СВО — она же кастомная система жидкостного охлаждения. Система водяного охлаждения для компьютера — Подробное описание

Давно уже прошли те времена когда водяное охлаждение компьютера было что то из ряда вон выходящее. С которым справлялись лишь умелые руки фанатов компьютерных игр и оверклокеров. Сегодня при наличии определенной суммы денег и желания, любой может установить систему жидкостного охлаждения в свой компьютер. Благо что уже стали выпускать комплекты готового решения, одну из них рассмотрим в этой статье.

Конечно установка водяного охлаждения требует определенных навыков и аккуратности. Если вы можете умело справляться с инструментом и имеете терпение то можно смело приступать. Для начала нужно спроектировать (нарисовать на бумаге) принцип размещения компонентов охлаждения в корпусе, убедиться что хватает места. Либо купить уже изначально корпус уже предназначенный для установки водяного охлаждения.

Подбор компонентов охлаждения

Это самый главный пункт на котором стоит остановиться поподробней. От выбора компонентовохлаждения будет зависеть насколько эффективным будет охлаждение. Если у вас есть возможность купить корпус уже предназначенный для установки водяного охлаждения то это сильно облегчает задачу. Иначе продумайте расположение компонентов. Приведу пример Full Tower корпуса в который уже можно устанавливать систему жидкостного охлаждения.

Водоблоки

Водоблоки предназначены для передачи тепла от греющихся элементов к охлаждающейся жидкости. Главные источники тепла это центральный процессор и процессор на видео карте .

Как известно из курса физики вода имеет более высокий коэффициент теплопроводности, что дает нам более эффективную теплоотдачу по сравнению с воздушным охлаждением.

Фото блока жидкостногоохлаждения для видео карты.

Водоблок процессора

Перед покупкой водоблока для центрального процессора убедитесь что крепление водоблока подходит под крепление вашего разъема процессора, так же обратите внимание на качество полировки рабочей поверхности водоблока(той части в которой водоблок соприкасается с греющейся части процессора). Так же следует особенно внимательно подойти к выбору термопасты , лучше остановиться на выборе качественной термопасты с хорошей теплопроводностью.

Радиатор

Радиатор играет роль охладителя хладогента (воды). Охлаждение нагретой воды происходит за счет прохождения воды через тоненькие трубки с прикрепленными к ним тоненькими пластинами. Иногда на радиатор устанавливают большие (140 мм) вентиляторы для прогона воздуха через радиатор тем самым дополнительно охлаждая хладогент. Наилучшим местом крепления в корпусе это верх так как тепло поднимется вверх.

На фото изображен радиатор с возможностью закрепления трех вентиляторов.

Резервуар жидкостного охлаждения.

Резервуар является самой простой деталью водяного охлаждения, он должен иметь достаточные размеры для того что бы было пространство для повышения и уменьшения уровня воды. Плюс выход воздуха из системы должен быть бесприпятственным для уменьшения уровня шума системы. Ну и конечно у резервуара должно быть специальное отверстие для заполнения охлаждающей жидкостью.

На картинке резервуар с LED подсветкой.

Следующее что вам понадобится это шланги и соединительные фитинги. Если у вас стандартная система жидкостного охлаждения то тут все просто, есть два стандарта в размерах это 1/2 и 3/8 в английской мере измерения. Следите что бы диаметры совпали. Вы будете также нуждаться в хладагенте, чтобы поместить в Вашу систему. Хотя это обычно упоминается как “водное охлаждение,” самые современные системы охлаждения используют своего рода хладагент с антикоррозийными и антипроводящими свойствами. Эта жидкость доступна от любого дистрибьютора охлаждающей жидкости.

Установка всей системы

Перед началом установки нарисуйте схему что и как будет установлено и как подключено соединительными шлангами. Проследите возможность установки других компонентов такие как дополнительные жесткие диски и так далее.

1. Установите крепежную пластину на материнскую плату

Теперь рекомендуем к водоблоку процессора подсоединить все водяные шланги, что бы предотвратить изгибы материнской платы. И уже потом устанавливать сам водоблок на процессор. Убедитесь что все соединения прижаты фитингами и что шланги сидят плотно на своих местах. Нанесите термопасту и установите водоблок, следите за равномерностью натяжения крепежных винтов.

2.Прикрепите радиатор

Установите радиатор, отрежьте нужной длины трубки следите за тем что бы трубки не перегибались и имели оптимальную длину. Соедините трубки с радиатором.

3. Установите резервуар

Установите на место резервуар для охлаждающей жидкости. Резервуар в зависимости от модели и места можно установить как внутри корпуса так и за его пределами.

5. Установка насоса жидкостного охлаждения

Приступаем к установке водяного насоса. Современные насосы имеют малый размер поэтому установить его не составит особого труда. Насос можно приклеить двухстороннем тейпом. Соедините шланги от насоса к остальным компонентам. Подключите шланг выхода (указано стрелкой на насосе) с радиатором. Следите за оптимальным расположением шлангов, вы же не хотите разбирать половину охлаждающей системы, только для того что бы поменять жесткий диск.

6. Наполните теплоносителем

Теперь когда вся система собрана еще раз проверяем места соединения трубок. Приступаем к заполнению теплоносителем. Аккуратно заливаем жидкость и только тогда можно включить насос. Прогоняем компьютер в течении 10 минут и следим за уровнем жидкости, по мере необходимости добавляем охлаждающую жидкость.

На этом установка завершена остается только следить за уровнем жидкости и температурой системы.​

Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке .

Законы Физики.

Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, - это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.


Основательность воздушного охлаждения

Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman , Noctua , Skythe , Cooler Master .

Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное . То, что сразу переводит в разряд «настоящих энтузиастов».



Системы Водяного Охлаждения

Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.



Как это работает:

От процессора или графического чипа тепло сначала передается через теплообменник воде. Далее нагретая вода двигается в радиатор, где тепло из водной среды отдается воздуху и отрабатывается во внешнюю среду. Качает же водный поток, как водится, специальный насос – помпа. Весьма стандартная система, которая используется во многих сферах, таких как двигатели внутреннего сгорания (куда уж без нашей любимой автомобильной аналогии). Большим преимуществом выбора СВО объясняется просто, Вода имеет куда более высокий уровень теплоемкости, что позволяет намного эффективнее охлаждать элементы и поддерживать низкий температурный режим.

Какой же сделать выбор?

Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.


Необслуживаемые СВО

Для тех, кто только начинает свой путь в мире компьютеров существуют необслуживаемые системы водяного охлаждения. Многие именитые производители предлагают готовые и надежные необслуживаемые (замкнутые) системы охлаждения по относительно невысокой цене, например: Corsair Hydro Series (существует несколько вариантов с разными типами радиаторов), Cooler Master Seidon , NZXT Kraken , Silverstone Tundra , да что там говорить, даже компания Intel рекомендует к своим процессорам Intel Core i7 в исполнении LGA 2011 в качестве штатной СО – систему водяного охлаждения от компании Asetek.


А это точно эффективнее?

Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими "рубашками". Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.



Кастомные системы:

Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные ”, от англ. custom (custom-made) - изготовленные на заказ, системы водяного охлаждения .

Cложность “кастомной СВО ” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

Основные детали
  • Водоблок (или теплообменник)
  • Центробежный водяной насос (помпа) мощностью 600 литров/ч.
  • Радиатор охлаждения (автомобильный)
  • Расширительный резервуар под теплоноситель (воду)
  • Шланги 10-12 мм;
  • Вентиляторы диаметром 120мм (4 штуки)
  • Источник питания для вентиляторов
  • Расходные материалы
Водоблок

Основная задача водорблока это быстро забрать у процессора тепло и передать его теплоносителю. Для данных целей наиболее подходит медь. Возможно изготовление теплообменника и из алюминия, но его теплопроводность (230Вт/(м*К)) вдвое меньше меди (395,4 Вт/(м*К)). Также немаловажно устройство водоблока (или теплообменника). Устройство теплообменника представляет собой один или несколько непрерывных каналов, проходящих через весь внутренний объем водоблока. При этом важно максимально увеличить поверхность соприкосновения с водой и избежать застоев воды. Для увеличения поверхности обычно используют частые надрезы на стенках водоблока или устанавливают мелкие игольчатые радиаторы.

Я не пытался сделать что-то сложное, поэтому начал делать простую ёмкость для воды с двумя отверстиями для трубок. За основу был взят латунный соединитель для труб, а основанием стала медная пластина толщиной 2 миллиметра. Сверху в такую же пластину вставляются две медные трубки диаметра шланга. Всё запаивается оловянно-свинцовым припоем. Делая водоблок побольше я сначала не задумывался о его весе. В собранном виде со шлангами и водой на материнской плате будет висеть более 300 грамм, и для облегчения пришлось использовать дополнительные крепления для шлангов.

  • Материал: медь, латунь
  • Диаметр штуцеров: 10 мм
  • Пайка: Оловянно-свинцовый припой
  • Способ крепления: винтами к креплению магазинного кулера, шланги крепятся хомутами
  • Цена: около 100 рублей
Выпиливание и пайка

Помпа

Помпы бывают внешние или погружные. Первая лишь пропускает ее через себя, а вторая ее выталкивает, будучи в нее погружена. Здесь использована погружная, помещается в ёмкость с водой. Внешнюю найти не удалось, искал в зоомагазинах, а там только погружные аквариумные помпы. Мощность от 200 до 1400 литров в час цена от 500 до 2000 рублей. Питается от розетки, мощность от 4 до 20 ватт. На твёрдой поверхности помпа сильно шумит, а на поролоне шум незначителен. В качестве резервуара для воды использовалась банка, вмещающая в себя помпу. Для присоединения силиконовых шлангов были использованы стальные хомуты на винтах. Для лёгкого надевания и снятия шлангов можно использовать смазку без запаха.

  • Максимальная производительность - 650 л/ч.
  • Высота подъема воды – 80 см
  • Напряжение – 220В
  • Мощность – 6 Вт
  • Цена - 580 рублей
Радиатор

Насколько качественным будет радиатор, во многом определит эффективность всей системы водяного охлаждения. Тут использован автомобильный радиаторсистемы отопления (печка) от девятки, куплен старый на барахолке за 100 рублей. К сожалению, интервал между пластинами в нём оказался меньше миллиметра, поэтому пришлось вручную раздвигать и сжимать пластины по нескольку штук, чтобы слабые китайские вентиляторы смогли продуть его насквозь.

  • Материал трубок: медь
  • Материал ребер: алюминий
  • Размер: 35х20х5 см
  • Диаметр штуцеров: 14 мм
  • Цена: 100 рублей
Обдув

Обдувается радиатор двумя парами 12 см вентиляторами спереди и сзади. Запитать 4 вентилятора от системного блока во время проверки не представилось возможным, поэтому пришлось собрать простой блок питания на 12 вольт. Вентиляторы были соединены параллельно, и подключены с учётом полярности. Это важно, иначе с большой вероятностью вентилятор можно испортить. У кулера 3 провода: черный (земля), красный (+12В) и желтый (значение скорости).

  • Материал: китайский пластик
  • Диаметр: 12 см
  • Напряжение: 12 В
  • Ток: 0.15 А
  • Цена: 80*4 рублей
Хозяйке на заметку

Цель снижения шума я не ставил из-за стоимости вентиляторов. Так вентилятор за 100 рублей изготовлен из чёрного пластика и потребляет 150 миллиампер тока. Именно такие я использовал для обдува радиатора, дует слабо, зато дешёвый. Уже за 200-300 рублей можно найти намного более мощные и красивые модели с потреблением 300-600 миллиампер, но на максимальных оборотах они шумные. Это решается силиконовыми прокладками и антивибрационными креплениями, но для меня решающее значение играла минимальная стоимость.

Блок питания

Если готового под рукой нет, можно собрать простейший из подручных материалов и микросхемы, которая стоит меньше 100 рублей. Для 4 вентиляторов необходим ток 0,6 А и немного про запас. Микросхема даёт примерно 1 ампер при напряжении от 9 до 15 вольт в зависимости от модели. Можно использовать любую модель, выставляя 12 вольт переменным резистором.

  • Инструменты и паяльник
  • Радиодетали
  • Микросхема
  • Провода и изоляция
  • Цена: 100 рублей

Установка и проверка

Аппаратная часть
  • Процессор: Intel Core i7 960 3.2 ГГц / 4.3 ГГц
  • Системная плата: ASUS Rampage 3 formula
  • Блок питания: OCZ ZX1250W
  • Термопаста: АЛ-СИЛ 3
Программное обеспечение
  • Windows 7 x64 SP1
  • Prime 95
  • RealTemp 3.69
  • Cpu-z 1.58

Особо долго тестировать не пришлось, т.к. результаты не приближались даже к возможностям воздушного кулера. Радиатор СВО обдувался пока только двумя китайскими вентиляторами из 4х возможных и ещё не были раздвинуты шире пластины для лучшего продува. Так в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО 57 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 100 градусов за 30 секунд на СВО. При разгоне результаты ещё хуже.

Была предпринята попытка сделать новый водоблок с более тонкой (0,5 мм) медной пластиной основания и почти втрое более вместительный внутри, правда из тех же материалов (медь + латунь). В радиаторе раздвинуты пластины для лучшего продува и добавлено ещё два вентилятора, теперь их 4 штуки. В этот раз в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО примерно 55 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 83 градусов на СВО. Но при этом вода в контуре начинает довольно быстро нагреваться и уже через 5-7 минут температура процессора достигает 96 градусов. Это показания без разгона.

Собирать СВО было, конечно интересно, но применить её для охлаждения современного процессора не удалось. В старых компьютерах отлично справляется штатный кулер. Может быть я подобрал некачественные материалы или неправильно изготавливал водоблок, но собрать СВО менее, чем за 1000 рублей в домашних условиях мне не представляется возможным. Почитав обзоры бюджетных готовых СВО, имеющихся в магазинах я не надеялся, что моя самоделка будет лучше хорошего воздушного кулера. Для себя сделал вывод, что не стоит экономить в будущем на комплектующих для СВО. Когда решусь покупать СВО для разгона, однозначно буду собирать её сам из отдельных деталей.

Видеоролик

Хорошее охлаждение центрального процессора и процессора видеокарты последние десятилетия является необходимым условием их бесперебойной работы. Но греются в компьютере не только процессор и видеокарта - отдельный кулер может потребоваться микросхеме чипсета, жестким дискам и даже модулям памяти. Производители корпусов добавляют дополнительные вентиляторы, увеличивают их мощность и габариты, улучшают устройство радиаторов. И, разумеется, жидкостные системы охлаждения не могли быть обойдены вниманием.


Вообще, жидкостное охлаждение процессоров – тема не новая: оверклокеры столкнулись с недостаточной эффективностью воздушного охлаждения уже давно. «Разогнанные» до теоретического максимума процессоры грелись так, что не справлялись никакие из имевшихся тогда в продаже кулеров. Систем жидкостного охлаждения в магазинах не было, и оверклокерские форумы полнились темами о самодельных «водянках». И сегодня многие ресурсы предлагают собрать систему жидкостного охлаждения самостоятельно, но смысла в этом уже немного. Стоимость комплектующих сравнима с ценой недорогих СЖО в магазинах, а качество (и, следовательно, надежность) заводской сборки обычно все же выше кустарной.

Почему эффективность СЖО выше, чем у простого кулера?


Рассматриваемые СЖО не имеют вырабатывающих холод элементов, охлаждение происходит за счет воздуха возле системного блока – как и в случае обычного воздушного охлаждения. Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора. Но скорость теплоотвода зависит не только от скорости движения теплоносителя, но и от эффективности охлаждения этой жидкости и от эффективности её нагревания теплом процессора. И, если первая задача решается увеличением площади радиатора, площади теплообменника радиатора и улучшением воздухообдува, то во втором случае теплообмен ограничен площадью процессора. Поэтому общая эффективность системы ограничивается эффективностью водоблока процессора. Но даже с таким ограничением СЖО обеспечивают примерно в 3 раза лучший теплосъем по сравнению с обычным воздушным охлаждением. В числах это означает снижение температуры чипа на 15-25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

Конструкция СЖО


Любая система жидкостного охлаждения содержит следующие элементы:

- Водоблок . Его назначение – эффективно снимать тепло с процессора и передавать протекающей воде. Соответственно, чем выше теплопроводность материала, из которого изготовлены подошва и теплообменник водоблока, тем выше и эффективность этого элемента. Но теплопередача также зависит и от площади соприкосновения теплоносителя и радиатора – поэтому конструкция водоблока важна ничуть не меньше материала.


Поэтому плоскодонный (бесканальный) водоблок, в котором жидкость просто протекает вдоль стенки, прилегающей к процессору, намного менее эффективен, чем водоблоки со сложной структурой дна или теплообменниками (трубчатыми или змеевидными). Минусами водоблоков со сложной структурой является то, что они создают намного большее сопротивление водяному потоку и, следовательно, требуют более мощной помпы.


- Помпа . Распространенное мнение, что чем мощнее помпа, тем лучше и что СЖО без отдельной мощной помпы вообще неэффективна – некорректно. Функция помпы – обеспечить циркуляцию теплоносителя с такой скоростью, чтобы перепад температур между теплообменником водоблока и жидкостью был максимальным. Т.е., с одной стороны, нагревшаяся жидкость должна вовремя выводиться из водоблока, с другой стороны – поступать в водоблок она должна уже полностью охлажденной. Поэтому мощность помпы должна быть сбалансирована с эффективностью остальных элементов системы и замена помпы на более мощную в большинстве случаев не даст положительного эффекта. Маломощные помпы часто объединены в одном корпусе с водоблоком.


- Радиатор. Назначение радиатора – рассеивать тепло, приносимое теплоносителем. Соответственно, он должен быть изготовлен из материала с высокой теплопроводностью, обладать большой площадью и быть укомплектован мощным вентилятором (вентиляторами). Если площадь радиатора СЖО сравнима с площадью радиатора процессорного кулера и вентилятор на ней установлен ничуть не мощнее, то не стоит ожидать от такой СЖО эффективности, превышающей эффективность того же кулера.
- Соединительные трубки должны быть достаточной толщины, чтобы не создавать большого сопротивления водяному потоку. По этой причине обычно используются трубки диаметром от 6 до 13 мм – в зависимости от скорости потока жидкости. В качестве материала трубок обычно используется ПВХ или силикон.
- Теплоноситель должен иметь высокую теплоемкость и высокую теплопроводность. Из доступных и безопасных жидкостей лучше всего этим условиям удовлетворяет обычная дистиллированная вода. Часто в воду добавляются присадки для снижения её коррозирующих свойств, для предотвращения размножения микроорганизмов (зацветания) и просто для эстетического эффекта (цветные присадки в системах с прозрачными трубками).


В мощных системах с большим объемом теплоносителя становится необходимым использование расширительного бачка – резервуара, в который будут уходить излишки жидкости при её термическом расширении. В таких системах помпа обычно объединяется с расширительным бачком.

Характеристики систем жидкостного охлаждения.

Обслуживаемая/необслуживаемая СЖО.


Необслуживаемая система идет с завода полностью в сборе, залитая теплоносителем и загерметизированная. Установка такой системы отличается простотой – некоторые необслуживаемые СЖО установить ничуть не сложнее, чем обычный кулер. Минусы у необслуживаемой СЖО тоже есть:
- Низкая ремонтопригодность. Трубки часто просто запаяны в неразъемные пластиковые штуцеры. С одной стороны, это обеспечивает герметичность, с другой стороны, замена поврежденного элемента такой системы может вызвать осложнения.
- Сложность замены теплоносителя обычно тоже связана с ремонтом системы – если часть жидкости вытекла, снова заполнить необслуживаемую СЖО может оказаться весьма непросто – заливочными отверстиями такие системы, как правило, не снабжаются.
- Низкая универсальность связана с неразборностью системы. Невозможно ни расширить систему, ни заменить какой-либо из её элементов на более эффективный.
- Фиксированная длина трубок ограничивает возможности по выбору места установки радиатора.


Обслуживаемые СЖО часто поставляются в виде набора элементов и установка такой системы потребует времени и некоторой сноровки. Зато и возможности по её кастомизации намного выше – можно добавлять водоблоки для чипсета и для видеокарты, менять все элементы на более подходящие для конкретного компьютера, выносить радиатор на любое (разумное) расстояние от процессора и т.д. Можно не бояться устаревания сокета (и системы охлаждения) при замене материнской платы – для восстановления актуальности потребуется только заменить водоблок процессора. К недостаткам обслуживаемых СЖО, кроме сложности установки и высокой цены, следует отнести большую вероятность протечек через разъемные соединения и большую вероятность загрязнения теплоносителя.

СЖО должна поддерживать сокет материнской платы, на которую устанавливается. И если обслуживаемую СЖО еще можно приспособить под другой сокет, купив дополнительно соответствующий водоблок, то необслуживаемая СЖО может использоваться только с теми сокетами, что перечислены в её характеристиках.


Количество вентиляторов не оказывает прямого влияния на эффективность СЖО, но большое их количество позволяет снизить скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при сохранении эффективности. Будет ли СВО с большим количеством вентиляторов эффективнее – зависит от их суммарного максимального воздушного потока.

Максимальный воздушный поток считается в кубических футах в минуту (CFM) и определяет, какой объем воздуха прогоняется через вентилятор в минуту. Чем выше это значение, тем выше вклад этого вентилятора в эффективность радиатора. Размеры (длина, ширина, толщина ) радиатора ничуть не менее важны – четыре мощнейших вентилятора, обдувающих простой тонкий радиатор с малой площадью пластин будут охлаждать теплоноситель ничуть не лучше, чем один вентилятор, хорошо подобранный к радиатору с большой площадью пластин.


Материал радиатора определяет его теплопроводность, т.е., с какой скоростью переданное ему тепло будет распределяться по всей площади радиатора. Теплопроводность меди почти в два раза выше, чем теплопроводность алюминия, но в данном случае эффективность радиатора больше зависит от его конструкции и площади, чем от материала..

Материал водоблока , в силу ограниченности его размеров, важнее материала радиатора. Фактически, медь является единственным приемлемым вариантом. Алюминиевые водоблоки (встречающиеся в дешевых СЖО) снижают эффективность системы настолько, что пропадает смысл использования жидкостного охлаждения.

Максимальный уровень шума зависит от максимальной частоты вращения вентиляторов . Если в системе не предусмотрена регулировка частоты вращения, на этот параметр следует обратить пристальное внимание. При наличии регулировки частоты вращения, внимание следует обратить на минимальный уровень шума .

Уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении - негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.

Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.

Тип коннектора питания может быть 3-pin и 4-pin.
3-pin коннектор не имеет отдельного провода для изменения скорости вращения вентилятора. Управлять скоростью вращения такого вентилятора можно только изменяя его напряжение питания. Не все материнские платы поддерживают этот способ. Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать

Зачастую после покупки компьютера пользователь сталкивается с таким неприятным явлением, как сильный шум, идущий от охлаждающих вентиляторов. Могут наблюдаться сбои в работе операционной системы из-за нагрева до высоких температур (90°C и более) процессора или видеокарты. Это весьма существенные недостатки, устранить которые возможно с помощью дополнительно устанавливаемого на ПК водяного охлаждения. Как изготовить систему своими руками?

Жидкостное охлаждение, его положительные свойства и недостатки

Принцип действия системы жидкостного охлаждения компьютера (СЖОК) основан на использовании соответствующего теплоносителя. Жидкость за счёт постоянной циркуляции поступает к тем узлам, температурный режим которых необходимо контролировать и регулировать. Дальше теплоноситель по шлангам поступает в радиатор, где и охлаждается, отдавая тепло воздуху, который затем отводится за пределы системного блока с помощью вентиляции.

Жидкость, имея более высокую теплопроводность по сравнению с воздухом, быстро стабилизирует температуру таких аппаратных ресурсов, как процессор и графический чип, приводя их к норме. В результате можно добиться существенного повышения производительности ПК за счёт его системного разгона. При этом надёжность работы компонентов компьютера не будет нарушена.

При использовании СЖОК можно обходиться вообще без вентиляторов или применять маломощные бесшумные модели. Работа компьютера становится тихой, в результате чего пользователь чувствует себя комфортно.

К недостаткам СЖОК следует отнести её дороговизну. Да, готовая система жидкостного охлаждения является удовольствием не из дешёвых. Но ведь при желании её можно сделать и установить самостоятельно. Это займёт время, но будет стоить недорого.

Классификация охлаждающих водяных систем

Жидкостные охлаждающие системы могут быть:

  1. По типу размещения:
    • внешние;
    • внутренние.

      Отличие между внешними и внутренними СЖОК в том, где расположена система: снаружи или внутри системного блока.

  2. По схеме соединения:
    • параллельные - при таком подключении разводка идёт от основного радиатора-теплообменника к каждому водоблоку, обеспечивающему охлаждение процессора, видеокарты или другого узла / элемента компьютера;
    • последовательные - каждый водоблок соединяется друг с другом;
    • комбинированные - такая схема включает одновременно параллельные и последовательные подключения.
  3. По способу обеспечения циркуляции жидкости:
    • помповые - система использует принцип принудительного нагнетания охлаждающей жидкости к водоблокам. В качестве нагнетателя используются помпы. Они могут иметь собственный герметичный корпус либо погружаться в охлаждающую жидкость, находящуюся в отдельном резервуаре;
    • безпомповые - жидкость циркулирует за счёт испарения, при котором создаётся давление, движущее теплоноситель в заданном направлении. Охлаждаемый элемент, нагреваясь, превращает подводимую к нему жидкость в пар, который затем снова становится жидкостью в радиаторе. По характеристикам такие системы значительно уступают помповым СЖОК.

Виды СЖОК - галерея

При использовании последовательного подключения сложно непрерывно обеспечивать хладагентом все подключаемые узлы араллельная схема подключения СЖОК - простое подключение с возможностью легко просчитывать характеристики охлаждаемых узлов Системный блок с внутренней СЖОК занимает много места внутри корпуса компьютера и требует высокой квалификации при монтаже
При использовании внешней СЖОК внутреннее пространство системного блока остаётся свободным

Составляющие элементы, инструменты и материалы для сборки СЖОК

Подберём необходимый набор для жидкостного охлаждения центрального процессора компьютера. В состав СЖОК войдут:

  • водяной блок;
  • радиатор;
  • два вентилятора;
  • помпа;
  • шланги;
  • фитинги;
  • резервуар для жидкости;
  • сама жидкость (в контур можно залить дистиллированную воду или тосол).

Все составляющие системы жидкостного охлаждения можно приобрести в интернет-магазине по соответствующему запросу.

Некоторые узлы и детали, например, водяной блок, радиатор, фитинги, резервуар, можно изготовить самостоятельно. Однако вам, вероятно, придётся заказывать токарные и фрезерные работы. В результате может получиться так, что СЖОК обойдётся дороже, чем если бы вы её приобрели готовой.

Наиболее приемлемым и наименее затратным вариантом будет приобрести основные узлы и детали, после чего самостоятельно монтировать систему. В этом случае достаточно иметь базовый набор слесарного инструмента для выполнения всех необходимых работ.

Делаем жидкостную систему охлаждения ПК своими руками - видео

Изготовление, сборка и монтаж

Рассмотрим изготовление внешней помповой системы жидкостного охлаждения центрального процессора ПК.

  1. Начнём с водоблока. Самую простую модель этого узла можно приобрести в интернет-магазине. Идёт он сразу с фитингами и зажимами.
  2. Водоблок можно изготовить и самостоятельно. В этом случае понадобится медная болванка диаметром от 70 мм и длиной 5–7 см, а также возможность заказать токарные и фрезерные работы в технической мастерской. В результате получится самодельный водоблок, который по окончании всех манипуляций нужно будет покрыть автомобильным лаком для исключения окисления.
  3. Для крепления водоблока можно использовать отверстия на материнской плате в месте изначальной установки радиатора воздушного охлаждения с вентилятором. В отверстия вставляются металлические стойки, на которые крепятся вырезанные из фторопласта планки, прижимающие водоблок к процессору.
  4. Радиатор лучше всего приобрести готовый.

    Некоторые умельцы используют радиаторы от старых автомобилей.

  5. В зависимости от размеров, на радиатор с помощью резиновых прокладок и кабельных стяжек или же посредством саморезов крепятся один или два стандартных компьютерных вентилятора.
  6. В качестве шланга можно использовать обычный жидкостный уровень, сделанный из силиконовой трубки, обрезав его с обеих сторон.
  7. Без фитингов не обходится ни одна СЖОК, ведь именно через них шланги подключаются ко всем узлам системы.
  8. В качестве нагнетателя рекомендуется использовать небольшую аквариумную помпу, которую можно приобрести в зоомагазине. Крепится она в подготовленном резервуаре для охлаждающей жидкости с помощью присосок.
  9. В роли резервуара для жидкости, выполняющего функции расширительного бачка, можно использовать любой пищевой контейнер из пластмассы, имеющий крышку. Главное, чтобы туда помещалась помпа.
  10. Для возможности долива жидкости в крышку контейнера врезается горловина любой пластиковой бутылки с закруткой.
  11. Электропитание всех узлов СЖОК выводится на отдельный штекер для возможности подключения от компьютера.
  12. На заключительном этапе все узлы СЖОК закрепляются на подобранном по размеру листе оргстекла, подключаются и фиксируются зажимами все шланги, штекер электропитания соединяется с компьютером, система заполняется дистиллированной водой или тосолом. После запуска ПК охлаждающая жидкость сразу начинает подаваться к центральному процессору.

Водоблок на компьютер своими руками - видео

Водяное охлаждение превосходит по характеристикам изначально устанавливаемую на современных компьютерах воздушную систему. За счёт жидкостного теплоносителя, используемого вместо вентиляторов, сокращается шумовой фон. Компьютер работает намного тише. Сделать СЖОК можно своими руками, обеспечив при этом надёжную защиту основных элементов и узлов компьютера (процессор, видеокарта и др.) от перегрева.