Презентация на тему линейное программирование. Презентация: Линейное программирование, решение задач симплексным методом

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Задачи оптимизации. Ограничения на допустимое множество. Классическая задача оптимизации. Функция Лагранжа. Линейное программирование: формулировка задач и их графическое решение. Алгебраический метод решения задач. Симплекс-метод, симплекс-таблица.

    реферат , добавлен 29.09.2008

    Классификация задач математического программирования. Сущность графического метода решения задач линейного программирования, алгоритм табличного симплекс-метода. Описание логической структуры и текст программы по решению задачи графическим методом.

    курсовая работа , добавлен 27.03.2011

    Общие задачи линейного программирования. Описание алгоритма симплекс-метода, записанного в канонической форме с односторонними ограничениями. Алгоритм построения начального опорного плана для решения задачи. Расширенный алгоритм искусственного базиса.

    курсовая работа , добавлен 24.10.2012

    Математические основы оптимизации. Постановка задачи оптимизации. Методы оптимизации. Решение задачи классическим симплекс методом. Графический метод. Решение задач с помощью Excel. Коэффициенты целевой функции. Линейное программирование, метод, задачи.

    реферат , добавлен 21.08.2008

    Постановка задачи линейного программирования. Решение системы уравнений симплекс-методом. Разработка программы для использования симплекс-метода. Блок-схемы основных алгоритмов. Создание интерфейса, инструкция пользователя по применению программы.

    курсовая работа , добавлен 05.01.2015

    Сущность линейного программирования. Математическая формулировка задачи ЛП и алгоритм ее решения с помощью симплекс-метода. Разработка программы для планирования производства с целью обеспечения максимальной прибыли: блок-схема, листинг, результаты.

    курсовая работа , добавлен 11.02.2011

    Понятие теории оптимизации экономических задач. Сущность симплекс-метода, двойственности в линейном программировании. Элементы теории игр и принятия решений, решение транспортной задачи. Особенности сетевого планирования и матричное задание графов.

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Решение простейших задач линейного программирования графическим методом 17.04.2012г.

    Если система ограничений задачи линейного программирования представлена в виде системы линейных неравенств с двумя переменными, то такая задача может быть решена геометрически.

    Задача. Имеется 14 каналов радиорелейной связи (РРС) и 9 каналов тропосферной. По ним необходимо передать информацию 3 видов: А, В, С. Причем информация А равна 600 у.е., В – 3000 у.е., С – 5500 у.е. (под информацией можно понимать число телефонных разговоров, передачу данных и пр.). Возможности каналов и затраты на обслуживание каждого канала заданы в таблице. Требуется отыскать задействованное количество каналов обоих видов, необходимое для передачи требуемой информации, чтобы стоимость эксплуатации была минимальной.

    Виды информации Каналы связи Требуемое количество информации, у.ед. Тропосферная РРС А 80 40 600 В - 1000 3000 С 300 800 5500 Затраты на обслуживание одного канала, руб. 3000 2000

    Этапы решения ЗЛП: Построить ОДР. Построить вектор-градиент целевой функции в какой-нибудь точке Х 0 принадлежащей ОДР – (c 1 ;c 2) . Построить прямую c 1 x 1 + c 2 x 2 = h, где h - любое положительное число, желательно такое, чтобы проведенная прямая проходила через многоугольник решений.

    Перемещать найденную прямую параллельно самой себе в направлении вектора-градиента до тех пор, пока прямая не покинет ОДР (при поиске максимума) или в противоположном ему (при поиске минимума) . В предельной точке целевая функция достигает максимума(минимума), либо устанавливается неограниченность функции на множестве решений. Определить координаты точки максимума (минимума) функции и вычислить значение функции в этой точке.


    По теме: методические разработки, презентации и конспекты

    Данная разработка может применяться как обобщающий урок по теме "Системы неравенств с двумя переменными" в 9 классе (алгебра 9 под ред. Теляковского) и как урок повторения по данной теме в 10 классе. ...

    материал предназначен для студентов повышенного уровня. в программе рассмотрен алгоритм составления базисного и опорного плпна разными методами и нахождение оптимального решения...

    Рабочая тетрадь к уроку математики на тему «Задачи линейного программирования» разработана мною для одноимённого урока математики (повышенный уровень). может быть использована как на уроке, семинарско...

    Слайд 2

    Линейное программирование

    Методы линейного программирования используют в прогнозных расчетах, при планировании и организации производственных процессов. Линейное программирование – это область математики, в которой изучаются методы исследования и отыскания экстремальных значений некоторой линейной функции, на аргументы которой наложены линейные ограничения.

    Слайд 3

    Такая линейная функция называется целевой, а набор количественных соотношений между переменными, выражающих определенные требования экономической задачи в виде уравнений или неравенств, называется системой ограничений. Слово программирование введено в связи с тем, что неизвестные переменные обычно определяют программу или план работы некоторого субъекта.

    Слайд 4

    Совокупность соотношений, содержащих целевую функцию и ограничения на ее аргументы, называется математической моделью задачи оптимизации. ЗЛП записывается в общем виде так: при ограничениях

    Слайд 5

    Здесь -неизвестные, -заданные постоянные величины.Ограничения могут быть заданы уравнениями. Наиболее часто встречаются задачи в виде: имеется ресурсов при ограничениях. Нужно определить объемы этих ресурсов, при которых целевая функция будет достигать максимума (минимума), т. е. найти оптимальное распределение ограниченных ресурсов. При этом имеются естественные ограничения >0.

    Слайд 6

    При этом экстремум целевой функции ищется на допустимом множестве решений, определяемом системой ограничений, причем все или некоторые неравенства в системе ограничений могут быть записаны в виде уравнений.

    Слайд 7

    В краткой записи ЗЛП имеет вид: при ограничениях

    Слайд 8

    Для составления математической модели ЗЛП необходимо: 1)обозначить переменные; 2)составить целевую функцию; 3)записать систему ограничений в соответствии с целью задачи; 4)записать систему ограничений с учетом имеющихся в условии задачи показателей. Если все ограничения задачи заданы уравнениями, то модель такого вида называется канонической. Если хоть одно из ограничений дано неравенством, то модель неканоническая.

    Слайд 9

    Примеры задач, которые сводятся к ЗПЛ.

    задача оптимального распределения ресурсов при планировании выпуска продукции на предприятии (задача об ассортименте); задача на максимум выпуска продукции при заданном ассортименте; задача о смесях (рационе, диете и т.д.); транспортная задача; задача о рациональном использовании имеющихся мощностей; задача о назначениях.

    Слайд 10

    1.Задача оптимального распределения ресурсов.

    Предположим, что предприятие выпускает различных изделий. Для их производства требуется различных видов ресурсов (сырья, рабочего и машинного времени, вспомогательных материалов). Эти ресурсы ограничены и составляют в планируемый период условных единиц. Известны также технологические коэффициенты, которые указывают, сколько единиц i-го ресурса требуется для производства изделия j-го вида. Пусть прибыль, получаемая предприятием при реализации единицы изделия j-го вида, равна. В планируемый период все показатели предполагаются постоянными.

    Слайд 11

    Требуется составить такой план выпуска продукции, при реализации которого прибыль предприятия была бы наибольшей. Экономико-математическая модель задачи

    Слайд 12

    Целевая функция представляет собой суммарную прибыль от реализации выпускаемой продукции всех видов. В данной модели задачи оптимизация возможна за счет выбора наиболее выгодных видов продукции. Ограничения означают, что для любого из ресурсов его суммарный расход на производство всех видов продукции не превосходит его запасы.

    Слайд 13

    Примеры

  • Слайд 14

    Допустим, что будет изготовлено изделий вида А, -изделий вида В и -изделий вида С. Тогда для производства такого количества изделий потребуется затратить станко-часов фрезерного оборудования. Так как общий фонд рабочего времени станков данного типа не может превышать 120, то должно выполняться неравенство

    Слайд 15

    Рассуждая аналогично, можно составить систему ограничений

    Слайд 16

    Теперь составим целевую функцию. Прибыль от реализации изделий вида А составит 10 , от реализации -изделий вида В -14 и от реализации -изделий вида С-12 Общая прибыль от реализации всех изделий составит

    Слайд 17

    Таким образом, приходим к следующей ЗЛП: Требуется среди всех неотрицательных решений системы неравенств найти такое, при котором целевая функция принимает максимальное значение.

    Слайд 18

    Пример 2

    Продукцией гормолокозавода являются молоко, кефир и сметана, расфасованные в тару. На производство 1 т молока, кефира и сметаны требуется соответственно1010,1010 и 9450 кг молока. При этом затраты рабочего времени при разливе 1 т молока и кефира составляют 0,18 и 0,19 машино-часов. На расфасовке 1 т сметаны заняты специальные автоматы в течение 3,25 часов.

    Слайд 19

    Всего для производства цельномолочной продукции завод может использовать 136000 кг молока. Основное оборудование может быть занято в течение 21,4 машино-часов, а автоматы по расфасовке сметаны – в течение 16,25 часов. Прибыль от реализации 1 т молока, кефира и сметаны соответственно равна 30, 22 и 136 руб. Завод должен ежедневно производить не менее 100 т молока, расфасованного в бутылки. На производство другой продукции нет ограничений.

    Слайд 20

    Требуется определить, какую продукцию и в каком количестве следует ежедневно изготовлять заводу, чтобы прибыль от ее реализации была максимальной. Составить математическую модель задачи.

    Слайд 21

    Решение

    Пусть завод будет производить т молока, т кефира и т сметаны. Тогда ему необходимо кг молока. Так как завод может использовать ежедневно не более 136000 кг молока, то должно выполняться неравенство

    Слайд 22

    Ограничения на время по расфасовке молока и кефира и по расфасовке сметаны. Так как ежедневно должно вырабатываться не менее100 т молока, то. По экономическому смыслу

    Слайд 23

    Общая прибыль от реализации всей продукции равна руб. Таким образом, приходим к следующей задаче: при ограничениях Так как целевая функция линейная и ограничения заданы системой неравенств, то эта задача является ЗЛП.

    Слайд 24

    Задача о смесях.

    Имеетсядва вида продукции, содержащие питательные вещества (жиры, белки и т.д.)

    Слайд 25

    Таблица

  • Слайд 26

    Решение

    Общая стоимость рациона при ограничениях с учетом необходимого минимума питательных веществ

    Слайд 27

    Математическая постановка задачи: составить дневной рацион, удовлетворяющий системе ограничений и минимизирующий целевую функцию. В общем виде к группе задач о смесях относятся задачи по отысканию наиболее дешевого набора из определенных исходных материалов, обеспечивающих получение смеси с заданными свойствами. Полученные смеси должны иметь в своем составе nразличных компонентов в определенных количествах, а сами компоненты являются составными частями m исходных материалов.

    Слайд 28

    Введем обозначения: -количество j-го материала, входящего в смесь; -цена материала j-го вида; -это минимально необходимое содержание i-го компонента в смеси. Коэффициенты показывают удельный вес i-го компонента в единице j-го материала

    Слайд 29

    Экономико-математическая модель задачи.

    Целевая функция представляет собой суммарную стоимость смеси, а функциональные ограничения являются ограничениями по содержанию компонентов в смеси: смесь должна содержать компоненты в объемах, не менее указанных.

    Слайд 30

    Задача о раскрое

    На швейной фабрике ткань может быть раскроена несколькими способами для изготовления нужных деталей швейных изделий. Пусть при j-ом варианте раскроя изготавливается деталей i-го вида, а величина отходов при данном варианте раскроя равна Зная, что деталей i-го вида следует изготовлять штук, требуется раскроить ткань так, чтобы было получено необходимое количество деталей каждого вида при минимальных общих отходах. Составить математическую модель задачи.

    Слайд 31

    Решение. Предположим, что по j-ому варианту раскраивается сотен ткани. Поскольку при раскрое ткани по j-ому варианту получается деталей i-го вида, по всем вариантам раскроя из используемых тканей будет получено Общая величина отходов по всем вариантам раскроя составит

    Слайд 35

    Основная задача ЛП

    Опр.4. Основной, или канонической ЗЛП называется задача, состоящая в определении значения целевой функции при условии, что система ограничений представлена в виде системы уравнений:

    Слайд 36

    Если требуется для удобства или по смыслу задачи перейти от одной формы записи к другой, то поступают следующим образом. Если требуется найти минимум функции, то можно перейти к нахождению максимума, умножив целевую функции на (-1). Ограничение –неравенство вида можно преобразовать в равенство добавлением к его левой части неотрицательной дополнительной переменной, а ограничение неравенство вида - в ограничение- равенство вычитанием из его левой части дополнительной неотрицательной переменной.

    Слайд 41

    Опорный план называется невырожденным, если он содержит m положительных компонент. В противном случае он называется вырожденным. План, при котором целевая функция ЗЛП принимает свое максимальное (минимальное) значение, называется оптимальным.

    Посмотреть все слайды

    Принятие решений в условиях неопределенности Если первый субъект имеет m стратегий, а второй - n стратегий, то говорят, что мы имеем дело с игрой m x n. Рассмотрим игру m x n. Пусть заданы множество стратегий: для первого игрока {Аi}, для второго игрока {Bj}, платежная матрица, где aij – выигрыш первого игрока или проигрыш второго игрока при выборе ими стратегий Аi и Bj соответственно. Каждый из игроков выбирает однозначно с вероятностью I некоторую стратегию, т.е. пользуется при выборе решения чистой стратегией. При этом решение игры будет в чистых стратегиях. Поскольку интересы игроков противоположны, то первый игрок стремится максимизировать свой выигрыш, а второй игрок, наоборот, минимизировать свой проигрыш. Решение игры состоит в определении наилучшей стратегии каждым игроком. Выбор наилучшей стратегии одним игроком проводится при полном отсутствии информации о принимаемом решении вторым игроком.