Ультразвуковой дальномер точность измерения. Ультразвуковой дальномер: инструкция, модели, отзывы

Некоторые замечания:
Все детали, нужные для создания ультразвукового дальномера по этой схеме продаются в чипидипе, стоит около 500-900р за все(точно не помню - денег много было, не считал:-). (корпус, пищалки, разъемы прочее)
Некоторые коментарии по схеме ультразвукового дальномера:
1. Пищалки можно юзать любые, под разные задачки лучше разные ... для моей задачи - чем болше габариты тем лучше, угол 50.
2. Можно попробывать использовать только одну относительно дорогую AD822 а на место компаратора чего-нить по дешевле (у меня просто не было ничего другого под рукой вообще)
3. В меге для генерации 40 килогерц можно использовать таймер, для этого нужно подобрать другой резонатор. (у меня были только 16 и 12.. они не подходят)
4. Скорость звука в воздухе вообще-то зависит от температуры - если очень важна точность (мне она пофигу) то учитывай это
5. Заметь- что на картинке дальномера в корпусе - пищалки не касаются пластмассы - один чел говорил, что при мегаточной настройки (данная схема способна и на такое) звук от пищалки до микрофона будет передаваться по корпусу, по этому лучше перестраховаться
6. Пример простейшей прошивки меги на си(под эту схему) можно посмотреть
7. Программатор лучше использовать STK200/300 он же avreal - софт и схему можно дернуть
8. По уму в прошивке надо отслеживать и начало и конец "пачки", в примере только начало(точность вырастет конкретно).. может допишу - выложу.
9. Пищалка очень любит 40кгц - чуть в сторону уже совсем не то... наверное правду в мануале пишут, что резонансная:-)
10. НА схеме неспроста в излучателе понапиханы транзисторы - желающим дать больше вольт чем 12 - велком - один чел говорил, что будет пищать громче(считай дальше). Я этого делать не стал по трем причинам: во первых 24 вольта еще где-то найти надо, во вторых текущаа версия при соотв настройке ризистора итак видит стену за 4 метра, т.е. мне не где испытывать его, да и не нужно. Ну а третья причина этот же чел говорил, что пищалки имеют тенденцию дохнуть на этом вольтаже
11. Общий совет: можно найти все резисторы и конденсаторы в нерабочем блоке питания от компа ATX(они там все где-то 1/8 вата) - денег сэкономишь!
12. Ошибочное мнение, что ультразвук издаваемый пищалкой как-то могут услышать собики и прочие твари, он на них плохо влияет: у меня собака пришла как то ночью и уснула напротив пищалки включенной.
13. Еще - так просто к сведенью - меги и прочие 8битный контроллеры от атмела - гонятся отлично.. у меня в некоторых задачках вместо положенных 16 работают на 24 и нормально.
14. При устрановке R5 выше килоома (10, 50, 100) получится очень большое усиление, и скорее всего понадобятся рупора, зато дальность измерений сильно вырастет.
15. Вместо устрановки рупоров (при большом R5) см. выше, можно модернизировать прошивку, что б она не ждала в начальный момент времени полезный сигнал. Но тогда нельзя будет мерять расстояния около 10 см и меньше.

Коментраий к совету 8 - желтым обозначен момент срабатывания прерывания МК ультразвукового дальномера на приеме, собственно можно ограничится именно этим первым моментом, подождать чуть-чуть и делать следующее измерение, генерая следущюю пачку импульсов - а время полета звука считать временем от первого посланного импульса(или последнего не суть важно) до ПЕРВОГО принятого.
Второй вариант - обозначен красным - более точный - поскольку пачка импульсов как правило доходит отнюдь не в идеальном виде и не полностью (может не быть пары тройки первых или последних импульсов), собствено даже на картинке видно, что она "сплющилась" по краям, хотя отправлялся идеальный прямоугольник импульсов - так вот: суть в том, что середина пачки должна оставаться на месте несмотря на то, что края ее уже могут не почувствоваться компаратором. Так что точность в несколько.. (милиметров надо думать) зависит от того учитывалась в прошивке ультразвукового дальномера середина или только начало пачки при приеме ее обратно.

Введение 3

Теоретическая часть 4

Описание схемы 6

Описание программы 13

Заключение 34

Библиографический список 35

Приложения 36

Введение

Курсовой проект предназначен для приобретения практических навыков проектирования несложных микропроцессорных систем различного назначения. Проект базируется на теоретической части дисциплины «Организация ЭВМ и систем». Задание на курсовой проект выдается руководителем проекта.

Курсовой проект выполняется с целью закрепления знаний по курсу «Организация ЭВМ и систем» и развития навыков самостоятельного проектирования микропроцессорных систем различного назначения.

Задачами курсового проекта являются:

    практическое овладение методикой проектирования устройств;

    синтез функциональной схемы микропроцессорной системы на основе анализа исходных данных;

    получение навыков разработки аппаратного и программного обеспечения микропроцессорной системы;

    дальнейшее развитие навыков функционально-логического, схемотехнического и конструкторского проектирования, оформления и выпуска конструкторской документации в соответствии с ГОСТ.

Для решения перечисленных задач необходимы знания не только курса «Организация ЭВМ и систем», но и ряда смежных дисциплин, а также умение пользоваться нормативно-справочной информацией.

Одним из основных направлений научно-технического прогресса в настоящее время является развитие и широкое применение изделий микроэлектроники в промышленном производстве, в устройствах и системах управления самыми разнообразными объектами и процессами.

Одним из примеров являются микроконтроллеры, производимые фирмой Microchip Technology. Это семейство 8-разрядных микроконтроллеров отличается низкой ценой, низким энеpгопотpеблением и высокой скоpостью. Микроконтроллеры имеют встpоенное ЭППЗУ пpогpаммы, ОЗУ данных и выпускаются в 18 и 28 выводных коpпусах. Для изделий, пpогpамма котоpых может меняться, либо содеpжит какие-либо пеpеменные части, таблицы, паpаметpы калибpовки, ключи и т.д., выпускается электрически стираемый и пеpепpогpаммиpуемый микроконтpоллеp PIC16F84. Он также содержит электрически пеpепpогpаммиpуемое ПЗУ данных. Именно такой контpоллеp и будем использовать для разработки устройства ультразвукового измерения дальности.

Теоретическая часть

Работа устройства ультразвукового измерения дальности основывается на явлении распространения звуковых волн в воздушной среде и отражения их в процессе распространения от других сред (контролируемых тел).

Информация о расстоянии до контролируемого тела, точнее некоторой отражающей зоны, принадлежащей поверхности контролируемого тела, определяется временным запаздыванием принимаемого сигнала относительно излучаемого. Примерно таким же образом летучие мыши ориентируются в пространстве: они излучают вперед направленный пучок ультразвуковых колебаний и ловят отраженный сигнал. Звуковые волны распространяются в воздушной среде с определенной скоростью, поэтому по задержке прихода отраженного сигнала можно с достаточной степенью точности судить, на каком расстоянии находится тот предмет, который отразил звук.

Ультразвуковой дальномер производит измерение расстояния до контролируемого тела по схеме эхо-локации (см. рис 1).

Рис. 1. Схема эхо-локации.

Для измерения расстояний в воздушной среде используются пьезокерамические преобразователи (типа МУП-3 и МУП-4, произведенные “ЭЛПА” г. Зеленоград), работающие на 40 кГц частоте. Два пьезокерамических преобразователя (излучающий и приемный), подобранные так, чтобы резонансная частота излучения излучающего, совпадала с резонансной частотой приема приемного, образуют акустический блок.

Преимуществами использования таких преобразователей в воздушной среде являются: сравнительная простота излучения и приема колебаний, компактность приемоизлучающих элементов аппаратуры, высокая устойчивость к шумовому, химическому и оптическому загрязнению окружающей среды, возможность работы в агрессивных средах при высоких давлениях, возможность значительного удаления вторичной аппаратуры от места измерений, длительный срок службы, простота в использовании, сравнительно малая стоимость, практически мгновенная готовность к работе после включения, нечувствительность к электромагнитным помехам, высокая надежность, невосприимчивость органов слуха человека к ультразвуку используемой частоты (40КГц) и ряд других.

Примерами применения разрабатываемого ультразвукового дальномера могут служить: контроль дистанции между автотранспортом при его движении в условиях недостаточной видимости на небольших скоростях, измерение уровня заполнения резервуаров жидким веществом, уровня загрузки бункеров или кузовов автомобилей сыпучим или дробленым материалом, контроль размеров продукции, измерение дистанции от борта судна до причальной стенки и др.

Описание принципиальной схемы

Принципиальная электрическая схема проектируемого устройства представлена в приложении. Представленную схему можно разбить на 5 функциональных блоков:

1) блок питания;

2) блок передатчика;

3) блок приемника;

4) блок индикации;

5) блок цифрового управления.

Рассмотрим порядок работы каждого из них.



Рис. 2. Блок питания.

Блок питания представлен на рис. 2. При включении сетевого выключателя S1 на первичную обмотку трансформатора TV1 поступает переменное напряжение величиной в 220В. Со вторичной обмотки трансформатора снимается пониженное до 7,5В переменное напряжение. После прохождения через диодный мост V1-V4 мы получаем выпрямленное, несглаженное напряжение величиной около 7В, т.к. существует некоторое небольшое падение напряжения на диодах. Пульсации полученного выпрямленного напряжения сглаживает электролитический конденсатор С2, а керамический конденсатор С1 предназначен для фильтрации высокочастотных сетевых помех. Затем напряжение стабилизируется при помощи интегрального стабилизатора напряжения DA1 и фильтруются высоко и низкочастотные помехи с помощью конденсаторов С3 и С4 соответственно. Диодный мост V1-V4 собран на кремниевых низкочастотных диодах допускающих напряжение до 100В при токе не более 10А. Интегральный стабилизатор напряжения DA1 (КР142ЕН5В) имеет следующие характеристики: Uвых=5В – выходное напряжение;

Iмакс=1,5А – максимальный ток нагрузки;

Pмакс=10Вт – максимальная мощность;

включение – плюсовое – тип подключения.

Данная схема блока питания является типовой.

Рис. 3. Блок передатчика.

Таблица 1. Характеристики ПКУП МУП-3

Значение


Ширина полосы излучения по уровню 0,5, кГц

Ширина полосы приема по уровню 0,5, кГц

По уровню 0,7 макс.

По уровню 0,5 макс.

Емкость на частоте 1 кГц, пФ

Входной импеданс на частоте максимального излучения, кОм

Предельное допустимое значение напряжения сигнала на входе, В

Биполярные транзисторы типа n-p-n КТ972 используемые в схеме имеют следующие параметры:

Uкбои=60В - максимально допустимое импульсное напряжение коллектор-база;

Uкэои=60В - максимально допустимое импульсное напряжение коллектор-эмиттер;

Iкmaxи=4000мА - максимально допустимый импульсный ток коллектора;

Pкmaxт=8Вт - максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом;

H31э≥750 - статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером;

Iкбо≤1000мкА - обратный ток коллектора;

Fгр≥200МГц - граничная частота коэффициента передачи тока в схеме с общим эмиттером;

Рис. 4. Блок приемника.

Блок приемника изображен на рис. 4. Блок приемника выполнен по схеме усилителя с общим эмиттером. Максимальный коэффициент усиления для усилителя выполненного по схеме с общим эмиттером рассчитывается из соотношения резисторов R19 и R22. Т.е. 10000/10=1000. Резисторы R16 и R18 служат для стабилизации рабочей точки транзистора. Соотношение их номиналов определяет положение рабочей точки транзистора Т6. Резистор R13 подтягивает выход приемника к земле, когда нет сигнала с усилителя. Резистор R17 служит для установки режима чувствительности ультразвукового датчика Qz3. Конденсаторы С7 и С8 фильтруют постоянную составляющую. В качестве излучателя Qz3 использован пьезокерамический ультразвуковой преобразователь МУП-4, (т.к. он обладают достаточно высокой чувствительностью, по заверениям производителя) основные характеристики которого представлены в таблице 2.

Таблица 2. Характеристики ПКУП МУП-4

Наименование параметра, единица измерения

Значение

Частота максимальной передачи, кГц

Звуковое давление на расстоянии 0,3 м при
Uвх=5В на частоте максимального излучения, дБ

Чувствительность на частоте максимального приема, мВ/Па

Ширина полосы излучения по уровню 0,5, кГц

Ширина полосы приема по уровню 0,5, кГц

Диаграмма направленности, Град

По уровню 0,7 макс.измерение устройство предупреждения аварийных ситуаций при движении по трассеКурсовая работа >> Коммуникации и связь

... ультразвуковых приборов не возможно из-за небольшой дальность действия... крупногабаритным автотранспортом. Регулировка дальности измерений Имеется три уровня чувствительности... аналоговых и цифровых функциональных устройств . Использование технологии BCDIII ...

  • Повышение эффективности защиты от боеприпасов с радиовзрывателями на основе реализации методов

    Реферат >> Коммуникации и связь

    На обнаружение сигнала, – время измерения основных параметров сигнала; – время... -1 основу узла памяти составляют 3 ультразвуковые линии задержки и коммутирующие их электронные... разработку эффективных мер и устройств повышения радиуса дальности работы СП РВ. ...

  • Между предметами. В этом профессионалам отлично помогают ультразвуковые дальномеры. Данные устройства способны быстро измерить площадь. Многие модели оснащаются чипом, который позволяет запоминать и обрабатывать данные. Устройства между собой различаются по точности измерений и функциональной части.

    Ультразвуковой дальномер: инструкция по использованию

    Для использования дальномера устанавливаются батарейки, а для начала работы следует нажать кнопку включения. Далее пользователь обязан выбрать функцию для устройства. Если заниматься замером расстояния, следует обратить внимание на единицы измерения. В настройках модели имеется опция сохранения данных. При расчете площади стоит указывать значения. Для сброса данных нужно выключить дальномер.

    При замере расстояния от стены необходимо устанавливать прибор строго перпендикулярно поверхности. При работе с устройством следует обращать внимание на допустимые параметры влажности и температуры, в противном случае прибор может не работать или показывать неточные данные.

    Что важно при выборе

    При ремонтных работах очень ценится высокая точность и компактность. Оптимальное измеряемое расстояние составляет 20 метров. Батарейки под дальномер, как правило, подбираются серии ААА. Во многих устройствах предусмотрена функция минимума и максимума. Таким образом, можно быстро рассчитывать полученные данные.

    Информация на экране должна быть хорошо видна. Стоит обращать внимание и на условия эксплуатации. Так, качественный дальномер способен работать при температуре -10°С. Рабочая влажность оборудования составляет примерно 55 %.

    Недорогие дальномеры

    На рынке представлено множество недорогих дальномеров, которые производятся с лазерами небольшой мощности. Максимальная дальность действия у них составляет 30 метров, а точность показаний колеблется в районе 94 %. Многие такие устройства оснащаются качественными датчиками. Кроме того, модели способны работать в экономном режиме. Батарейки, как правило, устанавливаются небольшой емкости. Названные устройства отличаются по температурному режиму, а рабочая влажность у них в среднем составляет 55 %.

    Стандартный ультразвуковой дальномер HC SR04 способен запоминать около 20 значений. Также у моделей предусмотрена опция расчета данных. Батарейки в дальномерах используются серии АА. Также стоит отметить, что в магазинах пользователь способен найти устройства с опцией голосовых сигналов. Судя по отзывам, для строительных работ такие модели неплохо подходят.

    Профессиональные устройства

    Профессиональные устройства выделяются большой дальностью действия. В них устанавливаются качественные передатчики. При этом чипы способны запоминать более 50 значений. Некоторые модификации работают и при низких температурах. Точность определения значений составляет около 98 %. Если рассматривать Arduino (ультразвуковой дальномер), то у него рабочая влажность равняется примерно 50 %. Экраны в устройствах устанавливаются с высоким разрешением и оснащаются подсветкой.

    Также надо помнить, что модели способны быстро рассчитывать площадь. У них малый диаметр лазерной точки. Для проведения ремонтных работ на больших строительных площадках устройства замечательно подходят. Максимальная допустимая температура профессиональных дальномеров - около 55 градусов.

    Устройства на 15 метров

    Устройства с дальностью действия на 15 м, по отзывам специалистов, неплохо подходят для строительных работ в квартире, но имеют некоторые недостатки. Эти модификации, как правило, оснащаются малыми чипами, которые способны запоминать не более 20 значений. Кроме того, данные устройства плохо подходят для непрямых расчетов. Также стоит отметить, что у таких моделей редко имеется функция минимума и максимума. Экраны производятся с небольшим разрешением. И многие модификации работают только при плюсовой температуре. Корпус у них почти всегда защищен от пыли, однако модели отличаются по уровню рабочей влажности.

    Модели на 20 метров

    Дальномеры на 20 метров в последнее время пользуются большой популярностью и имеют хорошие отзывы. Многие модификации производятся с лазерами большой мощности, однако точки у них отличаются по диаметру. Современные устройства (такие как ультразвуковой дальномер "Ардуино") хорошо подходят для небольших строительных площадок.

    Названные дальнометры различаются по емкости батарей. Некоторые из них оснащаются функцией минимума и максимума. Эти устройства редко применяются для непрямых расчетов по теореме Пифагора. Также стоит отметить, что чипы в них в среднем рассчитаны на запоминание 30 значений. В устройствах имеются разные экраны. А некоторые модификации способны похвастаться качественными подсветками.

    Отзывы о модели Bosch PLR 25

    Указанный ультразвуковой дальномер отзывы, как правило, получает положительного характера. Модификация имеет массу преимуществ, и среди них можно отметить наличие компактных размеров.

    Корпус в устройстве защищен от пыли, а лазер применяется второго класса. Некоторые покупатели хвалят дальномер за высокую точность измерения. Чип в устройстве способен запоминать много данных. Довольно быстро осуществляется и подключение ультразвукового дальномера. Среди особенностей стоит отметить наличие опции минимума и максимума. Устройство разрешается применять при минусовой температуре. Купить данный прибор на рынке можно всего за 5388 руб.

    Отзывы о модели Bosch PLR 15

    Указанный дальномер довольно часто применяется при ремонтных работах. В устройстве хорошо защищен корпус, и он может работать при большой температуре. При этом дальнометр не боится пыли и грязи. Батарейки у него применяются сери ААА. Также стоит отметить, что модель замечательно подходит для расчета данных на большом расстоянии.

    Если говорить про минусы, то пользователи отмечают долгое включение прибора. У него применяется слабая батарейка, и модель не способна запоминать много данных. Также стоит отметить, что у дальномера отсутствует опция минимума и максимума. Диаметр лазерной точки составляет 5 мм. Устройства разрешается эксплуатировать даже при температуре 45 градусов. Приобрести его можно по цене от 3588 руб.

    Ультразвуковые устройства компании Dexter

    Данная компания в основном производит дальномеры для профессиональных строителей. Дальность действия у них равняется примерно 45 м. Некоторые модификации производятся для непрямых расчетов по теореме Пифагора.

    Также стоит отметить, что у приборов устанавливаются высокоемкостные батареи серии ААА. Корпус у большинства модификаций защищен от влаги и грязи. Чипы в среднем рассчитаны на хранение более 30 данных. В устройствах имеется опция вычисления значений. Стоит устройство в среднем 5 тыс. руб.

    Бесконтактные способы измерения расстояний, используя волны в ультразвуковом диапазоне широко применяются в нашей повседневной жизни. Мы сталкиваемся с ними, делая УЗИ в поликлинике, используя эхолот на рыбалке. Парктроник в автомобиле помогает нам избежать столкновения, сдавая задним ходом. И конечно же ультразвуковые датчики широко применяются в робототехнике, помогая нашему роботу лучше «осязать» мир. В живой природе принцип ультразвуковой локации используется, например, летучими мышами и дельфинами. Сегодня я расскажу как же все это работает.

    Что такое ультразвук

    Человек способен воспринимать звуковые волны, совершающие колебания в диапазоне от 20 до 20000 Гц (напомню, 1 Герц — это число колебаний в секунду). С возрастом диапазон воспринимаемых нами частот снижается, но в среднем, ребенок способен воспринимать звук именно в этом диапазоне. Если же колебания звуковых волн превысят этот диапазон, то человек перестает воспринимать их, но летучие мыши, собаки, дельфины, и мотыльки вполне могут их услышать. Такие колебания являются примерами ультразвука. Ультразвук — это упругие колебания и волны в диапазоне от 20 кГц до 1 ГГц. Термин упругие подчеркивает неэлектромагнитную природу этих колебаний и волн.

    Длина волны находится в обратной зависимости от ее частоты, следовательно ультразвуковые волны, по сравнению с обычным звуком имеют меньшую длину волны. Вследствие этого, ультразвуковые волны отражаются от различных препятствий гораздо лучше, чем обычные звуковые волны, что делает их весьма полезными на практике.

    Пьезоэффект и магнитострикция

    Как же получить колебания в ультразвуковом диапазоне?

    Кристаллы некоторых материалов (таких как кварц) способны совершать очень быстрые колебания, при прохождении через них электричества. Это, так называемый, обратный пьезоэффект . Во время вибрации, они толкают и тянут воздух вокруг себя, производя, тем самым, ультразвуковые волны. Устройства, которые производят ультразвуковые волны с помощью пьезоэлектричества известны как пьезоэлектрические преобразователи. Пьезоэлектрические кристаллы также работать в обратном порядке: если ультразвуковые волны, распространяясь по воздуху, сталкиваются с пьезоэлектрическим кристаллом, слегка деформируют его поверхность, в результате чего в кристалле возникает электрическое поле. Итак, если подключить пьезоэлектрический кристалл к измерителю электрического напряжения, мы получим детектор ультразвука.

    Ультразвуковые волны могут быть получены с использованием магнетизма вместо электричества. Так же, как пьезоэлектрические кристаллы производят ультразвуковые волны в ответ на электричество, существуют и другие кристаллы, которые излучают ультразвук в ответ на магнетизм. Это эффект магнистрикции . Такие кристаллы называются магнитострикционными кристаллами. Датчики, использующие их, называются магнитострикционными преобразователями.

    В англоязычной литературе ультразвуковые датчики называются ultrasound sensor .

    Ультразвуковой дальномер

    Используя пьезоэлектрические или магнитострикционные преобразователи мы можем создать устройство, измеряющее расстояние до объектов — ультразвуковой дальномер, который работает следующим образом.

    В момент измерения мы создаем электрическое колебание при помощи генератора, которое преобразуясь (например, при помощи пьезокристалла) в ультразвуковую волну, излучается в окружающее пространcтво. Эта волна отражается от препятствия и возвращается как эхо в приемник (также можно использовать пьезокристалл). Измеряя время между посылкой и приемом нашего отраженного сигнала и, зная скорость звуковой волны , распространяемой в данной среде (для воздуха это величина около 340 м/с), мы можем вычислить расстояние до препятствия.

    • Измерения объектов из звукопоглощающих, изоляционных материалов или имеющих тканевую (шерстяную) поверхность могут привести к неправильным измерениям вследствии поглощения (ослабления) сигнала. Домашний кошара может стать этаким «стелсом» для ультразвукового дальномера.
    • Чем меньше объект, тем меньшую отражающую поверхность он имеет. Это приводит к более слабому отраженному сигналу.

    Зная ограничения, связанные с физической природой ультразвука можно решить подходит этот тип дальномера для вашей задачи или же нет.