;

ü сетевая;

ü реляционная.

Основное различие между ними состоит в характере описания взаимосвязей и взаимодействия между объектами и атрибутами базы данных.

Рис 3.7. Основные типы моделей данных

1. Иерархическую модель БД изображают в виде дерева. Каждой вершине соответствует множество экземпляров записей, составляющих логический файл. Вершины расположены по уровням и связаны между собой отношениями подчиненностями. Одна-единственная вершина верхнего уровня является корневой (рис.3.8).

Достоинством модели является:

· простота ее построения;

· легкость понимания сути принципа иерархии;

· наличие промышленных СУБД, поддерживающих данную модель.

Недостатком является сложность операций по включению в иерархию информации о новых объектах базы данных и удалению устаревшей информации.

Рис. 3.8. Иерархическая модель данных

2. Сетевая модель описывает элементарные данные и отношения между ними в виде ориентированной сети. Это такие отношения между объектами, когда каждый порожденный элемент имеет более одного исходного и может быть связан с любым другим элементом структуры рис.3.9).

Сетевые структуры могут быть многоуровневыми, иметь разную степень сложности.

База данных, описываемая сетевой моделью, состоит из областей (области - из записей, а записи - из полей).

Недостатком сетевой модели является ее сложность, возможность потери независимости данных при реорганизации базы данных. При появлении новых пользователей, новых приложений и новых видов запросов происходит рост базы данных, что может привести к нарушению логического представления данных.

Рис.3.9. Сетевая модель данных

3. Реляционная модель БД представляет объекты и взаимосвязи между ними в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами. На этой модели базируются практически все современные СУБД.

Реляционная модель имеет в своей основе понятие «отношения», и ее данные формируются в виде таблиц. Отношение - это двумерная таблица, имеющая свое название, в которой минимальным объектом действий, сохраняющим ее структуру, является строка таблицы (кортеж), состоящая из ячеек таблицы - полей.



Каждый столбец таблицы соответствует только одному компоненту этого отношения. С логической точки зрения реляционная база данных представляется множеством двумерных таблиц различного предметного наполнения.

В реляционной базе данных СУБД поддерживает извлечение информации из БД на основе логических связей. При работе с БД не надо программировать связи с файлами, что позволяет одной командой обрабатывать все файлы данных и повышать эффективность программирования БД. Благодаря снижению требований к квалификации разработчиков существенно расширяется круг пользователей баз данных, информационные базы данных стали стандартом СУБД для информационных систем.

Рис.3.10 Реляционная модель данных

В зависимости от содержания отношения реляционные базы данных бывают:

ü объектными, в которых хранятся данные о каком-либо одном объекте, экземпляре сущности. В них один из атрибутов однозначно определяет объект и называется ключом отношения, или первичным атрибутом. Остальные атрибуты функционально зависят от этого ключа;

ü связными, в которых хранятся ключи нескольких объектных отношений, по которым между ними устанавливаются связи.



Достоинства реляционной модели:

· простота построения;

· доступность понимания;

· возможность эксплуатации базы данных без знания методов и способов ее построения;

· независимость данных;

· гибкость структуры и др.

Недостатки реляционной модели:

· низкая производительность по сравнению с иерархической и сетевой моделями;

· сложность программного обеспечения;

· избыточность элементов.

В последние годы все большее признание и развитие получают объектно-ориентированные базы данных (ООБД).

Принципиальное отличие реляционных и объектно-ориентированных баз данных заключается в следующем : в ООБД модель данных более близка сущностям реального мира, объекты можно сохранить и использовать непосредственно, не раскладывая их по таблицам, типы данных определяются разработчиком и не ограничены набором предопределенных типов.

Традиционными областями применения объектных СУБД являются системы автоматизированного проектирования (САПР), моделирование, мультимедиа.

К объектным СУБД можно отнести СУБД ONTOS - одного из лидеров направляя ООБД, Jasmine. ODB-Jupiter - первый российский продукт такого рода, ORACLE 8.0.

Базы знаний - это специальные компьютерные системы, основанные на обобщении, анализе и оценке знаний высококвалифицированных специалистов-экспертов.

Например, «КонсультантПлюс», «Гарант Сервис».

Основными элементами информационной технологии, используемой в БЗ являются:

Интерфейс пользователя,

База знаний,

Интерпретатор,

Модуль создания системы,

Интерфейс используется для ввода запросов и команд в экспертную систему и получает выходную информацию из нее.

Выходная информация включает не только само решение, но необходимые объяснения, которые могут быть двух видов:

1) по запросам, т.е. те, которые пользователь может получить в любой момент;

2) которые пользователь получает уже при выдаче решения, т.е. то, каким образом получается решение (например, каким образом влияет на прибыль и издержки выбранная цена и т.д.).

К базе знаний относятся факты, характеризующие проблемную область, а также их логическая взаимосвязь. Центральным звеном здесь являются правила, которые даже в простейшей задаче экспертных систем могут насчитывать тысячи. Правила определяют порядок действий в конкретной ситуации при выполнении того или другого условия.

Интерпретатор в определенном порядке проводит обработку знаний, находящихся в базе. Используются также и дополнительные блоки: база данных, блоки расчета, ввода, корректировки данных.

Модуль создания системы служит для создания набора правил, внесения в них изменений. Здесь могут использоваться как специальные алгоритмические языки (ЛИСП, Пролог), так и оболочки экспертных систем.

Более совершенным считается использование оболочек экспертных систем, т.е. программных средств, ориентированных на решение определенной проблемы путем создания соответствующей ей базы знаний. Этот путь, как правило, более быстрый и менее трудоемкий.

Контрольные вопросы

1. В чем различие между информацией и данными?

2. Как выражается адекватность информации?

3. Назовите признаки классификации экономической информации.

4. Что такое структура информации?

5. Чем показатель отличается от реквизита?

6. Укажите основные свойства информации.

7. Что входит в состав информационного обеспечения?

8. Чем внемашинное информационное обеспечение отличается от внуримашинного?

9. Какие бывают классификаторы и с какой целью разрабатываются классификаторы?

10. Каково назначение штрихового кодирования? В чем его особенности?

11. Определите понятия «классификаторы» и «коды».

12. Чем автоматизированные банки данных отличаются от баз знаний?

13. Что входит в состав автоматизированных банков данных?

14. Чем клиент-серверная архитектура отличается от файл-серверной?

15. Укажите основные характеристики СУБД.

16. Что подразумевает обеспечение целостности данных?

17. Охарактеризуйте типы моделей описания баз данных.

4. информационные технологии в управлении и экономике

Любая БД отражает информацию об определенной предметной области. В зависимости от уровня абстракции, на котором представляется предметная область, существуют различные уровни моделей данных. Под информационной моделью данных подразумевается способ описания информации, содержащейся в предметной области. В дальнейшем будут рассматриваться структурированные модели данных. Для этих моделей существует четыре основных уровня моделей: инфологический (концептуальный), даталогический или логический, физический и уровень внешних моделей.

На первом уровне описание предметной области строится так, чтобы оно было как можно более общим, не зависело от особенностей выбираемой впоследствии СУБД, а информация была бы доступна широкой категории пользователей: от заказчиков до системных программистов, которые будут заниматься проектированием БД на основе этой модели. Для этого исходная информация о предметной области анализируется и представляется в некотором формализованном виде. Это формализованное описание предметной области должно отражать ее специфику и использоваться на следующих этапах проектирования структуры БД в контексте особенностей выбранной конкретной СУБД. Такое формализованное описание предметной области называется инфологической или концептуальной моделью.

Затем строится модель в терминах конкретной СУБД, выбранной для проектирования БД. Этот уровень называется даталогической (логической) моделью. Описание даталогической структуры БД на языке выбранной СУБД называется ее схемой.

Следующим уровнем является физическая модель данных. В рамках этой модели определяются способы физического размещения данных в среде хранения, разрабатывается так называемая схема хранения данных. Поскольку в разных СУБД имеются различные возможности и особенности физической организации данных, то физическое моделирование проводится только после разработки даталогической модели.

Ряд современных СУБД обладают возможностями описания структуры БД с точки зрения конкретного пользователя. Такое описание называется внешней моделью. Для каждого типа пользователей внешнее моделирование позволяет разработать подсхему БД исходя из потребностей различных категорий пользователей. Этот подход является удобным с точки зрения облегчения работы пользователей с БД, поскольку пользователь при этом может, не зная о всей структуры БД, работать только с той ее частью, которая имеет к нему непосредственное отношение. Кроме того, механизм создания подсхем служит дополнительным средством защиты информации, хранимой в БД.

Таким образом, если СУБД поддерживает возможность создания подсхем, то архитектура БД становится трехуровневой: уровень схемы хранения, уровень схемы и уровень подсхем.

Рассмотрим теперь основные типы моделей данных.

Иерархическая модель БД является одной из первых моделей БД. Это обусловлено прежде всего тем, что именно такая модель наиболее естественным образом отражает множественные связи между объектами реального мира, когда один объект выступает в качестве родительского, с которым связано большое количество подчиненных объектов.

Принцип иерархической модели БД заключается в том, что все связи между данными описываются с помощью построения упорядоченного графа (дерева). Дерево является упорядоченным в соответствии с иерархией наборов элементов, которые называются узлами. Все узлы связаны между собой ветвями. При этом для описания схемы иерархической БД понятие “дерево” используется как определенный тип данных. Этот тип данных является составным и может включать в себя подтипы или поддеревья. БД является совокупностью деревьев, каждое из которых на языке иерархической модели называется физической базой данных. Каждое дерево состоит из единственного корневого (главного, родительского) типа и связанного с ним упорядоченного множества подчиненных (дочерних) типов. Корневой тип - это такой тип, который имеет подчиненные типы и не имеет родительских. Дочерние типы, имеющие один и тот же родительский тип, называются близнецами. Каждый из подчиненных типов для данного корневого типа может являться как простым, так и составным типом “запись”.

Различают три вида деревьев - сбалансированные, несбалансированные и двоичные деревья. В сбалансированном дереве каждый узел имеет одно и то же количество ветвей. Такая организация данных физически является наиболее простой, однако часто логическая структура данных требует переменного количества ветвей в каждом узле, что соответствует несбалансированному дереву. Двоичные деревья допускают наличие не более двух ветвей для одного узла.

Таким образом, иерархическая модель БД может быть интерпретирована как упорядоченная совокупность экземпляров деревьев, каждое из которых содержит экземпляры записей. Собственно содержание БД хранится в полях записей. Под полем записи понимается минимальная, неделимая единица данных.

При построении иерархической модели БД всегда необходимо помнить о поддержке целостностей связей, подразумевая под этим, что:

  • - всегда имеется по крайней мере один родительский тип, который может иметь произвольное количество подчиненных типов;
  • - дочерние типы не могут существовать без наличия родительского типа, причем для каждого подчиненного типа в БД имеется единственный корневой тир;
  • - у корневого типа не обязательно должны иметься подчиненные типы.

Необходимо отметить, что в ряде нотаций может использоваться иная терминология. Так, в нотации Американской Ассоциации по базам данных DBTG (Data Base Task Group) термину “запись” соответствует термин “сегмент”, а записью называется все множество записей, которые относятся к одному экземпляру типа “дерево”.

Основным достоинством иерархической модели БД является относительно высокая скорость обработки информации при обращении к данным. К недостаткам следует отнести ее громоздкость при наличии сложных логических связей между данными.

Сетевая модель БД является в некотором смысле обобщением иерархической модели. Основное отличие сетевой модели от иерархической заключается в том, что в сетевой модели подчиненный тип может иметь произвольное количество родительских типов. Основными понятиями сетевой модели являются набор, агрегат, запись и элемент данных. Под элементом данных в данном случае следует подразумевать то же самое, что и в иерархической модели - минимальную единицу данных. Агрегаты данных бывают двух типов: агрегат типа вектор и агрегат типа повторяющаяся группа. Агрегат типа вектор соответствует набору элементов данных. Агрегат типа повторяющаяся группа соответствует совокупности векторов данных. Записью называется совокупность агрегатов данных. Каждая запись имеет определенный тип и состоит из совокупности экземпляров записи. Набором называется граф, связывающий два типа записи. Таким образом, набор отражает иерархическую связь между двумя типами записей. Родительский тип записи в данном наборе называется владельцем набора, а дочерний тип записи -- членом того же набора. Для каких-либо любых двух типов записей может быть задано любое количество связывающих их наборов. При этом между двумя типами записей может быть определено различное количество наборов. Однако один и тот же тип записи не может быть одновременно владельцем и членом набора.

Несомненным достоинством сетевой модели данных является возможность более гибкого отображения множественных связей между объектами. Один из наиболее существенных недостатков заключается в высокой сложности схемы построения БД, что усугубляется ослаблением контроля за целостностью связей ввиду их многочисленности.

В основе реляционной модели данных лежит понятие отношения, которое является двумерной таблицей, содержащей множество строк (кортежей) и столбцов (полей или атрибутов). Таблица соответствует определенному объекту предметной области, ее поля описывают свойство данного объекта, а строки - конкретным экземплярам объекта. В каждом отношении всегда должен присутствовать атрибут или набор атрибутов, однозначно определяющий единственный кортеж этого отношения - первичный ключ. Для отражения связи между объектами используется связывание таблиц по определенным правилам с использованием так называемых внешних ключей, которые будут подробно рассмотрены в следующих разделах.

Основное достоинство реляционной модели заключается в ее простоте и логической замкнутости, а недостатком является сложность системы описания различных связей между таблицами.

Развитие реляционной модели привело к появлению так называемой постреляционной модели данных, основным отличием которой является допустимость многозначных полей (полей, значения которых состоят из множества подзначений). Многозначные поля можно интерпретировать как самостоятельные таблицы, встроенные в исходную таблицу. Кроме того, в постреляционной модели поддерживаются множественные ассоциированные поля, в совокупности образующих ассоциацию: в каждой строке первое значение одного столбца ассоциации соответствует первым значениям всех остальных столбцов ассоциации.

Основное достоинство постреляционной модели заключается в том, что она позволяет более эффективно хранить данные, а количество таблиц в этой модели заметно меньше по сравнению с реляционной. Недостатком является сложность обеспечения поддержания логической согласованности данных.

Теория многомерных моделей данных активно развивается в последнее время. Понятие многомерной модели означает многомерность логического представления структуры информации. Основными понятиями многомерной модели являются измерение и ячейка.

Измерением называется множество данных одного типа, которые образуют грань n-мерного куба. Ячейкой является поле, значение которого определяется всей совокупностью измерений. Значение ячейки может быть переменной или формулой.

Для работы с многомерными моделями данных используются специальные многомерные СУБД, в основе которых лежат понятия агрегируемости, историчности и прогнозируемости. Под агрегируемостью данных подразумеваются различные уровни обобщения информации. Историчность данных означает высокий уровень статичности как самих данных, так и связей между ними, а также упорядочение данных во времени в процессе их обработки и представления пользователям. Обеспечение прогнозируемости задается использованием специальных функций прогнозирования.

Многомерные СУБД используют две схемы организации данных - поликубическую и гиперкубическую. В поликубической модели n-мерные кубы могут иметь как различные размерности, так и различные измерения-грани. В гиперкубической модели все размерности кубов одинаковы, а измерения различных кубов совпадают.

Срезом называется некоторое подмножество n-мерного куба, задаваемое фиксацией заданного количества измерений. Срез имеет размерность, меньшую n, и используется, в частности, для представления информации пользователям в виде читаемых двумерных таблиц. Вращение также часто используется для двумерного представления данных и заключается в изменении порядка измерений. Операции агрегации и детализации означают более общее или более детальное представление информации.

Многомерные модели данных особенно удобны для работы с большими БД, поскольку позволяют эффективно обрабатывать значительные объемы информации, и это является их несомненным достоинством.

Основным отличием объектно-ориентированной модели от рассмотренных выше является использование объектно-ориентированных методов манипулирования данными - инкапсуляции, наследования и полиформизма.

Инкапсуляция означает возможность разграничения доступа различных программ, приложений, методов и функций (в более широком смысле и доступа различных категорий пользователей) к различным свойствам объектов данных. В контексте термина “инкапсуляция” часто используется понятие видимости - степень доступности отдельных свойств объекта. В современных объектно-ориентированных системах программирования (таких как Delphi или С++ Builder) имеются следующие уровни инкапсуляции (видимости), которые принято называть разделами:

  • 1. Разделы Public, Published и Automated - с незначительными отличительными особенностями свойства объекта, описанные как принадлежащие к данным разделам, полностью доступны.
  • 2. Раздел Private - этот раздел накладывает наиболее жесткие ограничения на видимость свойств объекта. Как правило, такие свойства оказываются доступными только владельцу данного объекта (программному модулю, в котором этот объект создан).
  • 3. Раздел Protected - в отличие от раздела Private свойства объекта становятся доступными наследникам владельца объекта.

В отличие от инкапсуляции наследование предполагает полную передачу всех свойств родительского объекта дочерним объектам. При необходимости наследование свойств одного объекта можно распространить и на объекты, не являющиеся по отношению к нему дочерними.

Полиморфизм означает возможность одного и того же приложения манипулировать с данными разных типов - приложения (методы, процедуры и функции), обрабатывающие объекты различных типов, могут иметь одно и то же имя.

Основным достоинством объектно-ориентированых моделей является возможность моделировать разнообразные сложные взаимосвязи между объектами.