Введение в OLAP. Категории информационных систем Olap технология многомерного анализа данных

4. Классификация OLAP-продуктов.

5. Принципы работы OLAP-клиентов.

7. Сферы применения OLAP-технологий.

8. Пример использования OLAP-технологий для анализа в сфере продаж.

1. Место OLAP в информационной структуре предприятия.

Термин "OLAP" неразрывно связан с термином "хранилище данных" (Data Warehouse ).

Данные в хранилище попадают из оперативных систем (OLTP-систем), которые предназначены для автоматизации бизнес-процессов. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Задача хранилища - предоставить "сырье" для анализа в одном месте и в простой, понятной структуре.

Есть и еще одна причина, оправдывающая появление отдельного хранилища - сложные аналитические запросы к оперативной информации тормозят текущую работу компании, надолго блокируя таблицы и захватывая ресурсы сервера.

Под хранилищем можно понимать не обязательно гигантское скопление данных - главное, чтобы оно было удобно для анализа.

Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему ведь еще требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого хранилища, лишены одного - гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить желаемое представление данных. Вот бы ему такой инструмент, который позволил бы разворачивать и сворачивать данные просто и удобно! В качестве такого инструмента и выступает OLAP.

Хотя OLAP и не представляет собой необходимый атрибут хранилища данных, он все чаще и чаще применяется для анализа накопленных в этом хранилище сведений.

Место OLAP в информационной структуре предприятия (рис. 1).

Рисунок 1 . Место OLAP в информационной структуре предприятия

Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в реляционное хранилище. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP-анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном хранилище. Важнейшим его элементом являются метаданные, т. е. информация о структуре, размещении и трансформации данных. Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

Подытоживая, можно определить OLAP как совокупность средств многомерного анализа данных, накопленных в хранилище.

2. Оперативная аналитическая обработка данных.

В основе концепции OLAP лежит принцип многомерного представления данных. В 1993 году E. F. Codd рассмотрел недостатки реляционной модели, в первую очередь, указав на невозможность "объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом", и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

По Кодду, многомерное концептуальное представление данных (multi-dimensional conceptual view ) представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных.

Одновременный анализ по нескольким измерениям определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению.

Так, измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения "предприятие - подразделение - отдел - служащий". Измерение Время может даже включать два направления консолидации - "год - квартал - месяц - день" и "неделя - день", поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений.

Операция спуска (drilling down ) соответствует движению от высших ступеней консолидации к низшим ; напротив, операция подъема (rolling up ) означает движение от низших уровней к высшим (рис. 2).


Рисунок 2. Измерения и направления консолидации данных

3. Требования к средствам оперативной аналитической обработки.

Многомерный подход возник практически одновременно и параллельно с реляционным . Однако, только начиная с середины девяностых годов, а точнее с
1993 г., интерес к МСУБД начал приобретать всеобщий характер. Именно в этом году появилась новая программная статья одного из основоположников реляционного подхода Э. Кодда , в которой он сформулировал 12 основных требований к средствам реализации OLAP (табл. 1).

Таблица 1.

Многомерное представление данных

Средства должны поддерживать многомерный на концептуальном уровне взгляд на данные.

Прозрачность

Пользователь не должен знать о том, какие конкретные средства используются для хранения и обработки данных, как данные организованы и откуда они берутся.

Доступность

Средства должны сами выбирать и связываться с наилучшим для формирования ответа на данный запрос источником данных. Средства должны обеспечивать автоматическое отображение их собственной логической схемы в различные гетерогенные источники данных.

Согласованная производительность

Производительность практически не должна зависеть от количества Измерений в запросе.

Поддержка архитектуры клиент-сервер

Средства должны работать в архитектуре клиент-сервер.

Равноправность всех измерений

Ни одно из измерений не должно быть базовым, все они должны быть равноправными (симметричными).

Динамическая обработка разреженных матриц

Неопределенные значения должны храниться и обрабатываться наиболее эффективным способом.

Поддержка многопользовательского режима работы с данными

Средства должны обеспечивать возможность работать более чем одному пользователю.

Поддержка операций на основе различных измерений

Все многомерные операции (например Агрегация) должны единообразно и согласованно применяться к любому числу любых измерений.

Простота манипулирования данными

Средства должны иметь максимально удобный, естественный и комфортный пользовательский интерфейс.

Развитые средства представления данных

Средства должны поддерживать различные способы визуализации (представления) данных.

Неограниченное число измерений и уровней агрегации данных

Не должно быть ограничений на число поддерживаемых Измерений.

Правила оценки программных продуктов класса OLAP

Набор этих требований, послуживших фактическим определением OLAP, следует рассматривать как рекомендательный, а конкретные продукты оценивать по степени приближения к идеально полному соответствию всем требованиям.

Позже определение Кодда было переработано в так называемый тест FASMI, требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации.

Помнить 12 правил Кодда слишком обременительно для большинства людей. Оказались, что можно резюмировать OLAP-определение только пятью ключевыми словами: Быстрый Анализ Разделяемой Многомерной Информации - или, кратко - FASMI (в переводе с английского: F ast A nalysis of S hared M ultidimensional I nformation ).

Это определение впервые было сформулировано в начале 1995 года и с тех пор не нуждалось в пересмотре.

FAST (Быстрый ) - означает, что система должна обеспечивать выдачу большинства ответов пользователям в пределах приблизительно пяти секунд. При этом самые простые запросы обрабатываются в течение одной секунды и очень немногие - более 20-ти секунд. Исследования показали, что конечные пользователи воспринимают процесс неудачным, если результаты не получены по истечении 30 секунд.

На первый взгляд может казаться удивительным, что при получении отчета за минуту, на который не так давно требовались дни, пользователь очень быстро начинает скучать во время ожиданий, и проект оказывается намного менее успешным, чем в случае мгновенного ответа, даже ценой менее детального анализа.

ANALYSIS (Анализ) означает, что система может справляться с любым логическим и статистическим анализом, характерным для данного приложения, и обеспечивает его сохранение в виде, доступном для конечного пользователя.

Не так важно, выполнен ли этот анализ в собственных инструментальных средствах поставщика или в связанном внешнем программном продукте типа электронной таблицы, просто все требуемые функциональные возможности анализа должны обеспечиваться интуитивным способом для конечных пользователей. Средства анализа могли бы включать определенные процедуры, типа анализа временных рядов, распределения затрат, валютных переводов, поиска целей, изменения многомерных структур, непроцедурного моделирования, выявления исключительных ситуаций, извлечения данных и другие операции зависимые от приложения. Такие возможности широко отличаются среди продуктов, в зависимости от целевой ориентации.

SHARED (Разделяемой) означает, что система осуществляет все требования защиты конфиденциальности (возможно до уровня ячейки) и, если множественный доступ для записи необходим, обеспечивает блокировку модификаций на соответствующем уровне. Не во всех приложениях есть необходимость обратной записи данных. Однако количество таких приложений растет, и система должна быть способна обработать множественные модификации своевременным, безопасным способом.

MULTIDIMENSIONAL (Многомерной ) - это ключевое требование. Если бы нужно было определить OLAP одним словом, то выбрали бы его. Система должна обеспечить многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий, поскольку это определенно наиболее логичный способ анализировать бизнес и организации. Не установлено минимальное число измерений, которые должны быть обработаны, поскольку оно также зависит от приложения, и большинство продуктов OLAP имеет достаточное количество измерений для тех рынков, на которые они нацелены.

INFORMATION (Информации) - это все. Необходимая информация должна быть получена там, где она необходима. Однако многое зависит от приложения. Мощность различных продуктов измеряется в терминах того, сколько входных данных они могут обрабатывать, но не сколько гигабайт они могут хранить. Мощность продуктов весьма различна - самые большие OLAP продукты могут оперировать, по крайней мере, в тысячу раз большим количеством данных по сравнению с самыми маленькими. По этому поводу следует учитывать много факторов, включая дублирование данных, требуемую оперативная память, использование дискового пространства, эксплуатационные показатели, интеграцию с информационными хранилищами и т.п.

Тест FASMI - разумное и понятное определение целей, на достижение которых ориентированы OLAP.

4. Классификация OLAP -продуктов.

Итак, суть OLAP заключается в том, что исходная для анализа информация представляется в виде многомерного куба, и обеспечивается возможность произвольно манипулировать ею и получать нужные информационные разрезы - отчеты. При этом конечный пользователь видит куб как многомерную динамическую таблицу, которая автоматически суммирует данные (факты) в различных разрезах (измерениях), и позволяет интерактивно управлять вычислениями и формой отчета. Выполнение этих операций обеспечивается OLAP -машиной (или машиной OLAP -вычислений).

На сегодняшний день в мире разработано множество продуктов, реализующих OLAP -технологии. Чтобы легче было ориентироваться среди них, используют классификации OLAP -продуктов: по способу хранения данных для анализа и по месту нахождения OLAP -машины. Рассмотрим подробнее каждую категорию OLAP -продуктов.

Классификация по способу хранения данных

Многомерные кубы строятся на основе исходных и агрегатных данных. И исходные и агрегатные данные для кубов могут храниться как в реляционных, так и многомерных базах данных. Поэтому в настоящее время применяются три способа хранения данных: MOLAP (Multidimensional OLAP ), ROLAP (Relational OLAP ) и HOLAP (Hybrid OLAP ). Соответственно, OLAP -продукты по способу хранения данных делятся на три аналогичные категории:

1. В случае MOLAP , исходные и агрегатные данные хранятся в многомерной БД или в многомерном локальном кубе.

2. В ROLAP -продуктах исходные данные хранятся в реляционных БД или в плоских локальных таблицах на файл-сервере. Агрегатные данные могут помещаться в служебные таблицы в той же БД. Преобразование данных из реляционной БД в многомерные кубы происходит по запросу OLAP -средства.

3. В случае использования HOLAP архитектуры исходные данные остаются в реляционной базе, а агрегаты размещаются в многомерной. Построение OLAP -куба выполняется по запросу OLAP -средства на основе реляционных и многомерных данных.

Классификация по месту размещения OLAP -машины.

По этому признаку OLAP -продукты делятся на OLAP -серверы и OLAP -клиенты:

· В серверных OLAP -средствах вычисления и хранение агрегатных данных выполняются отдельным процессом - сервером. Клиентское приложение получает только результаты запросов к многомерным кубам, которые хранятся на сервере. Некоторые OLAP -серверы поддерживают хранение данных только в реляционных базах, некоторые - только в многомерных. Многие современные OLAP -серверы поддерживают все три способа хранения данных: MOLAP , ROLAP и HOLAP .

MOLAP.

MOLAP - это Multidimensional On-Line Analytical Processing, то есть Многомерный OLAP. Это означает, что сервер для хранения данных использует многомерную базу данных (МБД). Смысл использования МБД очевиден. Она может эффективно хранить многомерные по своей природе данные, обеспечивая средства быстрого обслуживания запросов к базе данных. Данные передаются от источника данных в многомерную базу данных, а затем база данных подвергается агрегации. Предварительный расчет - это то, что ускоряет OLAP-запросы, поскольку расчет сводных данных уже произведен. Время запроса становится функцией исключительно времени, необходимого для доступа к отдельному фрагменту данных и выполнения расчета. Этот метод поддерживает концепцию, согласно которой работа производится единожды, а результаты затем используются снова и снова. Многомерные базы данных являются относительно новой технологией. Использование МБД имеет те же недостатки, что и большинство новых технологий. А именно - они не так устойчивы, как реляционные базы данных (РБД), и в той же мере не оптимизированы. Другое слабое место МБД заключается в невозможности использовать большинство многомерных баз в процессе агрегации данных, поэтому требуется время для того, чтобы новая информация стала доступна для анализа.

ROLAP.

ROLAP - это Relational On-Line Analytical Processing, то есть Реляционный OLAP. Термин ROLAP обозначает, что OLAP-сервер базируется на реляционной базе данных. Исходные данные вводятся в реляционную базу данных, обычно по схеме "звезда" или схеме "снежинка", что способствует сокращению времени извлечения. Сервер обеспечивает многомерную модель данных с помощью оптимизированных SQL-запросов.

Существует ряд причин для выбора именно реляционной, а не многомерной базы данных. РБД - это хорошо отработанная технология, имеющая множество возможностей для оптимизации. Использование в реальных условиях дало в результате более проработанный продукт. К тому же, РБД поддерживают более крупные объемы данных, чем МБД. Они как раз и спроектированы для таких объемов. Основным аргументом против РБД является сложность запросов, необходимых для получения информации из большой базы данных с помощью SQL. Неопытный SQL-программист мог бы с легкостью обременить ценные системные ресурсы попытками выполнить какой-нибудь подобный запрос, который в МБД выполняется гораздо проще.

Агрегированные/Предварительно агрегированные данные.

Быстрая реализация запросов является императивом для OLAP. Это один из базовых принципов OLAP - способность интуитивно манипулировать данными требует быстрого извлечения информации. В целом, чем больше вычислений необходимо произвести, чтобы получить фрагмент информации, тем медленнее происходит отклик. Поэтому, чтобы сохранить маленькое время реализации запросов, фрагменты информации, обращение к которым обычно происходит наиболее часто, но которые при этом требуют вычисления, подвергаются предварительной агрегации. То есть они подсчитываются и затем хранятся в базе данных в качестве новых данных. В качестве примера типа данных, который допустимо рассчитать заранее, можно привести сводные данные - например, показатели продаж по месяцам, кварталам или годам, для которых действительно введенными данными являются ежедневные показатели.

Различные поставщики придерживаются различных методов отбора параметров, требующих предварительной агрегации и числа предварительно вычисляемых величин. Подход к агрегации влияет одновременно и на базу данных и на время реализации запросов. Если вычисляется больше величин, вероятность того, что пользователь запросит уже вычисленную величину, возрастает, и поэтому время отклика сократиться, так как не придется запрашивать изначальную величину для вычисления. Однако, если вычислить все возможные величины - это не лучшее решение - в таком случае существенно возрастает размер базы данных, что сделает ее неуправляемой, да и время агрегации будет слишком большим. К тому же, когда в базу данных добавляются числовые значения, или если они изменяются, информация эта должна отражаться на предварительно вычисленных величинах, зависящих от новых данных. Таким образом, и обновление базы может также занять много времени в случае большого числа предварительно вычисляемых величин. Поскольку обычно во время агрегации база данных работает автономно, желательно, чтобы время агрегации было не слишком длительным.

· OLAP -клиент устроен по-другому. Построение многомерного куба и OLAP -вычисления выполняются в памяти клиентского компьютера. OLAP -клиенты также делятся на ROLAP и MOLAP . А некоторые могут поддерживать оба варианта доступа к данным.

У каждого из этих подходов, есть свои "плюсы" и "минусы". Вопреки распространенному мнению о преимуществах серверных средств перед клиентскими, в целом ряде случаев применение OLAP -клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP -сервера.

Разработка аналитических приложений с помощью клиентских OLAP-средств – процесс быстрый и не требующий специальной подготовки исполнителя. Пользователь, знающий физическую реализацию базы данных, может разработать аналитическое приложение самостоятельно, без привлечения ИТ-специалиста .

При использовании OLAP-сервера необходимо изучить 2 разные системы, иногда от различных поставщиков, – для создания кубов на сервере, и для разработки клиентского приложения.

OLAP-клиент предоставляет единый визуальный интерфейс для описания кубов и настройки к ним пользовательских интерфейсов.

Итак, в каких случаях применение OLAP-клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP-сервера?

· Экономическая целесообразность применения OLAP -сервера возникает, когда объемы данных очень велики и непосильны для OLAP -клиента, иначе более оправдано применение последнего. В этом случае OLAP -клиент сочетает в себе высокие характеристики производительности и низкую стоимость.

· Мощные ПК аналитиков – еще один довод в пользу OLAP -клиентов. При применении OLAP -сервера эти мощности не используются.

Среди преимуществ OLAP-клиентов можно также назвать следующее:

· Затраты на внедрение и сопровождение OLAP -клиента существенно ниже, чем затраты на OLAP -сервер.

· При использовании OLAP -клиента со встроенной машиной передача данных по сети производится один раз. При выполнении OLAP -операций новых потоков данных не порождается.

5. Принципы работы OLAP -клиентов.

Рассмотрим процесс создания OLAP-приложения с помощью клиентского инструментального средства (рис. 1).

Рисунок 1. Создание OLAP-приложения с помощью клиентского ROLAP-средства

Принцип работы ROLAP-клиентов – предварительное описание семантического слоя, за которым скрывается физическая структура исходных данных. При этом источниками данных могут быть: локальные таблицы, РСУБД. Список поддерживаемых источников данных определяется конкретным программным продуктом. После этого пользователь может самостоятельно манипулировать понятными ему объектами в терминах предметной области для создания кубов и аналитических интерфейсов.

Принцип работы клиента OLAP-сервера иной. В OLAP-сервере при создании кубов пользователь манипулирует физическими описаниями БД. При этом в самом кубе создаются пользовательские описания. Клиент OLAP-сервера настраивается только на куб.

При создании семантического слоя источники данных – таблицы Sales и Deal – описываются понятными конечному пользователю терминами и превращаются в «Продукты» и «Сделки». Поле «ID» из таблицы «Продукты» переименовывается в «Код», а «Name » - в «Товар» и т.д.

Затем создается бизнес-объект «Продажи». Бизнес-объект – это плоская таблица, на основе которой формируется многомерный куб. При создании бизнес-объекта таблицы «Продукты» и «Сделки» объединяются по полю «Код» товара. Поскольку для отображения в отчете не потребуются все поля таблиц – бизнес-объект использует только поля «Товар», «Дата» и «Сумма».

В нашем примере на базе бизнес-объекта «Продажи» создан отчет по продажам товаров по месяцам.

При работе с интерактивным отчетом пользователь может задавать условия фильтрации и группировки такими же простыми движениями «мышью». В этот момент ROLAP-клиент обращается к данным в кэше . Клиент же OLAP-сервера генерирует новый запрос к многомерной базе данных. Например, применив в отчете о продажах фильтр по товарам, можно получить отчет о продажах интересующих нас товаров.

Все настройки OLAP-приложения могут храниться в выделенном репозитории метаданных, в приложении или в системном репозитории многомерной базы данных. Реализация зависит от конкретного программного продукта.

Все, что включается в состав этих приложений, представляет собой стандартный взгляд на интерфейс, заранее определенные функции и структуру, а также быстрые решения для более или менее стандартных ситуаций. Например, популярны финансовые пакеты. Заранее созданные финансовые приложения позволят специалистам использовать привычные финансовые инструменты без необходимости проектировать структуру базы данных или общепринятые формы и отчеты.

Интернет является новой формой клиента. Кроме того, он несет на себе печать новых технологий; множество интернет-решений существенно отличаются по своим возможностям в целом и в качестве OLAP-решения - в частности. Существует масса преимуществ в формировании OLAP-отчетов через Интернет. Наиболее существенным представляется отсутствие необходимости в специализированном программном обеспечении для доступа к информации. Это экономит предприятию кучу времени и денег.

6. Выбор архитектуры OLAP-приложения.

При реализации информационно-аналитической системы важно не ошибиться в выборе архитектуры OLAP-приложения. Дословный перевод термина On-Line Analytical Process - «оперативная аналитическая обработка» - часто воспринимается буквально в том смысле, что поступающие в систему данные оперативно анализируются. Это заблуждение - оперативность анализа никак не связана с реальным временем обновления данных в системе. Эта характеристика относится к времени реакции OLAP-системы на запросы пользователя. При этом зачастую анализируемые данные представляют собой снимок информации «на вчерашний день», если, например, данные в хранилищах обновляются раз в сутки.

В этом контексте более точен перевод OLAP как «интерактивная аналитическая обработка». Именно возможность анализа данных в интерактивном режиме отличает OLAP-системы от систем подготовки регламентированных отчетов.

Другой особенностью интерактивной обработки в формулировке родоначальника OLAP Э. Кодда является возможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, т. е. самым понятным для корпоративных аналитиков способом». У самого Кодда термин OLAP обозначает исключительно конкретный способ представления данных на концептуальном уровне - многомерный. На физическом уровне данные могут храниться в реляционных базах данных, однако на деле OLAP-инструменты, как правило, работают с многомерными базами данных, в которых данные упорядочены в виде гиперкуба (рис. 1).

Рисунок 1. OLAP – куб (гиперкуб, метакуб )

При этом актуальность этих данных определяется моментом наполнения гиперкуба новыми данными.

Очевидно, что время формирования многомерной базы данных существенно зависит от объема загружаемых в нее данных, поэтому разумно ограничить этот объем. Но как при этом не сузить возможности анализа и не лишить пользователя доступа ко всей интересующей информации? Существует два альтернативных пути: Analyze then query («Сначала проанализируй - затем запроси дополнительную информацию») и Query then analyze («Сначала запроси данные - затем анализируй»).

Последователи первого пути предлагают загружать в многомерную базу данных обобщенную информацию, например, месячные, квартальные, годовые итоги по подразделениям. А при необходимости детализации данных пользователю предлагается сформировать отчет по реляционной базе, содержащей требуемую выборку, например, по дням для данного подразделения или по месяцам и сотрудникам выбранного подразделения.

Сторонники второго пути, напротив, предлагают пользователю, прежде всего, определиться с данными, которые он собирается анализировать и именно их загружать в микрокуб - небольшую многомерную базу данных. Оба подхода отличаются на концептуальном уровне и имеют свои достоинства и недостатки.

К достоинствам второго подхода следует отнести «свежесть» информации, которую пользователь получает в виде многомерного отчета - «микрокуба ». Микрокуб формируется на основе только что запрошенной информации из актуальной реляционной базы данных. Работа с микрокубом осуществляется в интерактивном режиме - получение срезов информации и ее детализация в рамках микрокуба осуществляется моментально. Другим положительным моментом является то, что проектирование структуры и наполнение микрокуба осуществляется пользователем «на лету», без участия администратора баз данных. Однако подход страдает и серьезными недостатками. Пользователь, не видит общей картины и должен заранее определяться с направлением своего исследования. В противном случае запрошенный микрокуб может оказаться слишком мал и не содержать всех интересующих данных, а пользователю придется запрашивать новый микрокуб , затем новый, затем еще и еще. Подход Query then analyze реализует инструментальное средство BusinessObjects одноименной компании и инструментальные средства платформы Контур компании Intersoft Lab .

При подходе Analyze then query объем данных, загружаемых в многомерную базу данных, может быть достаточно велик, наполнение должно выполняться по регламенту и может занимать достаточно много времени. Однако все эти недостатки окупаются впоследствии, когда пользователь имеет доступ практически ко всем необходимым данным в любой комбинации. Обращение к исходным данным в реляционной базе данных осуществляется лишь в крайнем случае, когда необходима детальная информация, например, по конкретной накладной.

На работе единой многомерной базы данных практически не сказывается количество обращающихся к ней пользователей. Они лишь читают имеющиеся там данные в отличие от подхода Query then analyze , при котором количество микрокубов в предельном случае может расти с той же скоростью, что и количество пользователей.

При данном подходе увеличивается нагрузка на ИТ-службы , которые кроме реляционных вынуждены обслуживать еще и многомерные базы данных. Именно эти службы несут ответственность за своевременное автоматическое обновление данных в многомерных базах данных.

Наиболее яркими представителями подхода «Analyze then query » являются инструментальные средства PowerPlay и Impromptu компании Cognos .

Выбор и подхода, и инструмента его реализующего, зависит в первую очередь от преследуемой цели: всегда приходится балансировать между экономией бюджета и повышением качества обслуживания конечных пользователей. При этом надо учитывать, что в стратегическом плане создание информационно-аналитических систем преследует цели достижения конкурентного преимущества, а не избежания расходов на автоматизацию. Например, корпоративная информационно-аналитическая система может предоставлять необходимую, своевременную и достоверную информацию о компании, публикация которой для потенциальных инвесторов обеспечит прозрачность и предсказуемость данной компании, что неизбежно станет условием ее инвестиционной привлекательности.

7. Сферы применения OLAP-технологий.

OLAP применим везде, где есть задача анализа многофакторных данных. Вообще, при наличии некоторой таблицы с данными, в которой есть хотя бы одна описательная колонка (измерение) и одна колонка с цифрами (меры или факты) OLAP-инструмент, как правило, будет эффективным средством анализа и генерации отчетов.

Рассмотрим некоторые сферы применения OLAP-технологий, взятые из реальной жизни.

1. Продажи.

На основе анализа структуры продаж решаются вопросы необходимые для принятия управленческих решений: об изменении ассортимента товаров, цен, закрытии и открытии магазинов, филиалов, расторжении и подписании договоров с дилерами, проведения или прекращения рекламных кампаний и т.д.

2. Закупки.

Задача обратно противоположная анализу продаж. Многие предприятия закупают комплектующие и материалы у поставщиков. Торговые предприятия закупают товары для перепродажи. Возможных задач при анализе закупок множество, от планирования денежных средств на основе прошлого опыта, до контроля за менеджерами , выбирающими поставщиков.

3. Цены.

С анализом закупок смыкается анализ рыночных цен. Целью этого анализа является оптимизация расходов, выбор наиболее выгодных предложений.

4. Маркетинг.

Под маркетинговым анализом будем иметь ввиду только область анализа покупателей или клиентов-потребителей услуг. Задачей этого анализа является правильное позиционирование товара, выявление групп покупателей для целевой рекламы, оптимизация ассортимента. Задача OLAP в данном случае - дать пользователю инструмент быстрого, со скоростью мысли, получения ответов на вопросы, интуитивно возникающие по ходу анализа данных.

5. Склад.

Анализ структуры остатков на складе в разрезе видов товаров, складов, анализ сроков хранения товаров, анализ отгрузки по получателям и многие другие важные для предприятия виды анализа возможны при наличии в организации складского учета.

6. Движение денежных средств.

Это целая область анализа, имеющая множество школ и методик. OLAP-технология может служить инструментом реализации или усовершенствования этих методик, но никак не их заменой. Анализируются денежные обороты безналичных и наличных средств в р азрезе бизнес-операций , контрагентов, валют и времени с целью оптимизации потоков, обеспечения ликвидности, и т.д. Состав измерений сильно зависит от особенностей бизнеса, отрасли, методики.

7. Бюджет.

Одна из самых благодатных областей применения OLAP-технологий. Не даром ни одна современная система бюджетирования не считается завершенной без наличия в ее составе OLAP-инструментария для анализа бюджета. Большинство бюджетных отчетов легко строятся на основе OLAP-систем. При этом отчеты отвечают на очень широкую гамму вопросов: анализ структуры расходов и доходов, сравнение расходов по определенным статьям у разных подразделений, анализ динамики и тенденций расходов на определенные статьи, анализ себестоимости и прибыли.

8. Бухгалтерские счета.

Классический балансовый отчет, состоящий из номера счета и содержащий входящие остатки, обороты и исходящие остатки может быть отлично проанализирован в OLAP-системе. Кроме того, OLAP-система может автоматически и очень быстро вычислять консолидированные балансы многофилиальной организации, балансы за месяц, квартал и год, агрегированные балансы по иерархии счетов, аналитические балансы на основании аналитических признаков.

9. Финансовая отчетность.

Технологично построенная система отчетности есть ни что иное, как набор именованных показателей со значениями на дату, которые требуется сгруппировать и просуммировать в различных разрезах для получения конкретных отчетов. Когда это так, то отображение и печать отчетов наиболее просто и дешево реализуются в OLAP-системах. В любом случае система внутренней отчетности предприятия не так консервативна и может быть перестроена в целях экономии средств на технические работы по созданию отчетов и получения возможностей многомерного оперативного анализа.

10. Посещаемость сайта.

Лог-файл Интернет-сервера многомерен по природе, а значит подходит для OLAP-анализа. Фактами являются: количество посещений, количество хитов, время проведенное на странице и другая информация, имеющаяся в логе.

11. Объемы производства.

Это еще один пример статистического анализа. Таким образом, можно анализировать объемы выращенного картофеля, выплавленной стали, произведенного товара.

12. Потребление расходных материалов.

Представьте себе завод, состоящий из десятков цехов, в которых расходуются охлаждающие, промывочные жидкости, масла, ветошь, наждачная бумага - сотни наименований расходных материалов. Для точного планирования, оптимизации издержек требуется тщательный анализ фактического потребления расходных материалов.

13. Использование помещений.

Еще один вид статистического анализа. Примеры: анализ загруженности учебных аудиторий, сдаваемых в аренду зданий и помещений, использования залов для конференций и пр.

14. Текучесть кадров на предприятии.

Анализ текучести кадров на предприятии в разрезе филиалов, отделов, профессий, уровня образования, пола, возраста, времени.

15. Пассажирские перевозки.

Анализ количества проданных билетов и сумм в разрезе сезонов, направлений, видов вагонов (классов), типов поездов (самолетов).

Этим списком не ограничиваются сферы применения OLAP - технологий. Для примера рассмотрим технологию OLAP -анализа в сфере продаж.

8. Пример использования OLAP -технологий для анализа в сфере продаж.

Проектирование многомерного представления данных для OLAP -анализа начинается с формирования карты измерений. Например, при анализе продаж может быть целесообразно, выделить отдельные части рынка (развивающиеся, стабильные, крупные и мелкие потребители, вероятность появления новых потребителей и т.п.) и оценить объемы продаж по продуктам, территориям, покупателям, сегментам рынка, каналам сбыта и размерам заказов. Эти направления образуют координатную сетку многомерного представления продаж - структуру его измерений.

Поскольку деятельность любого предприятия протекает во времени, первый вопрос, который возникает при анализе, это вопрос о динамике развития бизнеса. Правильная организация оси времени позволит качественно ответить на этот вопрос. Обычно ось времени делится на годы, кварталы и месяцы. Возможно еще большее дробление на недели и дни. Структура временного измерения формируется с учетом периодичности поступления данных; может обуславливаться также периодичностью востребования информации.

Измерение «группы товаров» разрабатывается так, чтобы в максимальной степени отразить структуру продаваемой продукции. При этом важно соблюсти определенный баланс, чтобы, с одной стороны, избежать излишней детализации (количество групп должно быть обозримым), а с другой - не упустить существенный сегмент рынка.

Измерение «Клиенты» отражает структуру продаж по территориально-географическому признаку. В каждом измерении могут существовать свои ие рархии, например, в данном измерении это может быть структура: Страны – Регионы – Города – Клиенты.

Для анализа эффективности деятельности подразделений следует создать свое измерение. Например, можно выделить два уровня иерархии: департаменты и входящие в них отделы, что и должно найти отражение в измерении «Подразделения».

По сути, измерения «Время», «Товары», «Заказчики» достаточно полно определяют пространство предметной области.

Дополнительно, полезно разбить это пространство на условные области, взяв за основу вычисляемые характеристики, например, диапазоны объема сделок в стоимостном выражении. Тогда весь бизнес можно разделить на ряд стоимостных диапазонов, в котором он осуществляется. В данном примере можно ограничиться следующими показателями: суммами продаж товаров, количеством проданных товаров, величиной дохода, количеством сделок, количеством клиентов, объемом закупок у производителей.

OLAP – куб для анализа будет иметь вид (рис. 2):


Рисунок 2. OLAP – куб для анализа объема продаж

Вот именно такой трехмерный массив в терминах OLAP и называется кубом. На самом деле, с точки зрения строгой математики кубом такой массив будет далеко не всегда: у настоящего куба количество элементов во всех измерениях должно быть одинаковым, а у кубов OLAP такого ограничения нет. Куб OLAP совсем не обязательно должен быть трехмерным. Он может быть и двух- , и многомерным - в зависимости от решаемой задачи. Серьезные OLAP-продукты рассчитаны на количество измерений порядка 20. Более простые настольные приложения поддерживают где-то 6 измерений.

Должны быть заполнены далеко не все элементы куба: если нет информации о продажах Товара 2 Клиенту 3 в третьем квартале, значение в соответствующей ячейке просто не будет определено.

Однако куб сам по себе для анализа не пригоден. Если еще можно адекватно представить или изобразить трехмерный куб, то с шести- или девятнадцатимерным дело обстоит значительно хуже. Поэтому перед употреблением из многомерного куба извлекают обычные двумерные таблицы. Эта операция называется "разрезанием" куба. Аналитик как бы берет и "разрезает" измерения куба по интересующим его меткам. Этим способом аналитик получает двумерный срез куба (отчет) и с ним работает. Структура отчета представлена на рисунке 3.

Рисунок 3. Структура аналитического отчета

Разрежем наш OLAP – куб и получим отчет о продажах за третий квартал, он будет иметь следующий вид (рис.4).

Рисунок 4. Отчет о продажах за третий квартал

Можно разрезать куб вдоль другой оси и получить отчет о продажах группы товаров 2 в течение года (рис. 5).

Рисунок 5. Поквартальный отчет о продажах товара 2

Аналогично можно проанализировать отношения с клиентом 4, разрезав куб по метке Клиенты (рис. 6)

Рисунок 6. Отчет о поставках товаров клиенту 4

Можно детализировать отчет по месяцам или говорить о поставках товаров в определенный филиал клиента.

Применение OLAP системы позволяет автоматизировать стратегический уровень управления организацией. OLAP (Online Analytical Processing – аналитическая обработка данных в реальном времени) представляет собой мощную технологию обработки и исследования данных. Системы, построенные на основе технологии OLAP, предоставляют практически безграничные возможности по составлению отчетов, выполнению сложных аналитических расчетов, построению прогнозов и сценариев, разработке множества вариантов планов.

Полноценные OLAP системы появились в начале 90-х годов, как результат развития информационных систем поддержки принятия решений. Они предназначены для преобразования различных, часто разрозненных, данных, в полезную информацию. OLAP системы могут организовать данные в соответствии с некоторым набором критериев. При этом не обязательно, чтобы критерии имели четкие характеристики.

Свое применение OLAP системы нашли во многих вопросах стратегического управления организацией: управление эффективностью бизнеса, стратегическое планирование, бюджетирование, прогнозирование развития, подготовка финансовой отчетности, анализ работы, имитационное моделирование внешней и внутренней среды организации, хранение данных и отчетности.

Структура OLAP системы

В основе работы OLAP системы лежит обработка многомерных массивов данных. Многомерные массивы устроены так, что каждый элемент массива имеет множество связей с другими элементами. Чтобы сформировать многомерный массив, OLAP система должна получить исходные данные из других систем (например, ERP или CRM системы), или через внешний ввод. Пользователь OLAP системы получает необходимые данные в структурированном виде в соответствии со своим запросом. Исходя из указанного порядка действий, можно представить структуру OLAP системы.

В общем виде, структура OLAP системы состоит из следующих элементов:

  • база данных . База данных является источником информации для работы OLAP системы. Вид базы данных зависит от вида OLAP системы и алгоритмов работы OLAP сервера. Как правило, используются реляционные базы данных, многомерные базы данных, хранилища данных и т.п.
  • OLAP сервер . Он обеспечивает управление многомерной структурой данных и взаимосвязь между базой данных и пользователями OLAP системы.
  • пользовательские приложения . Этот элемент структуры OLAP системы осуществляет управление запросами пользователей и формирует результаты обращения к базе данных (отчеты, графики, таблицы и пр.)

В зависимости от способа организации, обработки и хранения данных, OLAP системы могут быть реализованы на локальных компьютерах пользователей или с использованием выделенных серверов.

Существует три основных способа хранения и обработки данных:

  • локально . Данные размещаются на компьютерах пользователей. Обработка, анализ и управление данными выполняется на локальных рабочих местах. Такая структура OLAP системы имеет существенные недостатки, связанные со скоростью обработки данных, защищенностью данных и ограниченным применением многомерного анализа.
  • реляционные базы данных . Эти базы данных используются при совместной работе OLAP системы с CRM системой или ERP системой . Данные хранятся на сервере этих систем в виде реляционных баз данных или хранилищ данных. OLAP сервер обращается к этим базам данных для формирования необходимых многомерных структур и проведения анализа.
  • многомерные базы данных . В этом случае данные организованы в виде специального хранилища данных на выделенном сервере. Все операции с данными осуществляются на этом сервере, который преобразует исходные данные в многомерные структуры. Такие структуры называют OLAP кубом. Источниками данных для формирования OLAP куба являются реляционные базы данных и/или клиентские файлы. Сервер данных осуществляет предварительную подготовку и обработку данных. OLAP сервер работает с OLAP кубом не имея непосредственного доступа к источникам данных (реляционным базам данных, клиентским файлам и др.).

Виды OLAP систем

В зависимости от метода хранения и обработки данных все OLAP системы могут быть разделены на три основных вида.


1. ROLAP (Relational OLAP – реляционные OLAP системы) – этот вид OLAP системы работает с реляционными базами данных. Обращение к данным осуществляется напрямую в реляционную базу данных. Данные хранятся в виде реляционных таблиц. Пользователи имеют возможность осуществлять многомерный анализ как в традиционных OLAP системах. Это достигается за счет применения инструментов SQL и специальных запросов.

Одним из преимуществ ROLAP является возможность более эффективно осуществлять обработку большого объема данных. Другим преимуществом ROLAP является возможность эффективной обработки как числовых, так и текстовых данных.

К недостаткам ROLAP относится низкая производительность (по сравнению с традиционными OLAP системами), т.к. обработку данных осуществляет сервер OLAP. Другим недостатком является ограничение функциональности из-за применения SQL.


2. MOLAP (Multidimensional OLAP – многомерные OLAP системы). Этот вид OLAP систем относится к традиционным системам. Отличие традиционной OLAP системы, от других систем, заключается в предварительной подготовке и оптимизации данных. Эти системы, как правило, используют выделенный сервер, на котором осуществляется предварительная обработка данных. Данные формируются в многомерные массивы – OLAP кубы.

MOLAP системы являются самыми эффективными при обработке данных, т.к. они позволяют легко реорганизовать и структурировать данные под различные запросы пользователей. Аналитические инструменты MOLAP позволяют выполнять сложные расчеты. Другим преимуществом MOLAP является возможность быстрого формирования запросов и получения результатов. Это обеспечивается за счет предварительного формирования OLAP кубов.

К недостаткам MOLAP системы относится ограничение объемов обрабатываемых данных и избыточность данных, т.к. для формирования многомерных кубов, по различным аспектам, данные приходится дублировать.


3. HOLAP (Hybrid OLAP – гибридные OLAP системы). Гибридные OLAP системы представляют собой объединение систем ROLAP и MOLAP. В гибридных системах постарались объединить преимущества двух систем: использование многомерных баз данных и управление реляционными базами данных. HOLAP системы позволяют хранить большое количество данных в реляционных таблицах, а обрабатываемые данные размещаются в предварительно построенных многомерных OLAP кубах. Преимущества этого вида систем заключаются в масштабируемости данных, быстрой обработке данных и гибком доступе к источникам данных.

Существуют и другие виды OLAP систем, но они в большей степени являются маркетинговым ходом производителей, чем самостоятельным видом OLAP системы.

К таким видам относятся:

  • WOLAP (Web OLAP). Вид OLAP системы с поддержкой web интерфейса. В этих системах OLAP есть возможность обращаться к базам данных через web интерфейс.
  • DOLAP (Desktop OLAP). Этот вид OLAP системы дает возможность пользователям загрузить на локальное рабочее место базу данных и работать с ней локально.
  • MobileOLAP . Это функция OLAP систем, которая позволяет работать с базой данных удаленно, с использованием мобильных устройств.
  • SOLAP (Spatial OLAP). Этот вид OLAP систем предназначен для обработки пространственных данных. Он появился как результат интеграции географических информационных систем и OLAP системы. Эти системы позволяют обрабатывать данные не только в буквенно-цифровом формате, но и в виде визуальных объектов и векторов.

Преимущества OLAP системы

Применение OLAP системы дает организации возможности по прогнозированию и анализу различных ситуаций, связанных с текущей деятельностью и перспективами развития. Эти системы можно рассматривать как дополнение к системам автоматизации уровня предприятия. Все преимущества OLAP систем напрямую зависят от точности, достоверности и объема исходных данных.

Основными преимуществами OLAP системы являются:

  • согласованность исходной информации и результатов анализа . При наличии OLAP системы всегда есть возможность проследить источник информации и определить логическую связь между полученными результатами и исходными данными. Снижается субъективность результатов анализа.
  • проведение многовариантного анализа . Применение OLAP системы позволяет получить множество сценариев развития событий на основе набора исходных данных. За счет инструментов анализа можно смоделировать ситуации по принципу «что будет, если».
  • управление детализацией . Детальность представления результатов может изменяться в зависимости от потребности пользователей. При этом нет необходимости осуществлять сложные настройки системы и повторять вычисления. Отчет может содержать именно ту информацию, которая необходима для принятия решений.
  • выявление скрытых зависимостей . За счет построения многомерных связей появляется возможность выявить и определить скрытые зависимости в различных процессах или ситуациях, которые влияют на производственную деятельность.
  • создание единой платформы . За счет применения OLAP системы появляется возможность создать единую платформу для всех процессов прогнозирования и анализа на предприятии. В частности, данные OLAP системы, являются основой для построения прогнозов бюджета, прогноза продаж, прогноза закупок, плана стратегического развития и пр.

Целью курсовой работы является изучение технологии OLAP, понятие ее реализации и структуры.

В современном мире компьютерные сети и вычислительные системы позволяют анализировать и обрабатывать большие массивы данных.

Большой объем информации сильно усложняет поиск решений, но дает возможность получить намного точнее расчеты и анализ. Для решения такой проблемы существует целый класс информационных систем, выполняющих анализ. Такие системы называют системами поддержки принятия решений (СППР) (DSS, Decision Support System).

Для выполнения анализа СППР должна накапливать информацию, обладая средствами ее ввода и хранения. Всего можно выделить три основные задачи, решаемые в СППР:

· ввод данных;

· хранение данных;

· анализ данных.

Ввод данных в СППР осуществляется автоматически от датчиков, характеризующих состояние среды или процесса, или человеком-оператором.

Если ввод данных осуществляется автоматически от датчиков, то данные накапливаются по сигналу готовности, возникающему при появлении информации или путем циклического опроса. Если же ввод осуществляется человеком, то они должны предоставлять пользователям удобные средства для ввода данных, проверяющих их на правильность ввода, а так же выполнять необходимые вычисления.

При вводе данных одновременно несколькими операторами, необходимо решать проблемы модификации и параллельного доступа одних и тех же данных.

СППР предоставляет аналитику данные в виде отчетов, таблиц, графиков для изучения и анализа, именно поэтому такие системы обеспечивают выполнение функции поддержки принятия решений.

В подсистемах ввода данных, называемых OLTP (On-linetransactionprocessing), реализуется операционная обработка данных. Для их реализации используют обычные системы управления БД (СУБД).

Подсистема анализа может быть построена на основе:

· подсистемы информационно-поискового анализа на базе реляционных СУБД и статических запросов с использованием языка SQL;

· подсистемы оперативного анализа. Для реализации таких подсистем применяется технология оперативной аналитической обработки данных OLAP, использующая концепцию многомерного представления данных;

· подсистемы интеллектуального анализа. Данная подсистема реализует методы и алгоритмы DataMining .

С точки зрения пользователя, OLAP-системы представляют средства гибкого просмотра информации в различных срезах, автоматического получения агрегированных данных, выполнения аналитических операций свёртки, детализации, сравнения во времени. Благодаря всему этому OLAP-системы являются решением с большими преимуществами в области подготовки данных для всех видов бизнес-отчетности, предполагающих представление данных в различных разрезах и разных уровнях иерархии, таких как, отчетов по продажам, различных форм бюджетов и других. OLAP-системы имеет большие плюсы подобного представления и в других формах анализа данных, в том числе для прогнозирования.

1.2 Определение OLAP -систем

Технология комплексного многомерного анализа данных получила название OLAP. OLAP - это ключевой компонент организации ХД.

OLAP-функциональность может быть реализована различными способами, как простейшими, такими как анализ данных в офисных приложениях, так и более сложными - распределенными аналитическими системами, основанными на серверных продуктах.

OLAP (On-LineAnalyticalProcessing) – технология оперативной аналитической обработки данных использующая средства и методы для сбора, хранения и анализа многомерных данных и целях поддержки процессов принятия решений.

Основное назначение OLAP-систем - поддержка аналитической деятельности, произвольных запросов пользователей-аналитиков. Целью OLAP-анализа является проверка возникающих гипотез.

В 1993 году основоположник реляционного подхода к построению баз данных Эдгар Кодд с партнерами (Edgar Codd, математик и стипендиат IBM), опубликовали статью, инициированную компанией "Arbor Software" (сегодня это известнейшая компания "Hyperion Solutions"), озаглавленную "Обеспечение OLAP (оперативной аналитической обработки) для пользователей-аналитиков", в которой сформулированы 12 особенностей технологии OLAP, которые впоследствии были дополнены еще шестью. Эти положения стали основным содержанием новой и очень перспективной технологии.

Основные особенности технологии OLAP (Basic):

  • многомерное концептуальное представление данных;
  • интуитивное манипулирование данными;
  • доступность и детализация данных;
  • пакетное извлечение данных против интерпретации;
  • модели анализа OLAP;
  • архитектура "клиент-сервер" (OLAP доступен с рабочего стола);
  • прозрачность (прозрачный доступ к внешним данным);
  • многопользовательская поддержка.

Специальные особенности (Special):

  • обработка неформализованных данных;
  • сохранение результатов OLAP: хранение их отдельно от исходных данных;
  • исключение отсутствующих значений;
  • обработка отсутствующих значений.

Особенности представления отчетов (Report):

  • гибкость формирования отчетов;
  • стандартная производительность отчетов;
  • автоматическая настройка физического уровня извлечения данных.

Управление измерениями (Dimension):

  • универсальность измерений;
  • неограниченное число измерений и уровней агрегации;
  • неограниченное число операций между размерностями.

Исторически сложилось так, что сегодня термин "OLAP" подразумевает не только многомерный взгляд на данные со стороны конечного пользователя, но и многомерное представление данных в целевой БД. Именно с этим связано появление в качестве самостоятельных терминов "Реляционный OLAP" (ROLAP) и "Многомерный OLAP" (MOLAP).

OLAP-сервис представляет собой инструмент для анализа больших объемов данных в режиме реального времени. Взаимодействуя с OLAP- системой, пользователь сможет осуществлять гибкий просмотр информации, получать произвольные срезы данных и выполнять аналитические операции детализации, свертки, сквозного распределения, сравнения во времени одновременно по многим параметрам. Вся работа с OLAP-системой происходит в терминах предметной области и позволяет строить статистически обоснованные модели деловой ситуации.

Программные средства OLAP - это инструмент оперативного анализа данных, содержащихся в хранилище. Главной особенностью является то, что эти средства ориентированы на использование не специалистом в области информационных технологий, не экспертом-статистиком, а профессионалом в прикладной области управления - менеджером отдела, департамента, управления, и, наконец, директором. Средства предназначены для общения аналитика с проблемой, а не с компьютером. На рис. 6.14 показан элементарный OLAP-куб, позволяющий производить оценки данных по трем измерениям.


Многомерный OLAP-куб и система соответствующих математических алгоритмов статистической обработки позволяет анализировать данные любой сложности на любых временных интервалах.

Рис. 6.14. Элементарный OLAP-куб

Имея в своем распоряжении гибкие механизмы манипулирования данными и визуального отображения (рис. рис. 6.15, рис. 6.16), менеджер сначала рассматривает с разных сторон данные, которые могут быть (а могут и не быть) связаны с решаемой проблемой.

Далее он сопоставляет различные показатели бизнеса между собой, стараясь выявить скрытые взаимосвязи; может рассмотреть данные более пристально, детализировав их, например, разложив на составляющие по времени, по регионам или по клиентам, или, наоборот, еще более обобщить представление информации, чтобы убрать отвлекающие подробности. После этого с помощью модуля статистического оценивания и имитационного моделирования строится несколько вариантов развития событий, и из них выбирается наиболее приемлемый вариант.

Рис. 6.15.

У управляющего компанией, например, может зародиться гипотеза о том, что разброс роста активов в различных филиалах компании зависит от соотношения в них специалистов с техническим и экономическим образованием. Чтобы проверить эту гипотезу, менеджер может запросить из хранилища и отобразить на графике интересующее его соотношение для тех филиалов, у которых за текущий квартал рост активов снизился по сравнению с прошлым годом более чем на 10%, и для тех, у которых повысился более чем на 25%. Он должен иметь возможность использовать простой выбор из предлагаемого меню. Если полученные результаты ощутимо распадутся на две соответствующие группы, то это должно стать стимулом для дальнейшей проверки выдвинутой гипотезы.

В настоящее время быстрое развитие получило направление, называемое динамическим моделированием (Dynamic Simulation), в полной мере реализующее указанный выше принцип FASMI.

Используя динамическое моделирование, аналитик строит модель деловой ситуации, развивающуюся во времени, по некоторому сценарию. При этом результатом такого моделирования могут быть несколько новых бизнес-ситуаций, порождающих дерево возможных решений с оценкой вероятности и перспективности каждого.

Рис. 6.16. Аналитическая ИС извлечения, обработки данных и представления информации

В таблице 6.3 приведены сравнительные характеристики статического и динамического анализа.

Условия высокой конкуренции и растущей динамики внешней среды диктуют повышенные требования к системам управления предприятия. Развитие теории и практики управления сопровождались появлением новых методов, технологий и моделей, ориентированных на повышение эффективности деятельности. Методы и модели в свою очередь способствовали появлению аналитических систем. Востребованность аналитических систем в России – высокая. Наиболее интересны с точки зрения применения эти системы в финансовой сфере: банки, страховой бизнес, инвестиционные компании. Результаты работы аналитических систем необходимы в первую очередь людям, от решения которых зависит развитие компании: руководителям, экспертам, аналитикам. Аналитические системы позволяют решать задачи консолидации, отчетности, оптимизации и прогнозирования. До настоящего времени не сложилось окончательной классификации аналитических систем, как и нет общей системы определений в терминах, использующихся в данном направлении. Информационная структура предприятия может быть представлена последовательностью уровней, каждый из которых характеризуется своим способом обработки и управления информацией, и имеет свою функцию в процессе управления. Таким образом аналитические системы будут располагаться иерархически на разных уровнях этой инфраструктуры.

Уровень транзакционных систем

Уровень хранилищ данных

Уровень витрин данных

Уровень OLAP – систем

Уровень аналитических приложений

OLAP - системы - (OnLine Analytical Processing, аналитическая обработка в настоящем времени) - представляют собой технологию комплексного многомерного анализа данных. OLAP - системы применимы там, где есть задача анализа многофакторных данных. Являют собой эффективное средство анализа и генерации отчетов. Рассмотренные выше хранилища данных, витрины данных и OLAP - системы относятся к системам бизнес - интеллекта (Business Intelligence, BI).

Очень часто информационно-аналитические системы, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические системы называются в литературе Информационными системами руководителя (ИСР), или Executive Information Systems (EIS) . Они содержат в себе предопределенные множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы к имеющимся данным, которые могут возникнуть при принятии решений. Результатом работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов. Однако каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо. Таким образом, внешняя простота статических СППР, за которую активно борется большинство заказчиков информационно-аналитических систем, оборачивается катастрофической потерей гибкости.



Динамические СППР, напротив, ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Наиболее глубоко требования к таким системам рассмотрел E. F. Codd в статье , положившей начало концепции OLAP. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов.

Но динамические СППР могут действовать не только в области оперативной аналитической обработки (OLAP); поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах .

Сфера детализированных данных. Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно-поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных транзакционных систем, так и над общим хранилищем данных.

Сфера агрегированных показателей. Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация, гиперкубическое представление и многомерный анализ являются задачами систем оперативной аналитической обработки данных (OLAP) . Здесь можно или ориентироваться на специальные многомерные СУБД , или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида, либо агрегация информации может производиться на лету в процессе сканирования детализированных таблиц реляционной БД.

Сфера закономерностей. Интеллектуальная обработка производится методами интеллектуального анализа данных (ИАД, Data Mining) , главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

Оперативная аналитическая обработка данных

В основе концепции OLAP лежит принцип многомерного представления данных. В 1993 году в статье E. F. Codd рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность "объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом", и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

Классификация продуктов OLAP по способу представления данных.

В настоящее время на рынке присутствует большое количество продуктов, которые в той или иной степени обеспечивают функциональность OLAP. Около 30 наиболее известных перечислены в списке обзорного Web-сервера http://www.olapreport.com/. Обеспечивая многомерное концептуальное представление со стороны пользовательского интерфейса к исходной базе данных, все продукты OLAP делятся на три класса по типу исходной БД.

Самые первые системы оперативной аналитической обработки (например, Essbase компании Arbor Software , Oracle Express Server компании Oracle ) относились к классу MOLAP, то есть могли работать только со своими собственными многомерными базами данных. Они основываются на патентованных технологиях для многомерных СУБД и являются наиболее дорогими. Эти системы обеспечивают полный цикл OLAP-обработки. Они либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для связи с пользователем внешние программы работы с электронными таблицами. Для обслуживания таких систем требуется специальный штат сотрудников, занимающихся установкой, сопровождением системы, формированием представлений данных для конечных пользователей.

Системы оперативной аналитической обработки реляционных данных (ROLAP) позволяют представлять данные, хранимые в реляционной базе, в многомерной форме , обеспечивая преобразование информации в многомерную модель через промежуточный слой метаданных. ROLAP-системы хорошо приспособлены для работы с крупными хранилищами. Подобно системам MOLAP, они требуют значительных затрат на обслуживание специалистами по информационным технологиям и предусматривают многопользовательский режим работы.

Наконец, гибридные системы (Hybrid OLAP, HOLAP) разработаны с целью совмещения достоинств и минимизации недостатков, присущих предыдущим классам. К этому классу относится Media/MR компании Speedware . По утверждению разработчиков, он объединяет аналитическую гибкость и скорость ответа MOLAP с постоянным доступом к реальным данным, свойственным ROLAP.

Многомерный OLAP (MOLAP)

В специализированных СУБД, основанных на многомерном представлении данных, данные организованы не в форме реляционных таблиц, а в виде упорядоченных многомерных массивов:

1) гиперкубов (все хранимые в БД ячейки должны иметь одинаковую мерность, то есть находиться в максимально полном базисе измерений) или

2) поликубов (каждая переменная хранится с собственным набором измерений, и все связанные с этим сложности обработки перекладываются на внутренние механизмы системы).

Использование многомерных БД в системах оперативной аналитической обработки имеет следующие достоинства.

В случае использования многомерных СУБД поиск и выборка данных осуществляется значительно быстрее, чем при многомерном концептуальном взгляде на реляционную базу данных, так как многомерная база данных денормализована, содержит заранее агрегированные показатели и обеспечивает оптимизированный доступ к запрашиваемым ячейкам.

Многомерные СУБД легко справляются с задачами включения в информационную модель разнообразных встроенных функций, тогда как объективно существующие ограничения языка SQL делают выполнение этих задач на основе реляционных СУБД достаточно сложным, а иногда и невозможным.

С другой стороны, имеются существенные ограничения.

Многомерные СУБД не позволяют работать с большими базами данных. К тому же за счет денормализации и предварительно выполненной агрегации объем данных в многомерной базе, как правило, соответствует (по оценке Кодда ) в 2.5-100 раз меньшему объему исходных детализированных данных.

Многомерные СУБД по сравнению с реляционными очень неэффективно используют внешнюю память. В подавляющем большинстве случаев информационный гиперкуб является сильно разреженным, а поскольку данные хранятся в упорядоченном виде, неопределенные значения удаётся удалить только за счет выбора оптимального порядка сортировки, позволяющего организовать данные в максимально большие непрерывные группы. Но даже в этом случае проблема решается только частично. Кроме того, оптимальный с точки зрения хранения разреженных данных порядок сортировки скорее всего не будет совпадать с порядком, который чаще всего используется в запросах. Поэтому в реальных системах приходится искать компромисс между быстродействием и избыточностью дискового пространства, занятого базой данных.

Следовательно, использование многомерных СУБД оправдано только при следующих условиях.

Объем исходных данных для анализа не слишком велик (не более нескольких гигабайт), то есть уровень агрегации данных достаточно высок.

Набор информационных измерений стабилен (поскольку любое изменение в их структуре почти всегда требует полной перестройки гиперкуба).

Время ответа системы на нерегламентированные запросы является наиболее критичным параметром.

Требуется широкое использование сложных встроенных функций для выполнения кроссмерных вычислений над ячейками гиперкуба, в том числе возможность написания пользовательских функций.

Реляционный OLAP (ROLAP)

Непосредственное использование реляционных БД в системах оперативной аналитической обработки имеет следующие достоинства.

В большинстве случаев корпоративные хранилища данных реализуются средствами реляционных СУБД, и инструменты ROLAP позволяют производить анализ непосредственно над ними. При этом размер хранилища не является таким критичным параметром, как в случае MOLAP.

В случае переменной размерности задачи, когда изменения в структуру измерений приходится вносить достаточно часто, ROLAP системы с динамическим представлением размерности являются оптимальным решением, так как в них такие модификации не требуют физической реорганизации БД.

Реляционные СУБД обеспечивают значительно более высокий уровень защиты данных и хорошие возможности разграничения прав доступа.

Главный недостаток ROLAP по сравнению с многомерными СУБД - меньшая производительность. Для обеспечения производительности, сравнимой с MOLAP, реляционные системы требуют тщательной проработки схемы базы данных и настройки индексов, то есть больших усилий со стороны администраторов БД. Только при использовании звездообразных схем производительность хорошо настроенных реляционных систем может быть приближена к производительности систем на основе многомерных баз данных.