Усилитель мощности на полевых транзисторах мосфит. Усилитель мощности на полевых транзисторах мосфит Мощные усилители звука до 400 ватт

И так, все началось с того что я купил машину, а так как очень люблю слушать музыку и практически она везде со мной (музыка), то хотелось чтобы в авто она была качественной ну и само собой громкой. Где-то на протяжении месяца сменив около десяти автомагнитол и не получив того чего я так хотел я залез с головой в Инет. Пообщался на некоторых форумах и раздобыв немного информации (личное спасибо Rotor, и maximus) я решил что так просто из автомагнитолы звук не "выбью". Порыскав еще немного и пораскинув мозгами, было решено сделать мощный преобразователь и усилитель. Найдя пару нормальных схем преобразователей я "слепил" одну на мой взгляд отличную. Но так как я хотел делать "вещь" раз и надолго, то и мощность тоже выбрана можно сказать большая (очем сейчас жалею). Усилитель я назвал, "АВТО 400".

Ну обо всем по порядку.

Сначала остановился на микросхеме TDA7294V, ну уж больно погромче захотелось, и отзывы на форумах о ней не очень, то плату правильно развести, то самовозбуждается, ну короче не понравилась. Пересматривая журналы "Радиохобби" ст. 10 4/99г. увидел неплохую схему. Усилитель был выполнен на микросхеме STK4048XI, автор Антон Космела (на рис. 1).

Рис.1

Немного о схеме: L1-намотан на 10-мм каркасе и содержит 18 витков провода ПЭЛ-1,2. Обе микросхемы посажены на радиатор из алюминиевого П-образного профиля 210Х11Х25 мм. Усилитель не требует никаких подстроек.

Посмотрев на ее характеристики она мне подходила с "головой". При двух полярном питании 55 В, и нагрузке 8 Ом она выдавала мощность 150 Вт, а при 4 Омах 200 Вт (совсем недурно). И это только один канал, два канала 400 Вт при 4 Ом при коэффициенте гармоник не более 0,007% и полосе частот 20 Гц - 50 КГц. Это все хорошо но чем "кормить" такого "зверя", это нужен преобразователь как минимум на 400-450 Вт. Так как я не хотел слушать при таких мощностях 50 Гц "гул" в динамиках от преобразователя, решено было делать высокочастотный, заодно и размер по меньше. Сказано сделано, на микросхеме TL494 со стабилизацией выходного напряжения см. рис. 2

Немного о схеме преобразователя: трансформатор преобразователя намотан на ферритовом кольце размером К45Х28Х16 (немного маловато, но другого под рукой не оказалось). Первичная обмотка намотана "косой" из 8-ми проводов диаметром 1,2 мм (6,5 витков), вторичная (для стабилизации выходного напряжения 10 витков), вторична на питание усилителя намотана "косой" из 4-х проводов диаметром 1 мм, (количество витков перед этим нужно подобрать, в моем случае 55 витков). После намотки каждая "коса" разделяется на две части и начало одной половины обмотки соединяется с концом другой (будьте внимательней, обмотки при подключении должны быть намотаны в одну и туже сторону, а не как ни на оборот, а то не заработает). Дросселя намотаны на ферритовом стержне диаметром ~16 мм и содержит ~10 витков провода диаметром 2 мм. Замены: BC558-КТ626, IRF540-IRFZ44.

Рис. 3

Усилитель был дополнительно снабжен защитой, ну мало там чего, а динамики жалко (но это не помогло).

История продолжается.

После установки на авто и так званной "проверки" ко мне два дня возвращался слух, и я был очень доволен (звуком). У меня на авто он (усилок) два месяца, к громкости привык, но динамики жалко уже четыре штуки угробил (продавец говорил на 250 Вт, а они сгорели), вот теперь ищу нормальные, или может последовательно пару штук пустить?


Спасибо товарищу Leopard




Вот корректная печатка

GXD 4 включает в себя массу современных технологий для лучшей работы многоканальных систем. Встроенный DSP-процессор предлагает большой набор функций: кроссовер, фильтры параметрического эквалайзера, регулировку задержки и лимитеры; всё это устраняет необходимость во внешних акустических процессорах. Встроенная система помощи упрощает настройку усилителя, позволяя выбрать необходимую конфигурацию из списка самых популярных громкоговорителей.
Выходная мощность – вариативна и зависит от числа подключенных одновременно каналов: к примеру, от 400 Ватт на канал при подключении нагрузки 8 Ом – и от 600 Ватт на канал при нагрузке 4 Ом. Максимальная полная пиковая мощность составляет 1600 Вт. Передняя панель усилителя предоставляет доступ к информативному графическому ЖК-дисплею с управляющими кнопками, а также к регуляторам гейна и светодиодам клиппинга /наличия/ уровня сигнала. Кнопка питания тоже располагается на передней панели, она подсвечена. Есть там и воздухозаборники: для лучшего охлаждения воздух прогоняется сквозь корпус и выводится наружу с помощью вентиляционных отверстий в тыловой части. Усилитель обладает полной защитой схем от замыкания, перегрева, инфразвука, ультразвука и радиочастотных помех.
На тыловой панели QSC GXD 4 также располагаются входные разъемы на XLR-F и 1/4" TRS Jack, которые позволят подсоединять разнообразные источники, и выходные разъемы на винтовых клеммах и Neutrik NL Speakon, отдельные для каждого канала. Наконец, на тыловой панели находится USB-разъем, предназначенный для подключения к компьютеру, обновления прошивки и управления конфигурацией усилителя в фирменном ПО Amplifier Navigator.
В целом, прибор представляет собой идеальный выбор усилителя для мобильного, турового и концертного применения, он обеспечивает высокую мощность выходного сигнала, сохраняя при этом малый вес и отличную функциональность.

Особенности:

Двухканальный усилитель мощности класса D.
Рэковое размещение, высота 2U.
Полная выходная мощность вариативна и зависит от числа подключенных одновременно каналов и сопротивления нагрузки.
Графический ЖК-дисплей.
Термозависимая бесшумная система охлаждения.
Встроенный DSP с лимитерами, параметрическим эквалайзером и кроссовером.
Балансные входы XLR-M и 1/4" TRS Jack, выходы на винтовых клеммах и Neutrik Speakon.
Полная защита от замыканий, размыкания цепи, ультразвука, радиочастотных помех и перегрузок.
USB-разъем для подключения к компьютеру, обновления прошивки и управления конфигурацией в фирменном ПО Amplifier Navigator.

Технические характеристики QSC GXD4:

Не смотря на кажующуся простоту этот усилитель показал довольно не плохие параметры, что позволяет смело причислить данный усилитель к разряду HI-FI аппаратуры.
Принципиальная схема усилителя приведена на рисунке 1, напряжения проставлены при питании ±50В.
Схемотехника всей линейки этих усилителей практически одинаковая, отличаются они лишь количеством оконечных транзисторов - в варианте УМ МОСФИТ 100 используется одна пара, в варианте УМ МОСФИТ 400 - 4 пары.
На входе усилителя используется ОУ, который производит первичное усилиние по напряжению, далее схема разделяется на 2 одинаковых фрагмента: один для положительной полуволня сигнала (VT1, VT3, VT5, VT7, VT9), второй - для отрицательной (VT2, VT4, VT6, VT8, VT10). Каждый фрагмент охвачен своей собственно ООС (R10-R14 для плюса и R11-R15 для минуса) и работает в усилительном режиме, что позволо получать довольно большие мощности при незначительном усилении напряжения в ОУ. Этот же фактор довольно сильно увеличил КПД усилителя.
Ток покоя усилителя довольно мал 35...45 мА, и искажения типа "ступенька" не появляются благодаря все той же местной ООС. Однако исскуства без жертв не бывает, в данном варианте усилителя через предпослений каскад несколько великоват - 17...20 мА, что говорит об ОБЯЗАТЕЛЬНОМ использовании радиаторов для этого каскада, хоть и не больших, но они нужны. Радиаторы можно изготовить из листового алюминия толщиной 0,5…1мм и минимальными размерами 15х35мм, оптимально 20х40мм

Рисунок 1 - принципиальная схема УМЗЧ. УВЕЛИЧИТЬ


Рисунок 2 - Внешний вид усилителя УМ МОСФИТ 400.

принципиальная схема усилителя мощности на мосфитах умзч на полевиках простой усилитель мощности нч усилитель для сабвуфера усилитель для саба симметричный усилитель мощности 100 ватт 200 ватт 300 ватт 400 ватт 100 вт 20 вт 30 вт 400 вт

Усилитель охвачен общей ООС, коф усиления усилителя можно расчитать по формуле R33 / R2 + 1, в данном слечае составляет 47 раз (33 дБ). В небольших пределах можно изменять R2 для получения требуемого коф усиления, однако превышать коф усиления выше 37 дБ (R2 не должен быть меньше 680 Ом). Основные параметры усилителя сведены в таблицу 1.

Таблица 1

Параметр

Значение

Максимальная выходная мощность при использовании в качестве широкополосного усилителя:
УМ МОСФИТ 100
УМ МОСФИТ 200
УМ МОСФИТ 300
УМ МОСФИТ 400

100 Вт
200 Вт
300 Вт
400 Вт

Максимальная выходная мощность при использовании в качестве сабвуферного усилителя:
УМ МОСФИТ 100
УМ МОСФИТ 200
УМ МОСФИТ 300
УМ МОСФИТ 400

120 Вт
240 Вт
360 Вт
480 Вт

Напряжение питания
THD для нагрузки 4 Ома и 90 % от максимальной выходной мощности не более
THD для нагрузки 8 Ом и 90 % от максимальной выходной мощности не более
Рекомендуемый ток покоя
Коф усиления

Оконечные транзисторы устанавливать на теплоотвод желательно через электроизолирующие тепловодящие прокладки (слюду) смазав фланцы теплопроводящей пастой, на радиатор следует подать "общий" провод. Однако можно обойтись и без прокладок, но в этот случае следует иметь ввиду, что на радиатор будет присутствовать выходной сигнал усилителя, что может вызвать возбуждение усилителя, радиатор необходимо изолировать от корпуса.
На рисунке 3 приведен чертеж расположения деталей на печатной плате и схема подключения усилителя, сам чертеж печатной платы можно взять

С. САКЕВИЧ, г. Луганск
Радио, 2000 год, № 11, 12

Описываемый усилитель предназначен для двухканального усиления мощности сигнала, подаваемого с микшерного пульта или предварительного усилителя. Каждый из двух входов имеет регулятор уровня входного сигнала, позволяющий установить необходимую чувствительность. Переключателем можно объединять его входы, при этом один из двух входных разъемов можно использовать как линейный выход для увеличения числа работающих параллельно усилителей. К особенностям УМЗЧ можно отнести переключаемый фактор демпфирования громкоговорителей для оптимизации их звучания в различных акустических условиях.

Основные технические характеристики

Номинальное входное напряжение. В.................1,1
Номинальная выходная мощность каждого из двух каналов, Вт,
при Кг = 1% и сопротивлении нагрузки
4 0м....................400
8 0м....................220
Диапазон рабочих частот, Гц, при неравномерности -0.5 дБ...............20...20000
Скорость нарастания выходного сигнала, В/мкс........25
Коэффициент гармонических искажений сигнала с уровнем 1 дБ, %, не более
на частоте 1 кГц..........0,01
в рабочем диапазоне частот.. .0,1
Отношение сигнал/шум+фон, дБ..........96
Предельно допустимое отклонение напряжения в сети, В...............170...270
Минимальное сопротивление нагрузки. Ом.............2.5
Габаритные размеры, мм..........................430х90х482
Масса, кг, не более..............16

Усилитель имеет индикаторы уровня выходного сигнала и его ограничения, перегрузки по выходу, а также индикаторы аварийного отключения громкоговорителей и превышения напряжения сети.

На рис. 1 приведена схема правого канала усилителя и узла защиты нагрузки.

на входе УМЗЧ применен ОУ КР544УД2А. а цепи C4R4 и R1C3 ограничивают полосу усиливаемых частот. Они уменьшают проникновение в УМ колебаний инфра- и ультразвуковых частот, способных привести к перегрузке усилителя и динамических головок. Усилитель напряжения на VT1 - VT4 аналогичен примененному в . Выход ОУ соединен с эмиттерным повторителем VT3, который совместно с цепью R6C15 выполняет функции преобразователя напряжение-ток. Этот ток поступает через каскад с ОБ на VT2 к усилителю напряжения на VT1.

Далее структура усилителя практически симметрична: нагрузкой транзистора VT1 является генератор тока на VT4, входная цепь последующего каскада усилителей тока, а также резистор R12, стабилизирующий сопротивление нагрузки для VT1. Это сделано с целью некоторого уменьшения общего усиления и увеличения устойчивости усилителя при замкнутой цепи ООС. Последующий усилитель тока выполнен трехступенчатым: VT5, VT10. далее - VT11, VT17 и затем VT12 - VT16, VT18 - VT22 (в каждом плече по пять параллельно включенных транзисторов).

Узел защиты от короткого замыкания (КЗ) в нагрузке выполнен на транзисторах VT6, VT7 и VT8. VT9. включенных по схеме аналога тиристора, для верхнего и нижнего плеча соответственно. В выключенном состоянии этот узел не оказывает влияния на выходной каскад. При возникновении условий для срабатывания защиты транзисторы соответствующего плеча выходного каскада полностью закрываются. Таким образом, ток потребления УМ при КЗ и номинальном входном напряжении будет даже меньше, чем в режиме холостого хода, поэтому при КЗ на выходе усилитель мощности не выходит из строя.

Резистор R14 необходим для корректной работы защиты от КЗ. К примеру, при перегрузке верхнего по схеме плеча открываются транзисторы VT6. VT7 и остаточное напряжение на базе VT5 относительно выхода не превышает 0.8 В. Если этого резистора нет, то напряжение смещения на диодах (примерно 2,6 В) приведет к увеличению напряжения смещения для нижнего плеча выходного каскада и его отпирания.

В отличие от других устройств защиты с выключением выходных транзисторов , предлагаемый узел автоматически возвращается в исходное состояние при восстановлении нагрузки сопротивлением 2,5...16 Ом и подаче на вход усилителя полезного сигнала с уровнем 25% от номинального и выше. Цепи R18C13 и R19C14 устраняют возможность ложного срабатывания защиты из-за сдвига фазы тока в нагрузке вследствие ее реактивного характера.

Для увеличения кликните по изображению (откроется в новом окне)

В выходном каскаде транзисторы предоконечной ступени работают в режиме АВ с током покоя около 100 мА, определяемого напряжением смещения на диодах VD9-VD12 и резисторами R24, R35. Относительно небольшое их сопротивление позволяет этой ступени работать в режиме малого сигнала непосредственно на нагрузку и сокращает время разрядки емкости Сбэ транзисторов оконечной ступени, снижая ее коммутационные искажения. Эти транзисторы работают в режиме В, поэтому для них не требуется цепей термокомпенсации и регулировки тока покоя.

Индикатор ограничения выходного сигнала и КЗ на выходе питается импульсами отрицательной полярности на выходе ОУ DA1, возникающими вследствие разрыва петли ОС при ограничении выходного сигнала или срабатывания узла защиты.

Устройство задержки подключения нагрузки и отключения ее при появлении постоянного напряжения на выходе усилителей выполнено общим для обоих каналов. При включении питания конденсатор С19 заряжается через резистор R49. обеспечивая задержку открывания транзисторов VT25, VT27 и включения реле К1 на 2 с. При появлении постоянного напряжения на выходе одного из усилителей при положительной полярности откроется транзистор VT23, а в случае отрицательной - VT24, запирая транзисторы VT25, VT27 и выключая реле.

Отключение громкоговорителей производится узлом защиты и при увеличении напряжения в сети выше 250 В (VT26. VD17-VT19. R51-R53). Как показывает практика, превышение питающего напряжения бывает гораздо чаще, чем можно предполагать. При повышении напряжения питания узла защиты ток, текущий через стабилитроны VD17-VD19, открывает транзистор VT26, в результате включается индикация превышения напряжения сети и открывается транзистор VT23, что приводит к отключению нагрузки. Продолжение работы возможно после перевода переключателя напряжения сети в положение "250 В".

Схема источника питания, блока индикации и межблочных соединений обоих каналов показана на рис. 2. Нумерация межблочных соединений платы УМ и защиты АС, а также платы индикаторов соответствует нумерации выводов контактных площадок на соответствующих рисунках размещения элементов на печатных платах. Каждый из двух входов усилителя имеет регулятор уровня входного сигнала (переменные резисторы R1, R2), позволяющий установить необходимую чувствительность. Кнопочным переключателем SB1 можно объединять его входы.

В УМЗЧ возможно переключение степени демпфирования громкоговорителей, используемых в различных акустических условиях. При переводе усилителя в режим высокого выходного сопротивления (кнопка переключателя SB2 "Вых. Н/В" нажата) выходное сопротивление усилителя повышается до 8... 10 Ом за счет введения в усилителе обратной связи по току с резисторов R3, R4. Это. как показывает практика, - оптимальная величина для большинства громкоговорителей. Однако ее легко изменить в любую сторону подбором резистора R2 на плате усилителей.

Заметим, что режим повышенного выходного сопротивления заметно повышает надежность работы АС. Дело в том, что повышение выходного сопротивления усилителя способствует понижению активных потерь в громкоговорителе, что позволяет более полно использовать его возможности и, кроме того, заметно снизить интермодуляционные искажения . Режим повышенного выходного сопротивления также уменьшает сдвиг фазы тока в выходном каскаде относительно входного сигнала.

Усилитель оснащен индикаторами контроля режима работы. Это индикаторы включения питающей сети (HL9), аварийного отключения громкоговорителей (HL7) и индикатор HL8. свидетельствующий о принудительном отключении нагрузки вследствие опасного превышения напряжения питания. Индикаторы уровня сигнала HL2 и HL3. HL5 и HL6 имеют пороговые значения 5, 20 дБ, а также показывают его ограничение (светодиоды HL1, HL4) для каждого канала отдельно. Кроме ограничения, те же индикаторы сигнализируют о коротком замыкании на выходе какого-либо канала (при отсутствии свечения остальных индикаторов уровня).

Блок питания усилителя максимально упрощен. Питание собственно УМЗЧ производится от выпрямителя с напряжением 70 В, для блока защиты и индикации используется свой выпрямитель, подключаемый к отдельной обмотке трансформатора питания. Вентиляторы Ml, М2 предназначены для обдува теплоотводов мощных транзисторов.

Пояснения требует, видимо, и назначение выключателя SB5: в системе звукоусиления его устанавливают в положение, при котором достигается минимальный фон от наводок питающей сети.

Конструкция и детали

Внешний вид усилителя показан на рис. 3 (со стороны задней панели). Основные его узлы размещены на металлическом шасси с крышкой. На передней панели с щелевыми отверстиями установлены вентиляторы для принудительного обдува теплоотводов мощных транзисторов усилителя, а также плата индикации режимов работы. На задней панели установлены соединители для присоединения сигнальных кабелей и трехпроводного кабеля питания, переключатели предельного напряжения сети и фактора демпфирования громкоговорителей, держатель плавкого предохранителя.

Монтаж усилителя выполнен в основном на трех платах - плате усилителей, плате индикации и плате выпрямителя питания. На плате усилителей расположены два канала УМ с теплоотводами выходных транзисторов и узел защиты громкоговорителей. Печатная плата (ее размеры 355x263 мм) и расположение элементов, которые принято изображать в журнале в натуральную величину, приведены на рис. 4 (с. 40,41) в масштабе 85%.

Для увеличения кликните по изображению (откроется в новом окне)

В узле защиты нагрузки можно применить реле РП21, имеющее четыре группы контактов (по два параллельно), либо РЭК34 или аналогичное с напряжением срабатывания 24 В. В качестве теплоот-водов применены "радиаторы" типа Р1 производства Винницкого ПО "Маяк" (ТУ 8.650.022) с фрезерованными площадками для установки двух мощных транзисторов (КТ8101А или КТ8102А) на каждый.

Теплоотводы охлаждаются с помощью вытяжной вентиляции двумя вентиляторами ВВФ71. установленными за передней панелью усилителя. Крайне нежелательно устанавливать их на задней панели ввиду большого уровня наводок от их двигателей.

Конструкция платы позволяет также применить самодельные теплоотводы на шесть транзисторов (для каждого плеча) с теплоот-водящей поверхностью не менее 600 см и принудительном охлаждением. Плата усилителей размещена в корпусе самого усилителя так. что сигнальные входы и выходы обоих каналов располагаются со стороны задней панели.

Как уже указывалось, усилитель имеет переключаемый фактор демпфирования, реализованный включением петли ООО потоку. Резисторы R3. R4 на рис. 2 - датчики тока нагрузки, используемые для изменения фактора демпфирования, выполнены из десяти параллельно включенных резисторов МЛТ-0.5 сопротивлением 1 Ом. Применение проволочных резисторов нежелательно.

Дроссель L1 (см. рис. 1) намотан непосредственно на резисторе R55 МЛТ-2 проводом ПЭВ-2 0.8 мм в один слой (до заполнения). Блокировочные конденсаторы - К73-11. в фильтре питания - К50-18. Трансформатор питания выполнен на ленточном магнитопроводе типа ШЛ40Х45 мм. Его намоточные данные приведены в таблице.

Транзисторы выходного каскада КТ8101А и КТ8102А необходимо отобрать по коэффициенту усиления - не менее 25 и не более 60, а главное - по предельному напряжению и^дол- Для определения этого параметра необходимо собрать несложное устройство, состоящее из выпрямителя переменного напряжения до 300...350 В, резистора сопротивлением 24...40 кОм (мощностью 2 Вт) и вольтметра с пределом 500 В (рис. 5). Транзистор с замкнутыми выводами базы и эмиттера подключают через токоогра-ничивающий резистор к источнику. Вольтметр, подключенный параллельно транзистору, фиксирует при этом напряжение лавинного пробоя проверяемого транзистора, которое и будет для него предельным. Транзисторы следует отбирать с напряжением пробоя не менее 250 В. Игнорирование этого требования может привести к выходу из строя усилителя в процессе эксплуатации.

Плату выпрямителя питания (она приведена на рис. 6 в масштабе 1:2) устанавливают на выводы конденсаторов фильтра выпрямителя и закрепляют соответствующими винтами.

Для увеличения кликните по изображению (откроется в новом окне)

Монтаж общего провода и цепей питания производят многожильным проводом сечением 1.2 мм2. Кроме того, монтаж общего провода от выпрямителей к плате усилителей и узлу отключения нагрузки выполняется отдельными максимально короткими проводами.

На рис. 7 приведены рисунок печатной платы индикаторов и расположение элементов. Светодиоды устанавливают таким образом, чтобы их торцы немного выступали на поверхности передней панели усилителя.

ВКЛЮЧЕНИЕ И НАСТРОЙКА

Для настройки усилителя потребуются осциллограф, генератор 3Ч. автотрансформатор ЛАТР на напряжение 0 - 250 В при токе нагрузки до 2 А и резистивные эквиваленты нагрузки. Усилитель подключают к выходным клеммам автотрансформатора через вспомогательный кабель, обеспечивающий возможность подключения в цепь питания вольтметра и амперметра переменного тока.

Вначале следует установить переключатель сетевого напряжения в положение "220 В" и проверить работу блока питания, затем - работу узла защиты нагрузки путем подачи постоянного напряжения 2...3 В (поочередно разной полярности) на левый по схеме вывод резисторов R47 или R48. Удостоверившись в работоспособности узла, нужно выставить подстроенным резистором R52 порог отключения нагрузки при увеличении напряжения сети до 250 В и выше.

Следующий этап - самый ответственный. Подключив по цепям ±70 В один из каналов усилителя (питание от сети надо подавать через плавкий предохранитель с предельным током не более 1 А) и контролируя ток потребления амперметром, а выходной сигнал - осциллографом, нужно очень медленно повышать напряжение питания с автотрансформатора от нуля до номинального. Ток потребления выходного каскада не должен превышать 250 мА, в противном случае следует немедленно отключить питание и тщательно проверить монтаж.

Вначале на выходе усилителя появится постоянное напряжение положительной полярности. При достижении его значения примерно половины от номинального напряжения питания выходное напряжение скачком окажется близким к нулю вследствие включения действия ООС. Падение напряжения на резисторах R24 и R25 должно составлять 200...250 мВ, что соответствует току покоя транзисторов VT11, VT17 в пределах 60...85 мА. При необходимости подбирают диоды VD9-VD12 или один из VD9 - VD11 заменяют германиевым.

После этого проверяют работу УМЗЧ без нагрузки от генератора 3Ч. Установив частоту 1...2 кГц, плавно увеличивают сигнал на входе усилителя и убеждаются ь том. что амплитуда его выходного напряжения составляет не менее 50 В. Индикатор перегрузки должен зажигаться с началом ограничения выходного сигнала. Далее, заменив предохранитель другим (на ток 5 - 7 А), по осциллографу наблюдают работу усилителя под нагрузкой на мощный резистор сопротивлением вначале 8, а затем - 4 Ом. Амплитуда неограниченного сигнала должна составлять не менее 46 и 42 В соответственно. Возможное в некоторых случаях возбуждение на ВЧ устраняют подбором конденсаторов С9, СЮ. С15, а при заменах мощных транзисторов - и C11, С12.

Проверку работы в режиме повышенного выходного сопротивления надо производить при нагрузке сопротивлением 4 Ом: именно при такой нагрузке сигнал с датчика тока примерно равен входному и не возникает заметного изменения коэффициента усиления. Если после включения этого режима обнаружится самовозбуждение, нужно увеличить емкость конденсатора С10 фазовой коррекции в цепи ООС.

Далее нужно убедиться в работоспособности узла защиты от короткого замыкания в цепи нагрузки (эту проверку лучше проводить в режиме низкого выходного сопротивления). Для этого следует вначале при нагрузке сопротивлением 8 Ом и размахе выходного напряжения 20...30 В перемкнуть базы VT6, VT7. а затем и VT8, VT9. При этом на осциллограмме выходного сигнала должны "отсекаться" положительная и отрицательная полуволны соответственно.

После этой процедуры нужно проверить реакцию усилителя на нагрузку сопротивлением 0,33 Ом и мощностью 3 - 6 Вт, имитирующую короткое замыкание. Убрать входной сигнал, подключить в цепь питания одного из плеч амперметр, к выходу - вольтметр. Подключив эту нагрузку к выходу, медленно увеличивать входное напряжение, контролируя выходное напряжение, потребляемый ток и форму сигнала. При уровне выходного напряжения 2.1...2,3 В должна сработать защита для одного плеча (обычно верхнего по схеме, форма сигнала показана на рис. 8,а), при дальнейшем увеличении напряжения сработает защита для другого плеча (рис. 8,6). Ток потребления при этом должен упасть до 160...200 мА. После этого проверку работы УМЗЧ можно считать законченной.

Транзисторы в оконечной ступени выходного каскада усилителя работают практически без начального смещения. Перевод их в режим класса АВ позволяет примерно в 6...8 раз снизить нелинейные искажения на высоких частотах. Наиболее простой вариант узла смещения показан на рис. 9. Его включают вместо четырех диодов смещения, точка "А" - к коллектору VT1. точка "В" - к коллектору VT4. Резистор R12 в этом случае также исключается. Тррмодатчик (транзистор VT28) устанавливают на теплоотводе как можно ближе к мощному транзистору выходного каскада, находящемуся в наихудших условиях охлаждения. Применяя этот узел, необходимо увеличить сопротивление резисторов R24, R35 до 12 - 15 Ом.

Регулировка тока покоя состоит в следующем. Вначале движок переменного резистора R58 выводят в верхнее по схеме положение. Попав питание, устанавливают ток покоя 150...180 мА. После этого при подключенной нагрузке и номинальном выходном напряжении усилитель прогревают в течение 10...15 мин. Вновь измеряют ток покоя. Если он ниже первоначального, нужно немного увеличить сопротивление R60 в цепи эмиттера VT28 и повторять процедуру настройки до получения примерно одинакового тока покоя в холодном и горячем состояниях. Недостатки данного узла - наличие подстроечного резистора и большая инерционность тепловой цепи ООС.

От этих недостатков свободно устройство автоматического регулирования тока покоя по схеме, показанной на рис. 10. Принцип его действия заключается в измерении падения напряжения на резисторах R63, R64 - датчиках тока покоя выходных транзисторов, с последующим управлением током транзисторов оптопары U1, включенных вместо смещающих диодов. При достаточно большом сигнале транзисторы VT29 и VT30 работают практически поочередно: когда один из ник находится в состоянии насыщения, другой - в активном состоянии, управляя оптопарой и током покоя. И наоборот. Настройки узел не требует, однако возможна коррекция тока покоя подбором резистора R58. После включения питания ток покоя УМЗЧ в течение 8...10 с равен нулю, а затем плавно увеличивается до нормы. В усилителе с авторегулированием тока покоя сопротивление резисторов R24, R35 можно увеличить до 12- 15 Ом.

В усилителе возможно ввести плавную регулировку выходного сопротивления. Для этого достаточно переключатель демпфирования SB2 заменить сдвоенным переменным резистором сопротивлением 2...4 кОм и уменьшить сопротивление R2 до 100 Ом для расширения диапазона регулировки выходного сопротивления (в сторону увеличения).

Мощные транзисторы выходного каскада можно заменить на 2SC3281 и 2SA1302. 2SA1216 и 2SC2922, 2SA1294 и 2SC3263 (в этом случае отбор транзисторов производить не обязательно). КТ940А и КТ9П5А можно заменить на КТ851 и КТ850 с любым буквенным индексом.

ЛИТЕРАТУРА
1. Клецов В. Усилитель НЧ с малыми искажениями. - Радио, 1983. № 7. с. 51- 53.
2. Сухов Н. УМЗЧ высокой верности. - Радио. 1989. № 6. с. 55 - 57.
3. Зуев П. Усилитель с многопетлевой ООС. - Радио. 1984. № 11. с. 29-32.
4. Агеев С. Должен ли УМЗЧ иметь малое выходное сопротивление? - Радио. 1997, № 4, с. 14-16.

Не смотря на примитивную схемотехнику данный усилитель мощности имеет довольно не плохие характеристики, приятное звучание и в середине восьмидесятых был запетентован (инфа по номеру патентаи и автору погибла вместе с жестким диском - пардон). С тех пор элементная база изменилась довольно сильно и схему получилось упростить сохранив саму идею и получив лучшие характеристики без снижения надежности. Принципиальная схема усилителя мощности с использование полевых транзисторов в оконечном каскаде приведена на рисунке 1.

Рисунок 1 Усилитель мощности МОСФИТ. Принципиальная схема УВЕЛИЧИТЬ

Усилитель имеет 4 подмодификации, отличающиеся друг от друга выходной мощностью и может на нагрузк 4 Ома выдавать 100, 200, 300 и 400 Вт. Конструктивно усилитель выполнен на печатной плате, причем сколько ватт выдаст усилитель зависит именно от длины платы, поскольку плата выполнена таким образом, что позволяет изменять количество устанавливаемых оконечных транзисторов.
Данный усилитель мощности имеет предварительный буферный усилитель напряжения, выполненый на операционном усилителе TL071 и двукаскадный двухтактный усилитель мощности - именно мощности, поскольку производится усиление и по току и по напряжению. Схемотехника выходного каскада построена таким образом, что по сути представляет собой два независимых усилителя - для положительной полуволны звукового сигнала (VT1 - драйвер, VT3, VT5, VT7, VT9 - оконечники) и для отрицательной полуволны (VT2 - драйвер, VT4, VT6, VT8, VT10 - оконечники). Оба усилителя охвачены своими местными отрицательными обратными связями: R13-R9 и R14-R10, от соотношения номиналов этих резисторов и зависит коф усиления данного каскада. В данном случае он выбран таким образом, чтобы получить минимальные искажения в этом каскаде и менять номиналы не рекомендуется (R13 и R14 - лучше не менять, R9 и R10 могут быть от 27 до 43 Ом, оптимально - 33 или 39 Ом ). Поскольку последний каскад усилителя работает в усилительном режиме, то входя в режим насыщение сопротивление между выходом усилителем и источником питания становится мнимально возможным (0,2-0,5 Ома). Именно это позволяет усилителю по отношению к традиционным усилителям с эмиттерными повторителями на выходе иметь значительно больший КПД, поскольку амплитуда выходного сигнала практически от напряжения питания отличается на пару вольт в отличии от усилителей с эмиттерными повторителями на выходе (рисунок 2-а амплитуда выходного сигнала данного усилителя, 2-б - амплитуда усилителя мощности VL).


Рисунок 2-а


Рисунок 2-б

Кроме местной отрицательной обратной связи (ООС) весь усилитель охвачен другой веткой ООС - R32-R2, от номиналов которой зависит коф усиления всего усилителя. В данном случае коф усиления при этих номиналах равен Ku = R32 / (R2 + 1) . При указананных на схеме номиналах коф усиления составляет примерно 48 раз или чуть больше 33 дБ, а уровень THD не превышает 0,04% при выходной мощности 300 Вт (4 пары оконечных транзисторов и питание ±65 В).
Перечень необходимых для самостоятельной сборки усилителя мощности элементов сведен в таблицу:

C4,C3 = 2 x 470.0u х 25V
C9,C10 = 2 x 470.0u x 100V
C6,C7,C2 = 3 x 1.0u x63V
C5 = 1 x 100p
C1 = 1 x 680p
C8 = 1 x 0.1u

R1,R32 = 2 x 47k
R23,R22,R27, R26,R31,R30,R19,R18 = 8 x 5W 0.33
R20,R21,R24, R25,R28,R29,R15,R17 = 8 x 39
R13,R14 = 2 x 820
R9,R10 = 2 x 0.5W 33
R11,R12 = 2 x 0.5W 220
R7,R8 = 2 x 22k
R5,R6 = 2 x 2k
R3,R4 = 2 x 1W-2W 2.7k
R2 = 1 x 1k
R16 = 1 x 1W-2W 3.6

VD2,VD1 = 2 x 15V (стабилитроны на 1,3W)
VD3,VD4 = 2 x 1N4148

VT1 = 1 x BD139
VT2 = 1 x BD140
VT6,VT8,VT10,VT4 = 4 x IRFP240
VT5,VT7,VT9,VT3 = 4 x IRFP9240

X1 = 1 x TL071
X2 = 1 x 4.7k

Усилитель мощности на полевых транзисторах МОСФИТ усилитель на полевых транзисторах для сабвуфера простой усилитель мощности самостоятельная сборка усилителя мощности на полевых транзисторах

Чертеж печатной платы в формате LAY можно , расположение деталей на плате показано на рисунке 3.


Рисунок 3 Расположение деталей на печатной плате усилителя мощности МОСФИТ УВЕЛИЧИТЬ
ВЗЯТЬ В ФОРМАТЕ LAY

Внешний вид собранного варианта усилителя мощности на 400 Вт с полевыми транзисторами IRFP240 и IRFP9240 показан на рисунке 4.

Рисунок 4 Внешний вид усилителя мощности МОСФИТ на 400 Вт

Как видно из фотографии оконечные транзисторы установлены не совсем традиционно - они развернуты внутрь платы и крепятся к теплоотводу через имеющиеся в плате отвертия, диаметр которых позволяет пропустить через них крепеж вместе с головкой (винты или саморезы диаметром 3 мм). Такая компjновка позволила существенно сократить размеры печатной платы усилителя.
Из особеностей усилителя так же следует отметить, что фланцы оконечных транзисторов соеденены между собой и выходом усилителя, поэтому при использовании небольших теплоотводов с принудительным охлаждением можно не использовать диэлектрические прокладки а изолировать радиатор от корпуса. При использование теплоотводов с естественной конвекцией воздуха размеры теплоотвода уже становяться довольно большими и подавать на них выход усилителя не рекомендуется - слишком большие наводки он будет создавать, что при неудачном монтаже плат в корпусе может вызвать возбуждение усилителя даже не смотря на его довольно жесткую устойчивость.

На рисунке 5 и 6 приведены карты напряжений для варианта усилителя на 200 Вт при напряжении питания усилителя ±45 В и двумя парами оконечных транзисторов и усилителя на 400 Вт при напряжении питания ±65 В. Оба варианта нагружены на эквивалент акустической системы (желтый прямоугольник) и используют в качестве источника питания не идеальные источники питания, имеющие свое собственное сопротивление.


Рисунок 5 Карта напряжений усилителя мощности на 200 Вт и питании ±45В


Рисунок 6 Карта напряжений усилителя мощности на 400 Вт и питании ±65В

Пожалуй стоит заметить, что в модели использовались транзисторы IRF640-IRF9640, как ближайшие аналоги IRFP240-IRFP9240, но с меньшей мощностью рассеиваниея кристалом тепла, поскольку имеют корпус ТО-220 против ТО-247. Тем не менее IRF640-IRF9640 в симмуляторе полностью справились с возлагаемыми на них задачами, а так же могут быть использованы в усилителе в качестве оконечных транзисторов. Однако, при использовании корпусов ТО-220 не следует забывать, что можность одного корпуса ТО-220 не должна превышать 60 Вт, в отличии от корпуса ТО-247 - до 100-120 Вт. Другими словами - при использовании в качестве оконечных транзисторов IRF640-IRF9640 с усилителя с четырмя парами снимать более 240 Вт не рекомендуется .
На рисунках 7 и 8 показаны карты токов, потекающих через каждый элемент усилителя в режиме покоя (входной сигнал отсутствует).


Рисунок 7 Карта токов усилителя мощности при напряжении питания ±45 В.


Рисунок 8 Карта токов усилителя мощности при напряжении питания ±65 В.

Ток покоя оонечного каскада следует выставлять в пределах 30-40 мА - этого вполне достаточно для полного исчезновения искажений "ступенька" и технологического запаса на повышение напряжения питания. Пожалуй об этом стоит сказать отдельно:
Данный усилитель не имеет ни каких токостабилизирующих цепочек, следовательно при изменении напряжения питания будут изменяться и режимы работы оконечного каскада - при увеличении питания ток покоя будет увеличиваться, при снижении - уменьшаться. Особого значения это не имеет, если напряжение сети изменяется в пределах 5% или для усилителя используется стабилизированный блок питания, но если напряжение питания сети снизится на 10 %, что на перефирии случается довольно часто, то на выходе усилителя уже гарантированно появится ступенька, а если повысится на 10%, то ток покоя уже будет составлять 0,45 А, а выделяемая на каждом транзисторе мощность (при питании ±65 В + 10% и четырех парах оконечников) составит порядка 30 Вт, что в итоге вызовет выделение тепла порядка 200 Вт, причем это на холостом ходу.
Именно по этой причине рекомендуется этот усилитель использовать в качестве широкополосного при не изменном напряжении питания, либо в качестве усилителя для сабвуфера и установкой тока покоя в пределах 15-20 мА. При снижении питания появившуюся "ступеньку" низкочастотная динамическая головка просто не в состоянии воспроизвести за счет инерционности дифузора, а при повышении ток покоя останеться в пределах допустипого и такого сильного разогрева теплоотвода не произойдет.
В качестве термостабилизирующих элементов используются диоды VD3-VD4, которые могут быть установлены как на радиатор, так и оставаться на печатной плате - мгновенного разогрева все равно не происходит, поэтому скорости разогрева платы, установленной над радиатором вполне хватает. На рисунке 8 показаны тока, протекающие в каскадах при температуре 20°С, а на рисунке 9 - при температуре 60°С, т.е. температура увеличилась в 3 раза.


Рисунок 8 Токи в каскадах усилителя мощности при температуре 20°С


Рисунок 9 Токи в каскадах усилителя мощности при температуре 60°С

Поскольку оконечный каскад усилителя имеет свой собственный коф усиления ОЧЕНЬ важно обеспечить на входе этого каскада напряжение максимально приблежонное к нулю, поскольку как видно из рисунков 5 и 6 постоянное напряжение на выходе операционного усилителя величиной в 13 мВ на выходе усилителя уже приобретает величину в 66 мВ, т.е. увеличивается практически в 5 раз. Микросхемы от различных производителей имеют разное напряжение постоянной составляющей на выходе усилителя соответсвенно будет тоже отличаться довольно значительно и если постоянное напряжение на выходе усилителя больше 0,05-0,08 В, то придется либо искать микросхему другого типа, либо другого производителя, причем не гарантия, что новая микросхема будет по этим параметрам лучше той, которая уже стоит.
Поэтому стоит обратиться в даташнику на TL071, в котором имеется принципиальная схема самого операционного усилителя. Изучив внимаетльно описание становится понятным, что производитель предусмотрел подобную ситуацию и вполне разумно вывел точки балансировки на выводы микросхемы (выводы 1 и 5 рисунка 10).


Рисунок 10 Принципиальная схема операционного усилителя TL071

Подстроечный резистор лучше выбрать многооборотным и установить его непосредственно на корпус микросхемы распаяв выводы резистора на балансирующие выводы микросхемы, а движок резистора соединить с минусовым выводом питания.
Мнение о том, что постоянное напряжение может возникать из за разбросов параметров транзисторов драйверного каскада не совсем верно . Усилитель мощности охвачен довольно хорошей ООС и посотянное напряжение остается не изменным даже при использовании не комплементарных пар в драйверном каскаде, а так же при отличии номаналов резисторов R9 и R10 на 10 % относительно необходимых (R9 составлял 36 Ом, а R10 - 30 Ом). Во всех экспериментах только увеличивался уровень THD, но ни как не изменялась величина постоянного напряжения на выходе усилителя.