Напряжение по осциллографу. Подключение осциллографа

Цифровой осциллограф, конечно, намного совершеннее обычного электронного, позволяет запоминать осциллограммы, может подключаться к персональному компьютеру, имеет математическую обработку результатов, экранные маркеры и многое другое. Но при всех достоинствах эти приборы нового поколения обладают одним существенным недостатком, - это высокая цена.

Именно она делает цифровой осциллограф недоступным для любительских целей, хотя существуют «карманные» осциллографы стоимостью всего в несколько тысяч рублей, которые продаются на Алиэкспресс, но пользоваться ими не особенно удобно. Ну, просто интересная игрушка. Поэтому пока речь пойдет об измерениях с помощью электронного осциллографа.

На тему выбора осциллографа для использования в домашней лаборатории в интернете можно найти достаточное количество форумов. Не отрицая достоинств цифровых осциллографов, на многих форумах советуют остановить выбор на простых малогабаритных и надежных осциллографах отечественной разработки С1-73 и С1-101 и подобных, с которыми мы ранее познакомились в .

При достаточно демократичной цене эти приборы позволят выполнить большинство радиолюбительских задач. А пока познакомимся с общими принципами измерений с помощью осциллографа.

Рисунок 1. Осциллограф С1-73

Что измеряет осциллограф

Измеряемый сигнал подается на вход канала вертикального отклонения Y, который имеет большое входное сопротивление, как правило, 1MΩ, и малую входную емкость, не более 40pF, что позволяет вносить минимальные искажения в измеряемый сигнал. Эти параметры часто указываются рядом с входом канала вертикального отклонения.

Рисунок 2. Осциллограф С1-101

Высокое входное сопротивление свойственно вольтметрам, поэтому можно с уверенностью сказать, что осциллограф измеряет напряжение. Применение внешних входных делителей позволяет снизить входную емкость и увеличить входное сопротивление. Это также снижает влияние осциллографа на исследуемый сигнал.

Полоса пропускания канала Y

Осциллограф измеряет напряжения в очень широких пределах: от напряжений постоянного тока, до напряжений достаточно высокой частоты. Размах напряжения может быть достаточно разнообразным, - от десятков милливольт до десятков вольт, а при использовании внешних делителей вплоть до нескольких сотен вольт.

При этом следует иметь в виду, что полоса пропускания канала вертикального отклонения Y д.б. не менее, чем в 5 раз выше частоты сигнала, который будет измеряться. То есть усилитель вертикального отклонения должен пропускать не ниже пятой гармоники исследуемого сигнала. Особенно это требуется при исследовании прямоугольных импульсов, которые содержат множество гармоник, как показано на рисунке 3. Только в этом случае на экране получается изображение с минимальными искажениями.

Рисунок 3. Синтез прямоугольного сигнала из гармонических составляющих

Кроме основной частоты на рисунке 3 показаны третья и седьмая гармоники. С увеличением номера гармоники возрастает ее частота: частота третьей гармоники в три раза выше основной, пятой гармоники в пять раз, седьмой в семь и т.д. Соответственно амплитуда высших гармоник падает: чем выше номер гармоники, тем ниже ее амплитуда. Только если усилитель вертикального канала без особого ослабления сможет пропустить высшие гармоники, изображение импульса получится прямоугольным.

На рисунке 4 показана осциллограмма меандра при недостаточной полосе пропускания канала Y.

Рисунок 4.

Примерно так выглядит меандр частотой 500 КГц на экране осциллографа ОМШ-3М с полосой пропускания 0…25 КГц. Как будто прямоугольные импульсы пропущены через интегрирующую RC цепочку. Такой осциллограф выпускался советской промышленностью для лабораторных работ на уроках физики в школах. Даже напряжение питания этого прибора в целях безопасности было не 220, а всего 42В. Совершенно очевидно, что осциллограф с такой полосой пропускания позволит почти без искажений наблюдать сигнал с частотами не более 5КГц.

У обычного универсального осциллографа полоса пропускания чаще всего составляет 5 МГц. Даже при такой полосе можно увидеть сигнал до 10 МГц и выше, но полученное на экране изображение позволяет судить лишь о наличии или отсутствии этого сигнала. О его форме что-либо сказать будет затруднительно, но в некоторых ситуациях форма не столь уж и важна: например есть генератор синусоиды, и достаточно просто убедиться, есть эта синусоида или ее нет. Как раз такая ситуация показана на рисунке 4.

Современные вычислительные системы и линии связи работают на очень высоких частотах, порядка сотен мегагерц. Чтобы увидеть столь высокочастотные сигналы полоса пропускания осциллографа должна быть не менее 500 МГц. Такая широкая полоса очень «расширяет» цену осциллографа.

В качестве примера можно привести цифровой осциллограф U1610A показанный не рисунке 5. Его полоса пропускания 100МГц, при этом цена составляет почти 200 000 рублей. Согласитесь, не каждый может позволить себе купить столь дорогой прибор.

Рисунок 5.

Пусть читатель не сочтет этот рисунок за рекламу, поскольку все координаты продавца не закрашены: на месте этого рисунка мог оказаться любой подобный скриншот.

Виды исследуемых сигналов и их параметры

Наиболее распространенным видом колебаний в природе и технике является синусоида. Это та самая многострадальная функция Y=sinX, которую проходили в школе на уроках тригонометрии. Достаточно много электрических и механических процессов имеют синусоидальную форму, хотя достаточно часто в электронной технике применяются и другие формы сигналов. Некоторые из них показаны на рисунке 6.

Рисунок 6. Формы электрических колебаний

Периодические сигналы. Характеристики сигналов

Универсальный электронный осциллограф позволяет достаточно точно исследовать периодические сигналы. Если же на вход Y подать реальный звуковой сигнал, например, музыкальную фонограмму, то на экране будут видны хаотично мелькающие всплески. Естественно, что детально исследовать такой сигнал невозможно. В этом случае поможет применение цифрового запоминающего осциллографа, который позволяет сохранить осциллограмму.

Колебания, показанные на рисунке 6, являются периодическими, повторяются, через определенный период времени T. Подробнее это можно рассмотреть на рисунке 7.

Рисунок 7. Периодические колебания

Колебания изображены в двухмерной системе координат: по оси ординат отсчитывается напряжение, а по оси абсцисс время. Напряжение измеряется в вольтах, время в секундах. Для электрических колебаний время чаще измеряется в миллисекундах или микросекундах.

Кроме компонентов X и Y осциллограмма содержит еще компонент Z - интенсивность, или попросту (рисунок 8). Именно она включает луч на время прямого хода луча и гасит на время обратного хода. Некоторые осциллографы имеют вход для управления яркостью, который так и называется вход Z. Если на этот вход подать импульсное напряжение от образцового генератора, то на экране можно увидеть частотные метки. Это позволяет точнее отсчитывать длительность сигнала по оси X.

Рисунок 8. Три компонента исследуемого сигнала

Современные осциллографы имеют, как правило, калиброванные по времени развертки, позволяющие точно отсчитывать время. Поэтому пользоваться внешним генератором для создания меток практически не приходится.

В верхней части рисунка 7 располагается синусоида. Нетрудно видеть, что начинается она в начале координатной системы. За время T (период) выполняется одно полное колебание. Далее все повторяется, идет следующий период. Такие сигналы называются периодическими.

Ниже синусоиды показаны прямоугольные сигналы: меандр и прямоугольный импульс. Они также периодические с периодом T. Длительность импульса обозначена как τ (тау). В случае меандра длительность импульса τ равна длительности паузы между импульсами, как раз половина периода T. Поэтому меандр является частным случаем прямоугольного сигнала.

Скважность и коэффициент заполнения

Для характеристики прямоугольных импульсов используется параметр, называемый скважностью. Это есть отношение периода следования импульсов T к длительности импульса τ. Для меандра скважность равна двум, - величина безразмерная: S= T/τ.

В англоязычной терминологии как раз все наоборот. Там импульсы характеризуются коэффициентом заполнения, соотношением длительности импульса к периоду следования Duty cycle: D=τ/T. Коэффициент заполнения выражается в %%. Таким образом, для меандра D=50%. Получается, что D=1/S, коэффициент заполнения и скважность величины взаимно обратные, хотя характеризуют собой один и тот же параметр импульса. Осциллограмма меандра показана на рисунке 9.

Рисунок 9. Осциллограмма меандра D=50%

Здесь вход осциллографа подключен к выходу функционального генератора, показанного тут же в нижнем углу рисунка. И вот тут внимательный читатель может задать вопрос: «Амплитуда выходного сигнала с генератора 1В, чувствительность входа осциллографа 1В/дел., а на экране прямоугольные импульсы с размахом 2В. Почему?»

Дело в том, что функциональный генератор выдает двухполярные прямоугольные импульсы относительно уровня 0В, примерно так же, как синусоида, с положительной и отрицательной амплитудой. Поэтому на экране осциллографа наблюдаются импульсы с размахом ±1В. На следующем рисунке изменим коэффициент заполнения Duty cycle, например, до 10%.

Рисунок 10. Прямоугольный импульс D=10%

Нетрудно видеть, что период следования импульсов составляет 10 клеток, в то время, как длительность импульса всего одна клетка. Поэтому D=1/10=0,1 или 10 %, что видно по настройкам генератора. Если воспользоваться формулой для подсчета скважности, то получится S = T / τ = 10 / 1 = 1 - величина безразмерная. Вот здесь можно сделать вывод, что Duty cycle намного наглядней характеризует импульс, чем скважность.

Собственно сам сигнал остался такой же, как на рисунке 9: прямоугольный импульс амплитудой 1В и частотой 100Гц. Изменяется только коэффициент заполнения или скважность, уж это как кому привычней и удобней. Но для удобства наблюдения на рисунке 10 длительность развертки снижена в два раза по сравнению с рисунком 9 и составляет 1мс/дел. Поэтому период сигнала занимает на экране 10 клеток, что позволяет достаточно легко убедиться, что Duty cycle составляет 10%. При пользовании реальным осциллографом длительность развертки выбирается примерно также.

Измерение напряжения прямоугольного импульса

Как было сказано в начале статьи, осциллограф измеряет напряжение, т.е. разность потенциалов между двумя точками. Обычно измерения проводятся относительно общего провода, земли (ноль вольт), хотя это необязательно. В принципе возможно измерение от минимального до максимального значения сигнала (пиковое значение, размах). В любом случае действия по измерению достаточно просты.

Прямоугольные импульсы чаще всего бывают однополярными, что характерно для цифровой техники. Как измерить напряжение прямоугольного импульса, показано на рисунке 11.

Рисунок 11. Измерение амплитуды прямоугольного импульса

Если чувствительность канала вертикального отклонения выбрана 1В/дел, то получается, что на рисунке показан импульс с напряжением 5,5В. При чувствительности 0,1В/дел. Напряжение будет всего 0,5В, хотя на экране оба импульса выглядят совершенно одинаково.

Что еще можно увидеть в прямоугольном импульсе

Прямоугольные импульсы, показанные на рисунках 9, 10 просто идеальные, поскольку синтезированы программой Electronics WorkBench. Да и частота импульсов всего 100Гц, поэтому проблем с «прямоугольностью» изображения возникнуть не может. В реальном устройстве при высокой частоте следования импульсы несколько искажаются, прежде всего, появляются различные выбросы и всплески, обусловленные индуктивностью монтажа, как показано на рисунке 12.

Рисунок 12. Реальный прямоугольный импульс

Если не обращать внимания на подобные «мелочи», то прямоугольный импульс выглядит так, как показано на рисунке 13.

Рисунок 13. Параметры прямоугольного импульса

На рисунке показано, что передний и задний фронты импульса возникают не сразу, а имеют какое-то время нарастания и спада, несколько наклонены относительно вертикальной линии. Этот наклон обусловлен частотными свойствами микросхем и транзисторов: чем более высокочастотный транзистор, тем менее «завалены» фронты импульсов. Поэтому длительность импульса определяется по уровню 50% от полного размаха.

По этой же причине амплитуда импульса определяется по уровню 10…90%. Длительность импульса, так же, как и напряжение, определяется умножением числа делений горизонтальной шкалы на значение деления, как показано на рисунке 14.

Рисунок 14.

На рисунке показан один период прямоугольного импульса, несколько отличного от меандра: длительность положительного импульса составляет 3,5 деления горизонтальной шкалы, а длительность паузы 3,8 деления. Период следования импульса составляет 7,3 деления. Такая картинка может принадлежать нескольким разным импульсам с различной частотой. Все будет зависеть от длительности развертки.

Предположим, что длительность развертки 1мс/дел. Тогда период следования импульса 7,3*1=7,3мс, что соответствует частоте F=1/T=1/7.3= 0,1428КГц или 143ГЦ. Если длительность развертки будет 1мкс/дел, то частота получится в тысячу раз выше, а именно 143КГЦ.

Пользуясь данными рисунка 14 нетрудно подсчитать скважность импульса: S=T/τ=7,3/3,5=2,0857, получается почти, как у меандра. Коэффициент заполнения Duty cycle D=τ/T=3,5/7,3=0,479 или 47.9%. При этом следует обратить внимание, что эти параметры ни в коем случае не зависят от частоты: скважность и коэффициент заполнения были подсчитаны просто по делениям на осциллограмме.

С прямоугольными импульсами все вроде бы понятно и просто. Но мы совсем забыли о синусоиде. В сущности, там то - же самое: можно измерить напряжения и временные параметры. Один период синусоиды показан на рисунке 15.

Рисунок 15. Параметры синусоиды

Очевидно, что для показанной на рисунке синусоиды чувствительность канала вертикального отклонения составляет 0,5В/дел. Остальные параметры нетрудно определить умножив число делений на 0,5В/дел.

Синусоида может быть и другой, которую придется измерять при чувствительности, например, 5В/дел. Тогда вместо 1В получится 10В. Однако, на экране изображение обеих синусоид выглядит абсолютно одинаково.

Временные параметры показанной синусоиды неизвестны. Если предположить, что длительность развертки 5мс/дел., период составит 20мс, что соответствует частоте 50ГЦ. Цифры в градусах на оси времени показывают фазу синусоиды, хотя для одиночной синусоиды это не особо важно. Чаще приходится определять сдвиг по фазе (непосредственно в миллисекундах или микросекундах) хотя бы между двумя сигналами. Лучше всего это делать с помощью двухлучевого осциллографа. Как это делается, будет показано чуть ниже.

Как осциллографом измерить ток

В некоторых случаях требуется измерение величины и формы тока. Например, переменный ток, протекающий через конденсатор, опережает напряжение на ¼ периода. Тогда в разрыв цепи включают резистор с небольшим сопротивлением (десятые доли Ома). На работу схемы такое сопротивление не влияет. Падение напряжения на этом резисторе покажет форму и величину тока, протекающего через конденсатор.

Примерно так же устроен обычный стрелочный амперметр, который включатся в разрыв электрической цепи. При этом измерительный резистор находится внутри самого амперметра.

Схема для измерения тока через конденсатор показана на рисунке 16.

Рисунок 16. Измерение тока через конденсатор

Синусоидальное напряжение частотой 50 Гц амплитудой 220 В с генератора XFG1 (красный луч на экране осциллографа) подается на последовательную цепь из конденсатора C1 и измерительного резистора R1. Падение напряжения на этом резисторе покажет форму, фазу и величину тока через конденсатор (синий луч). Как это будет выглядеть на экране осциллографа, показано на рисунке 17.

Рисунок 17. Ток через конденсатор опережает напряжение на ¼ периода

При частоте синусоиды 50 Гц и развертке 5 ms/Div один период синусоиды занимает 4 деления по оси X, что очень удобно для наблюдения. Нетрудно видеть, что синий луч опережает красный ровно на 1 деление по оси X, что соответствует ¼ периода. Другими словами ток через конденсатор опережает по фазе напряжение, что полностью соответствует теории.

Чтобы рассчитать ток через конденсатор достаточно воспользоваться законом Ома: I = U/R. При сопротивлении измерительного резистора 0,1Ом падение напряжения на нем 7мВ. Это амплитудное значение. Тогда максимальный ток через конденсатор составит 7/0,1=70мА.

Измерение формы тока через конденсатор не является какой-то очень актуальной задачей, тут все ясно и без измерений. Вместо конденсатора может быть любая нагрузка: , обмотка электродвигателя, транзисторный усилительный каскад и многое другое. Важно, что именно таким методом можно исследовать ток, который в некоторых случаях значительно отличается по форме от напряжения.

Осциллограф - прибор, показывающий форму напряжения во времени. Также он позволяет измерять ряд параметров сигнала, такие как напряжение, ток, частота, угол сдвига фаз. Но главная польза от осциллографа - возможность наблюдения формы сигнала. Во многих случаях именно форма сигнала позволяет определить, что именно происходит в цепи. На рис. 1 показан пример подобной ситуации.

Рис. 1. Осциллограмма сложного сигнала.

В этом случае напряжение содержит как постоянную, так и переменную составляющие, причем форма переменной составляющей далека от синусоидальной. На таком сигнале вольтметры дают большую ошибку: стрелочный вольтметр переменного тока показал напряжение 2,2 вольт, а цифровой - вообще 1,99 вольт. Вольтметр постоянного тока показал 4,8 вольт. Правильное действующее значение напряжения показал осциллограф - 5,58 вольт (цифровые осциллографы измеряют напряжение и позволяют сохранять результаты в компьютерном формате). Кроме того, осциллограмма позволяет увидеть некоторые свойства сигнала:

  • сигнал имеет импульсный характер;
  • сигнал не принимает отрицательных значений (измерено с открытым входом осциллографа);
  • сигнал очень быстро изменяется от нуля до значения 6,4 вольта и обратно до нуля (чувствительность канала вертикального отклонения 2 V/дел);
  • длительность импульсов более чем в три раза превышает длительность пауз.

В общем, лучше один раз увидеть, чем сто раз услышать.

В подавляющем большинстве случаев исследуются периодические сигналы, именно про них мы и будем говорить.

1. Принцип действия осциллографа

«Сердцем» прибора является электронно-лучевая трубка (ЭЛТ), рис.2.

Рис. 2. Устройство электронно-лучевой трубки с электростатическим управлением.

ЭЛТ является электронной лампой, и, как и все лампы, она «заполнена» вакуумом. Катод излучает электроны, а система фокусировки формирует из них тонкий луч. Этот электронный луч попадает на экран, покрытый люминофором, который под воздействием электронной бомбардировки светится, и в центре экрана возникает светящаяся точка. Две пары пластин ЭЛТ отклоняют электронный луч в двух взаимно перпендикулярных направлениях, которые можно рассматривать как координатные оси. Поэтому для наблюдения на экране ЭЛТ исследуемого напряжения необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси - пропорционально исследуемому напряжению.

На пластины горизонтального отклонения луча (расположенные вертикально) подается напряжение развертки. Оно имеет пилообразную форму: постепенно линейно нарастает и быстро спадает (рис. 3). Отрицательное напряжение отклоняет луч влево, а положительное - вправо (если смотреть со стороны экрана). В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Расстояние, которое проходит луч вдоль горизонтальной оси, пропорционально времени. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки (иногда при измерениях ее называют нулевой линией). Она играет роль оси времени t графика. Частота повторения пилообразных импульсов называется частотой развертки, но она для измерений не используется. Для измерений нужно знать скорость развертки, про которую будет сказано ниже.

Рис. 3. Форма напряжения развертки.

Если при этом на пластины вертикального отклонения (расположенные горизонтально) подать исследуемое напряжение, то луч начнет отклоняться и по вертикали: при положительном напряжении вверх, а при отрицательном - вниз. Движения по вертикали и по горизонтали происходят одновременно и в результате исследуемый сигнал «разворачивается» во времени. Получившееся изображение называется осциллограммой.

На самом деле кроме линейной существует еще круговая и спиральная развертки, а также фигуры Лиссажу, когда один из сигналов является разверткой для второго. Но это уже совсем другая история…

Важным моментом является соотношение частот развертки и сигнала. Если эти частоты в точности равны, то на экране отображается ровно один период исследуемого сигнала. Если частота сигнала вдвое больше частоты развертки, то мы увидим два периода, если втрое - то три. Если частота сигнала вдвое меньше частоты развертки, то мы увидим только половину периода сигнала. Частоту (скорость) развертки можно регулировать в широких пределах. Но изображение будет стабильным только в том случае, если частоты развертки и сигнала точь-в-точь совпадают. При малейшем несовпадении частот, каждое начало движения луча по экрану будет соответствовать новой точке функции входного сигнала, и ее график каждый раз будет рисоваться в новом положении. При небольшом несовпадении частот (доли герца) это будет выглядеть как график, «плывущий» влево или вправо. При несовпадении частот в несколько герц и более, осциллограмма становится нечитаемой (рис. 4).

Рис. 4. Осциллограмма при отсутствии синхронизации.

А ведь добиться абсолютно точного совпадения частот (особенно в десятки-сотни килогерц) практически невозможно. Поэтому разверткой в осциллографе управляет специальная схема синхронизации. Она задерживает начало движения луча по экрану так, чтобы луч начинал двигаться в тот момент, когда входное напряжение достигло определенного значения. В этом случае луч начинает движение (и рисование осциллограммы) каждый раз с одной и той же точки графика входного сигнала. В результате каждое следующее движение луча рисует картинку в одном и том же положении, даже если частоты сигнала и развертки заметно не совпадают. Изображение получается стабильным и устойчивым. Напряжение сигнала, при котором происходит синхронизация (уровень синхронизации), задается органами управления осциллографа. Визуально изменение этого напряжения вызывает смещение начала изображаемого графика относительно начала периода сигнала, рис. 5.

Рис. 5. Осциллограммы при разных уровнях синхронизации.

Для того чтобы можно было наблюдать несколько сигналов одновременно, выпускают многолучевые и многоканальные осциллографы. Обычно число каналов равно двум (иначе получается очень сложно и дорого). ЭЛТ двухлучевых осциллографов работает одновременно с двумя лучами на общем экране, которые позволяют наблюдать два сигнала абсолютно независимо. Но такие приборы сложны и дороги. Поэтому больше распространены двухканальные осциллографы. Их ЭЛТ самая обычная, но они имеют два отдельных входа и два независимых усилителя вертикального отклонения, которые обслуживают входные сигналы. Кроме того, они имеют встроенный высокоскоростной коммутатор, очень быстро переключающий ЭЛТ (пластины вертикального отклонения) от одного канала к другому. Изображения сигналов при этом не являются непрерывными линиями, а состоят из множества штрихов. Но на экране штрихи сливаются, и в результате получается два графика входных сигналов. Лишь при наблюдении высокочастотных сигналов и неудачной частоте развертки изображение может стать пунктирным.

2. Подключение осциллографа

Поскольку напряжение измеряется между двумя точками, то вход осциллографа имеет две клеммы. Причем они не равнозначны. Одна клемма, называемая «фаза», подключена ко входу усилителя вертикального отклонения луча. Вторая клемма - «земля» или «корпус». Она называется так потому, что электрически соединена с корпусом прибора (это общая точка всех его электронных схем). Осциллограф показывает напряжение фазы по отношению к земле .

Очень важно знать, какой из входных проводников является фазой. В импортных приборах обычно используются специализированные щупы, земля которых имеет зажим типа «крокодил» так как часто подключается к корпусу исследуемого устройства, а фаза оканчивается либо «иголкой», которой можно удобно и надежно «воткнуться» даже в контакт маленького размера, либо зажимом (рис. 6). В этом случае перепутать фазу и корпус в принципе невозможно.

Рис. 6. Щуп импортного осциллографа, слева «игла», справа зажим.

Осциллографы отечественного производства чаще всего комплектуются шнурами, имеющими стандартные для России 4-мм штекеры (к ним иногда применяется название «банан», пришедшее из аудиотехники), рис. 7. В этом случае оба штекера одинаковы, и для того, чтобы их различать используются дополнительные признаки. Этих признаков несколько, и они могут встречаться в любом сочетании:

Однако, к сожалению, эти правила выполняются не всегда. Особенно это относится к кабелям, прошедшим ремонт: туда могут поставить любой проводник, имеющийся в наличии и первый попавшийся штекер. Поэтому есть еще один способ определения фазы и корпуса, дающий стопроцентную гарантию.

Рис. 7. Штекер отечественного осциллографа.

Для определения какой из проводников является фазой, а какой корпусом, надо при никуда не подключенном осциллографе взяться рукой за контакт одного из входных проводников, при этом другой рукой ни до чего не дотрагиваться. Если этот проводник - корпус, то на экране будет только лишь горизонтальная линия развертки. Если этот проводник - фаза, то на экране возникнут довольно значительные помехи, представляющие собой сильно искаженную синусоиду частотой 50 Гц (рис. 8).

Рис. 8. Помехи на экране осциллографа при касании рукой фазы входного кабеля.

Эти помехи возникают из-за того, что существует емкость между телом человека и проводами сети, проложенной в помещении. И возникает ток, протекающий по такой цепи: фаза осветительной сети переменного тока 220 В 50 Гц - емкость между проводами сети и телом человека - рука человека - вход усилителя (фаза входного кабеля) - электронная схема усилителя - корпус осциллографа - емкость между корпусом и Землей - нейтральный провод сети (он всегда заземлен). Цепь замкнута, ток течет. Величина этого тока составляет 10^-8…10^-6 ампера, но вход осциллографа имеет очень высокое сопротивление (порядка 10^6 Ом), поэтому на нем возникает достаточно большое напряжение. Синусоида выглядит искаженной оттого, что емкостное сопротивление участка сеть - тело человека зависит от частоты: чем частота выше, тем сопротивление меньше. Поэтому высокочастотные составляющие (гармоники сети и проникшие в нее помехи) создают больший ток и большее напряжение на входе осциллографа.

Определив фазу и корпус входного кабеля, можно подключать осциллограф к исследуемой цепи. Если в ней нет четко выраженного общего провода, то корпус подключается к любой из точек, напряжение между которыми требуется исследовать. Если в цепи присутствует общий провод - точка, условно принимаемая за нулевой потенциал, соединенная с корпусом устройства или реально заземленная, то корпус осциллографа лучше подключать к этой точке. Невыполнение этого правила может привести к значительным погрешностям измерений (иногда настолько большим, что измерениям и вовсе нельзя доверять).

По своей сути осциллограф является вольтметром, показывающим график напряжения. Однако с его помощью можно наблюдать и форму тока. Для этого последовательно с исследуемой цепью включают резистор Rт (здесь индекс «т» означает токовый), рис. 9. Сопротивление резистора Rт выбирают намного меньшим, чем сопротивление цепи, тогда резистор не влияет на ее работу и его включение не приводит к изменениям режима работы цепи. На резисторе по закону Ома возникает напряжение:

Это напряжение и измеряется осциллографом. А зная величину Rт можно перевести напряжение, показываемое осциллографом в ток.

Рис. 9. Измерение тока осциллографом.

Двухканальный (и двухлучевой) осциллограф может показывать осциллограммы двух сигналов одновременно. Для этого у него имеется два входа (канала), обычно обозначаемых I и II. Следует помнить, что одна из входных клемм каждого канала соединена с корпусом осциллографа, следовательно, клеммы «корпус» обоих каналов соединены между собой. Поэтому эти клеммы должны подключаться к одной и той же точке цепи, иначе в цепи произойдет замыкание (рис. 10).

Рис. 10. Подключение двухканального осциллографа. «Земли» входов могут создать замыкание в цепи.

На рис. 10а точки цепи В и D оказались замкнутыми между собой через корпус осциллографа (замыкающий проводник показан пунктиром). В результате конфигурация цепи изменилась.

Возможность наблюдать не любые два напряжения, а только имеющие общую точку, является недостатком, но небольшим - в электронике один из полюсов источника питания всегда является общим проводом, и все напряжения измеряются относительно него.

Используя двухканальный осциллограф можно одновременно наблюдать и напряжение, и ток в цепи. И таким образом измерять сдвиг фаз между током и напряжением. Схема подключения осциллографа в этом случае показана на рис. 11.

Рис. 11. Подключение осциллографа для измерения сдвига фаз.

Канал I измеряет напряжение, а канал II измеряет ток. Такое включение наиболее оптимально, т.к. напряжение, падающее на резисторе Rт и подаваемое в канал II, в 30…100 раз меньше, чем в канале I, следовательно, оно больше подвержено помехам и синхронизация от низкого напряжения не такая хорошая. Кроме того, конструкция большинства осциллографов несколько «несимметричная» - синхронизация от сигнала канала I обычно более качественная и стабильная. Таким образом, подключение канала I к напряжению обеспечивает более стабильное изображение осциллограммы.

Ошибка подключения на рис. 11б состоит в том, что клеммы корпуса обоих входов не соединены в одной точке. В результате резистор Rт оказывается замкнут накоротко через корпус осциллографа. Самое неприятное, что при этом напряжение на резисторе Rт не равно нулю - из-за того, что сопротивление проводов входных кабелей (через которые этот резистор замыкается) не нулевое. Поэтому при таком подключении можно не заметить эту ошибку (ведь осциллограф что-то показывает), а результат измерения тока при этом будет неверным.

Включение, показанное на рис. 11в неудачно тем, что канал I осциллографа измеряет не напряжение в исследуемой цепи, а сумму напряжений в цепи и на резисторе Rт (напряжение измеряется не на нагрузке, а на источнике). Напряжение на Rт хоть и небольшое по величине, но все равно вносит погрешность в измерение напряжения.

Подключение осциллографа, показанное на рис. 11а не только обеспечивает наибольшую точность измерений, но и позволяет в ряде случаев использовать резистор Rт с довольно большим сопротивлением. Это важно при измерении малых токов: если и ток в цепи и сопротивление Rт малы, то возникающее на Rт напряжение может быть настолько маленьким, что чувствительности осциллографа не хватит для его отображения.

При измерении сдвига фаз необходимо инвертировать сигнал в канале II, поскольку канал II включен встречно по отношению к каналу I.

Рассмотрим переднюю панель двухканального осциллографа С1-83 (рис. 12).

Рис. 12. Передняя панель осциллографа С1-83.

А - управление каналом I.
Б - управление отображением каналов.
В - управление каналом II.
Г - регулировка яркости луча, фокусировки и подсветки экрана.
Д - управление разверткой.
Е - управление синхронизацией.

Хорошо видно, что экран осциллографа разбит на клетки. Эти клетки называются делениями, и используются при измерениях: к ним привязываются все масштабы по вертикали и горизонтали. Масштаб по вертикали - вольты на деление (В/дел или V/дел), масштаб по горизонтали секунды (милли- и микросекунды) на деление. Обычно осциллограф имеет 6…10 делений по горизонтали и 4…8 делений по вертикали. Центральные вертикальная и горизонтальная линии имеют дополнительные риски, делящие деление на 5 или 10 частей (рис. 13, на рис. 12 тоже видно). Риски служат для более точных измерений, они являются долями деления.

Рис. 13. Деления экрана осциллографа.

Управление обоими каналами одинаковое. Рассмотрим его на примере канала I (рис. 14).

Рис. 14. Органы управления канала I.

1. Переключатель режима входа. В верхнем положении «» на вход поступает и постоянное и переменное напряжение. Это называется «открытый вход» - то есть открытый для постоянного тока. В нижнем положении «~» на вход проходит только переменное напряжение, это позволяет измерять маленькое переменное напряжение на фоне большого постоянного, например в усилителях. Реализуется это очень просто: вход усилителя подключается через конденсатор. Это называется «закрытый вход». Учтите, что при закрытом входе очень низкие частоты (ниже 1...5 Гц) сильно ослабляются, поэтому измерять их можно только при открытом входе. В среднем положении переключателя 1 вход усилителя осциллографа отключается от входного разъема и замыкается на землю. Это позволяет при помощи ручки 7 выставить линию развертки в нужное место.

2. Входной разъем канала.

3, 4, 5, 6. Регулятор чувствительности канала вертикального отклонения (масштаба по вертикали). Переключатель 4 задает масштаб ступенчато. Задаваемые им значения нанесены рядом с ним. На выбранное значение указывает риска 5 на переключателе. На рисунке она указывает на значение 0,2 вольта/деление. Ручка 3, расположенная соосно с переключателем, позволяет плавно уменьшать масштаб в 2…3 раза. В крайнем правом положении (на рис. 14 ручка «плавно» находится именно в нем) эта ручка имеет фиксацию, тогда масштаб по вертикали в точности равен заданному переключателем 4. Значения масштабов, выделенные скобкой 6, указаны в милливольтах на деление - об этом говорит надпись «mV» внутри скобки.

7. Ручка выполняет две функции. При вращении она перемещает график канала по вертикали вверх или вниз . При «вытягивании» задает множитель масштаба по вертикали: вытянутая ручка (рис. 15) задает множитель х1, а утопленная множитель х10. Утопленное и вытянутое положения символически показаны над и под ручкой.

Рис. 15. Ручка множителя масштаба по вертикали вытянута в положение «х1».

Канал II (рис. 16) аналогичен каналу I:

1 - переключатель режима входа;
2 - входной разъем;
3 - масштаб плавно;
4 - масштаб ступенчато;
5 - перемещение луча по вертикали и множитель масштаба.

Рис. 16. Органы управления канала II.

Но второй канал имеет дополнительный переключатель 6, позволяющий инвертировать его входной сигнал. В нажатом положении канал работает как обычно, а в вытянутом - инвертируется, то есть при отрицательном входном сигнале луч движется вверх, а при положительном - вниз. Это необходимо при измерении, например, сдвига фаз.

На рис. 17 показано управление отображением каналов, которое определяется нажатием на одну из кнопок.

Рис. 17. Управление отображением каналов.

1 - Работает только канал I, канал II отключен.

2 - Оба канала отображаются одновременно (луч очень быстро переключается между каналами) и взаимное положение осциллограмм обоих каналов верное. В этом режиме можно измерять сдвиг фаз.

3 - Осциллограф показывает сумму или разность сигналов в каналах (знак второго канала определяется положением ручки 6 на рис. 16).

4 - Отображаются сигналы обоих каналов, но они независимы во времени, поэтому никакое сравнение сигналов относительно времени и сдвига фаз производить нельзя.

5 - Работает только канал II, канал I отключен.

Панель управления разверткой (рис. 18) похожа на панель управления каналом вертикального отклонения луча. Она содержит ручку 4, позволяющую сдвигать изображение влево-вправо и комбинированный регулятор (1 - ступенчато, 3 - плавно) скорости развертки (масштаба по горизонтали). Риска 2 на переключателе показывает установленное значение. Как и в каналах вертикального отклонения, переключатель скорости развертки имеет разные единицы измерения: секунды s , миллисекунды ms , микросекунды µs . Вытянутая/утопленная ручка 4 «» задает множитель скорости развертки х0,2 и х1 соответственно. Обратите внимание: на рис. 18 ручка 3 регулирования скорости развертки «плавно» установлена не в крайнее правое положение. Значит скорость развертки не равна значению, заданному переключателем 1, а меньше него (скорость движения луча меньше, а значение время/деление больше!).

Рис. 18. Органы управления разверткой

На панели управления синхронизацией (рис. 19) задается:

Рис. 19. Органы управления синхронизацией.

1 - Источник внутренней синхронизации: напряжением какого канала синхронизируется движение луча. Эта синхронизация производится входным сигналом, поэтому называется внутренней. Такой режим используется для большинства измерений. Варианты здесь такие: либо синхронизация только сигналом канала I. Либо попытка синхронизации от канала I, а если не получается, то синхронизация производится сигналом канала II. Первый вариант иногда работает немного лучше, поэтому надо стараться, чтобы сигнал первого канала был достаточно большой для стабильной синхронизации. В подавляющем большинстве случаев для нормальной работы следует выбирать именно этот режим синхронизации, включив кнопку «I».

2 - Внешняя синхронизация. Движение луча синхронизируется импульсами, подаваемыми со специального внешнего источника на вход синхронизации осциллографа. Такой режим иногда требуется для исследования специфических сигналов. Если внешнего источника синхронизации нет, то получить устойчивое изображение невозможно. Кнопки «0,5-5» и «5-50» задают диапазон входных напряжений от внешнего источника синхронизации. Кнопка «X-Y» совместно с кнопкой «II X-Y» управления отображением каналов (рис. 17) подает сигнал канала II на пластины горизонтальной развертки. В этом режиме можно наблюдать фигуры Лиссажу.
3 - Ручка «Уровень синхронизации». Задает напряжение синхронизации (рис. 5). В нажатом положении этой ручки (как на рисунке) развертка автоматическая. При этом движение луча будет происходить даже если синхронизации не произойдет. Луч задерживается в начале движения на некоторое время до момента синхронизации, но через некоторое время все равно начинает движение. Это «мягкий» режим, более удобный для работы, так как луч всегда остается видимым. В вытянутом положении ручки включается ждущая развертка. В этом режиме луч не начнет движения до тех пор, пока не произойдет синхронизации. Если синхронизации не происходит, луч не движется. Такой режим хорошо подходит для наблюдения непериодических сигналов. Влияние этой ручки на изображение показано на рис. 4 и 5.

4 - «Полярность» синхронизации. На самом деле знаки «+» и «-» означают несколько другое. В положении «+» синхронизация происходит по фронту, т.е. в тот момент, когда входное напряжение достигает заданного (ручкой «Уровень синхронизации») значения при нарастании входного напряжения (изменении от «-» к «+»), рис. 20. В положении «-» синхронизация происходит по спаду - при убывании входного напряжения (изменении от «+» к «-»). В осциллографе в цепи синхронизации используются две различные схемы: одна определяет равно ли входное напряжение заданному и если равно - запускает движение луча. Это напряжение задается ручкой «Уровень синхронизации». Вторая схема определяет, как при этом изменяется входное напряжение - возрастает или убывает. И соответственно разрешает первой схеме сработать.

5 - Режим входа синхронизации. Относится как к внешней, так и ко внутренней синхронизации. В положении «~» вход закрытый, и синхронизация происходит только от переменного напряжения. В положении «» вход открытый, и на срабатывание схемы синхронизации действует и переменное напряжение, и постоянное. Режим «НЧ» то же самое, но сигнал попадает на цепь синхронизации через фильтр низких частот, обрезающий высокочастотные помехи. Это режим есть не во всех осциллографах.

6 - Вход для подачи сигнала внешней синхронизации.

Рис. 20. «Полярность» синхронизации.

4. Измерения осциллографом

Измерения производятся визуально и их погрешность получается довольно высокой. Кроме того, напряжение развертки имеет невысокую линейность, поэтому погрешность измерения частоты и сдвига фаз может достигать 5%. Для минимизации погрешности, изображение должно иметь размер 80…90% от размеров экрана. При измерении напряжения и частоты (временных интервалов) необходимо ручки плавной регулировки усиления входного сигнала и скорости развертки необходимо установить в крайнее правое положение.

4.1. Измерение напряжения

Для измерения напряжения используется известное значение масштаба по вертикали. Перед началом измерения необходимо замкнуть накоротко входные клеммы осциллографа (или установить переключатель режима входа в положение ) и ручкой установить линию развертки на горизонтальную линию сетки экрана, чтобы была возможность правильно определить высоту осциллограммы, рис. 21а.

После этого на вход подается исследуемый сигнал (или переключатель режима входа устанавливается в одно из рабочих положений). На экране появляется график функции сигнала, рис. 21б.

Рис. 21. Измерение напряжения (скриншот цифрового осциллографа): а - подготовка; б - измерение.

Для того чтобы точнее измерить высоту графика, осциллограмма сдвигается ручкой так, чтобы точка, в которой измеряется амплитуда попала на центральную вертикальную линию, имеющую градуировку в долях деления (рис. 22). Получаем: чувствительность канала вертикального отклонения = 1 В/дел, размер осциллограммы 2,6 деления, следовательно амплитуда сигнала 2,6 вольт.

Рис. 22. Определение амплитуды сигнала.

Продемонстрируем измерение напряжения на самом осциллографе. Максимум напряжения имеет величину 3,4 деления (рис. 23). Определение масштаба по вертикали показано на рис. 24. Ручка «плавно» установлена в крайнее правое положение. Риска на переключателе чувствительности показывает 0,5 вольт/деление. Множитель масштаба установлен в положение х10 (утоплен). Следовательно измеряемое напряжение равно:

Рис. 23. Определение амплитуды на осциллографе С1-83.

Рис. 24. Определение масштаба по вертикали на осциллографе С1-83.

4.2. Измерение частоты

Осциллограф позволяет измерять временные интервалы, в том числе и период сигнала. Частота сигнала обратно пропорциональна его периоду. Период сигнала можно измерять в различных частях осциллограммы, но наиболее удобно и точно измерять его в точках пересечения графиком оси времени. Поэтому перед измерением линию развертки необходимо установить на центральную горизонтальную линию сетки экрана (рис. 21а).

Рис. 25. Измерение периода сигнала.

При помощи ручки начало периода совмещается с вертикальной линией сетки, рис. 25 (лучше всего начало периода совмещать с самой левой вертикальной линией экрана, тогда точность будет максимальна). Период сигнала, показанного на рис. 25 равен 6,8 делений. Скорость развертки - 100 мкс/деление (поскольку греческая буква µ, означающая «микро», не всегда доступна для отображения, ее часто заменяют латинской буквой u , сходной по начертанию). Тогда период сигнала

и его частота:

Обратите внимание, что на рисунках 22 и 25 показан один и тот же сигнал, но при различных значениях скорости развертки. Определение частоты по рис. 22 дает большее значение погрешности (точное значение частоты 1,459 кГц). Поэтому наиболее точные измерения получаются, если максимально растянуть изображение по горизонтали. И еще. На рис. 25 длительность периода сигнала чуть-чуть больше, чем 6,8 делений. Раз период больше, частота сигнала на самом деле чуть-чуть меньше, чем та, которую мы получили: реально 1,459 кГц, а у нас 1,47 кГц. На самом деле погрешность измерения меньше одного процента - это высокая точность. Такую точность обеспечивает цифровой осциллограф, у которого развертка линейна. В аналоговом осциллографе погрешность измерения частоты, скорее всего, была бы выше.

4.3. Измерение сдвига фаз

Сдвиг фаз показывает взаимное расположение двух колебательных процессов во времени. Но его измеряют не в единицах времени (которые откладываются по горизонтальной оси), а в долях периода сигнала (т.е. в единицах угла). В этом случае одинаковому взаимному расположению сигналов будет соответствовать одинаковый фазовый сдвиг, независимо от периода и частоты сигналов (т.е. независимо от реального масштаба графиков по оси времени). Поэтому наибольшая точность измерений получается, если растянуть период сигнала на весь экран.

Поскольку в аналоговом осциллографе графики сигнала обоих каналов имеют одинаковый цвет и одинаковую яркость, то для того, чтобы их различать между собой, рекомендуется сделать их разной амплитуды. При этом напряжение, измеряемое каналом I прибора, лучше делать большим - в этом случае синхронизация будет лучше «держать» изображение. Подготовка к измерениям производится так (см. рис.26, на нем для большей наглядности напряжение и ток показаны разными цветами):

Ручками обоих каналов их линии развертки устанавливаются на среднюю линию сетки экрана (при отсутствии сигналов на входах). Ручками регулировки усиления каналов вертикального отклонения (ступенчато и плавно) сигнал 1-го канала устанавливается большой амплитуды, а 2-го канала - меньшей амплитуды. Ручками регулировки скорости развертки устанавливается такая ее скорость, чтобы на экране отображался примерно один период сигнала. Ручкой «Уровень синхронизации» добиваются того, чтобы график напряжения начинался с оси времени (с линии развертки) - точка А. Ручкой добиваются того, чтобы график напряжения начинался с крайней левой вертикальной линии сетки экрана - точка А. Ручками «Скорость развертки» (ступенчато и плавно) добиваются того, чтобы период графика напряжения заканчивался на крайней правой вертикальной линии сетки экрана. Повторяют пункты 4…6 до тех пор, пока период графика напряжения не будет растянут на весь экран, причем его начало и конец должны совпадать с линией развертки (рис. 26).

Прежде, чем измерять величину сдвига фаз, необходимо определить, какой из сигналов (напряжение или ток) опережает, а какой отстает. От этого зависит знак угла сдвига фаз φ. На рис. 26а ток отстает от напряжения - начало его периода расположено во времени позже, чем начало периода напряжения (начало периода напряжения в точке А, а периода тока - в точке Б). Ток начинается позже, следовательно, он отстает, а напряжение опережает. Этой ситуации соответствуют положительные значения угла сдвига фаз. На рис. 26б ток опережает, а напряжение отстает. Поскольку начало периода тока на экране не отображается, то сравниваются окончания первого полупериода: первым к нулю вернется тот график, который начался раньше (точка Г наступает раньше во времени, чем точка В). Угол сдвига фаз при этом отрицателен.

Рис. 26. Ток отстает от напряжения, φ>0 (а); ток опережает напряжение, φ<0 (б).

Модуль угла сдвига фаз φ это расстояние между началами или между концами периода (положительного полупериода) сигналов в делениях сетки экрана (рис. 27). Далее значение модуля φ находится из пропорции, учитывая, что один полный период любого колебания равен 360 градусов:

здесь N - число делений сетки, занимаемых одним периодом сигнала,
α - число делений сетки между началами периодов (концами положительного полупериода).
В примере на рис. 18 модуль φ в обоих случаях равен:

Следует учитывать, что

Рис. 27. Измерение угла сдвига фаз.

В принципе, величину сдвига фаз можно измерить и в конце периода (точки Д и Е на рис. 26), но в правой части экрана линейность напряжения развертки наихудшая, поэтому погрешность измерения будет максимальна.
Если сдвиг фаз равен нулю (в цепи только активная нагрузка или происходит резонанс), то напряжение и ток будут начинаться и заканчиваться одновременно, рис. 28.

Рис. 28. Осциллограмма при сдвиге фаз, равном нулю.


На монитор нанесены деления. Деления позволяют визуально оценить параметры сигнала. Деления, нанесённые по горизонтальной оси, позволяют измерять временные параметры. Деления, нанесённые по вертикальной оси, позволяют измерять напряжение.

Графики, отображаемые на мониторе, называют осциллограммами. Самый простой осциллограф отображает только осциллограммы напряжений. Эта форма отображения показывает зависимость напряжения от времени. Существуют приборы, отображающие зависимость амплитуды от частоты – спектроанализаторы. Такие приборы используются при измерениях уровней шума/вибрации, а так же при анализе спектрального состава сигнала. Графики, отображаемые такими приборами, называются спектрограммами.

Путём просмотра осциллограмм напряжений и спектрограмм можно выявить неисправности в электрических цепях в рабочем режиме без их разборки. По осциллограммам напряжений можно выявить неисправности датчиков, исполнительных механизмов и электропроводки в электронных системах автомобилей.


Нулевая линия.

Если к входу осциллографа не подключать никакого источника напряжения, то осциллограмма будет выглядеть как ровная горизонтальная линия. Такую линию называют "нулевая линия", так как она отображает уровень, соответствующий напряжению равному 0 Вольт на входе осциллографа.

A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению нулевой линии, что составляет 0 Вольт.

Если вход осциллографа подключить к источнику постоянного напряжения, например к автомобильной аккумуляторной батарее, то полученная осциллограмма так же будет иметь форму ровной горизонтальной линии, но её положение по вертикали на экране будет отличаться от положения нулевой линии.

A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению автомобильной аккумуляторной батареи и равно ~12,3 Вольт.

Разность между положениями полученной осциллограммы и нулевой линии прямо пропорционально значению напряжения.

Большинство осциллограмм напряжений сигналов имеют форму отличную от ровной горизонтальной линии. Положение нулевой линии на экране осциллографа можно изменять по вертикали – поднять выше или опустить ниже. Необходимость изменения положения нулевой линии (выше или ниже) зависит от формы исследуемого сигнала, а так же возникает в случае использования многоканального осциллографа.


Пример вывода на экран многоканального осциллографа нескольких сигналов одновременно с индивидуальной настройкой положения нулевой линии для каждого канала.


Усиление.

График на экране осциллографа отображает зависимость значения напряжения от времени. Чем большая амплитуда исследуемого сигнала, тем большее на экране осциллографа вертикальное отклонение сигнала. В зависимости от амплитуды, для наглядности отображения сигнала выбирают подходящее усиление. Значение усиления измеряется в Вольтах на деление

Возможность изменения значения усиления позволяет на экране осциллографа отображать как сигналы с очень малой амплитудой напряжения, так и сигналы с очень большой амплитудой напряжения. Необходимое значение усиления зависит от амплитудных параметров исследуемого сигнала.

Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения усиления. Большее значение Вольт/деление выбирают тогда, когда на экране нужно отобразить весь сигнал по амплитуде.


Меньшее значение Вольт/деление выбирают тогда, когда нужно детально исследовать форму и амплитудные параметры отдельных участков сигнала. В таком случае на экране отображается только часть сигнала по амплитуде.


Приведённые примеры демонстрируют, как изменяется отображение осциллограммы одного и того же сигнала на экране осциллографа при изменении значения усиления.


Развёртка.

Осциллограф прорисовывает график напряжения слева направо, начиная с левой стороны экрана. Скорость, прорисовки графика называется развёрткой. Развёртка измеряется в Секундах на деление. Значение развёртки можно изменять с помощью переключателя время/деление.

Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения развёртки. Меньшее время/деление выбирают тогда, когда нужно детально исследовать форму и временные параметры отдельных участков сигнала. В таком случае на экране отображается более короткий по времени фрагмент сигнала.


Осциллограмма напряжения сигнала управления форсункой при меньшем значении развёртки. В данном случае выбрана развёртка 0,2 милли Секунды/деление.

В случае если на экране необходимо отобразить больший по времени фрагмент осциллограммы, например для выявления отдельных импульсов с неправильной формой сигнала либо пропуски импульсов, выбирают большее время/деление.


Осциллограмма напряжения сигнала управления форсункой при большем значении развёртки. В данном случае выбрана развёртка 1 милли Секунда/деление.

Приведённые примеры демонстрируют, как изменяется отображение осциллограммы одного и того же сигнала на экране осциллографа при изменении значения развёртки.


Синхронизация.

Для удобного и наглядного отображения периодичных (циклично повторяющихся) сигналов применяется синхронизация. Синхронизация обеспечивает прорисовку отдельных импульсов, начиная всегда с одной и той же точки экрана, благодаря чему создаётся эффект неподвижного или относительно стабильного изображения. В случае выключенной синхронизации, осциллограф прорисовывает график напряжения слева направо, начиная с крайней левой стороны экрана до тех пор, пока экран не заполнится на всю ширину, после чего прорисовка снова начинается с крайней левой стороны экрана, что неудобно для отображения относительно быстрых периодичных сигналов.

Для настройки синхронизации необходимо выбрать уровень синхронизации (значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму) и фронт сигнала (спадающее или возрастающее напряжение).


В случае если применяется многоканальный осциллограф, необходимо так же указать, по сигналу какого канала осуществлять синхронизацию.


Аналоговый сигнал.

Значение напряжения большинства аналоговых сигналов изменяется во времени. Если изменения циклически повторяются, то такой сигнал называют периодичным, например сигнал управления форсункой. Если осциллограмма напряжения периодичного сигнала пересекает нулевую линию, то такой сигнал называют переменным. Если осциллограмма напряжения периодичного сигнала не пересекает нулевой линии, то такой сигнал называют постоянным. В качестве примера сложного аналогового сигнала постоянного тока можно привести сигнал лямбда-зонда.


Осциллограмма выходного напряжения лямбда-зонда BOSCH
(на основе оксида циркония).
A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует максимальному напряжению выходного сигнала лямбда-зонда и равно ~840 милли Вольт;
A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда и составляет ~740 милли Вольт.


Синусоидальный сигнал.

Самым простым примером переменного аналогового напряжения является синусоида. Такой сигнал характеризуется только двумя параметрами – амплитуда и частота. Нулевая линия синусоидального переменного напряжения располагается ровно посередине сигнала.

Необходимо отметить, что большинство сигналов переменного напряжения значительно отличаются от чистого синусоидального. В автомобильной электронике близкими к синусоидальному являются сигналы, сгенерированные магнитными датчиками положения зубчатых колёс.

A: – значение напряжения в момент времени указанный маркером;
A-B: – значение разности напряжений между двумя указанными маркерами моментами времени.

Подобные сигналы генерируют некоторые датчики скорости вращения коленчатого вала, распределительного вала, скорости вращения колёс...


Цифровой сигнал.

Цифровые сигналы от аналоговых отличаются наличием только двух уровней напряжения – "высокий"/"низкий", "включено"/"выключено", "1"/"0". Такие уровни напряжений цифрового сигнала называются "логическими уровнями". В большинстве случаев, логические уровни цифрового сигнала имеют точные значения напряжения, например +5 Вольт и 0 Вольт.

A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению высокого уровня цифрового сигнала и составляет +5 Вольт.

Цифровые сигналы генерируются ключами (выключателями). Роль ключей выполняют транзисторы, переключающиеся между состояниями "открыт"/"закрыт". Иногда цифровые сигналы генерируются механическими ключами – механическими выключателями, переключателями, электромеханическими реле… Примерами цифровых сигналов автомобильной электронике могут служить датчик Холла, датчики крайних положений дроссельной заслонки, активные датчики положения/частоты вращения коленчатого/распределительного вала...

Но преимущественно, цифровые сигналы используются в вычислительной технике, в том числе и в цифровых блоках управления электронными системами автомобилей.


Частота.

Частота – это количество циклов периодичного сигнала, повторяющееся за определённый период времени. Если за такой период времени принять одну секунду, то количество циклов периодичного сигнала повторившееся за этот период времени называют Герц (Гц). В автомобильной электронике количество оборотов двигателя принято рассчитывать за период времени равный одной минуте (Об/мин).

По осциллограмме напряжения периодичного сигнала можно легко измерить частоту следования импульсов. Для этого необходимо измерить длительность полного цикла сигнала – период. Далее полученное значение временного промежутка можно пересчитать в частоту, воспользовавшись соответствующей формулой.

Рассчитаем частоту следования импульсов сигнала датчика положения коленчатого вала.


Датчик, осциллограмма напряжения выходного сигнала которого приведена выше, генерирует один импульс напряжения за один оборот коленчатого вала. Временной промежуток между двумя ближайшими такими импульсами называется периодом. В данном случае, два следующих один за другим импульса удалены друг от друга на 7,4 деления на экране осциллографа по горизонтали. Для отображения данного сигнала на экране выбрана развёртка (временной промежуток между каждым делением на экране осциллографа по горизонтали) 10 милли Секунд/деление, то есть 0,01 Секунды. Умножив количество делений соответствующее периоду на значение развёртки можно получить численное значение периода повторения сигнала в Секундах:

0,01*7,4=0,074 Секунд.

Зная значение длительности периода повторения сигнала, можно рассчитать, сколько таких периодов проследует за одну секунду, то есть частоту сигнала в Герцах. Для пересчёта периода в частоту, необходимо разделить выбранный временной промежуток (в данном случае 1 Секунда) на период повторения сигнала (для данного сигнала 0,074 Секунд):

1/0,074=13,5 Гц.

Если в данном случае рассчитать, сколько таких периодов проследует за одну минуту, то полученное значение будет соответствовать частоте вращения коленчатого вала в оборотах за минуту. Для пересчёта периода в частоту, необходимо разделить выбранный временной промежуток (в данном случае 60 Секунд) на период повторения сигнала (для данного сигнала 0,074 Секунд):

60/0,074=810 Об/мин.

Подобный расчет можно осуществить, располагая любым осциллографом, но некоторые осциллографы способны рассчитывать и отображать частоту сигнала в Герцах или в Оборотах за минуту в автоматическом или полуавтоматическом режиме.

RPM: – текущая частота вращения коленчатого вала двигателя в Оборотах за минуту.


Длительность импульса.

Длительность импульса – это временной промежуток, в течение которого сигнал находится в активном состоянии. Активное состояние – это уровень напряжения, который включает исполнительный механизм (приводит механизм в действие). В зависимости от схемы включения исполнительного механизма, активное состояние может иметь различные уровни напряжения, например 0 Вольт, +5 Вольт, +12 Вольт… Например, напряжение активного состояния сигнала управления электромагнитной форсункой в большинстве систем управления двигателем теоретически равно 0 Вольт, а практически может колебаться в диапазоне 0…+2,5 Вольт и более.

Impuls width: – длительность импульса.

Для приведённого выше сигнала, длительность импульса открытия форсунки составляет 4,4 деления на экране осциллографа по горизонтали, что при развёртке 1 милли Секунда/деление соответствует 4,4 милли Секунды.


Скважность.

Скважность – это процент времени от периода повторения, когда сигнал находится в активном состоянии. Скважность – один из параметров сигналов ШИМ (Широтно-Импульсная Модуляция).

Duty cycle: – скважность сигнала. Сигнал 67% времени находится в активном состоянии (в данном случае значение напряжения активного состояния сигнала составляет ~1 Вольт);
Frequency: – частота следования импульсов. В данном случае составляет ~100 Герц.

Сигналы ШИМ применяются для управления некоторыми исполнительными механизмами. Например, в некоторых системах управления двигателем сигналом ШИМ приводится в действие электромагнитный клапан холостого хода. Кроме того, сигнал ШИМ генерируют некоторые датчики, преобразовывая величину измеряемого физического параметра в скважность.


ЭДС самоиндукции.

ЭДС (Электро-Движущая Сила) самоиндукции – это напряжение, возникающее вследствие изменения значения величины магнитного поля и/или его направления вокруг электрического проводника. В случае высокой скорости изменения величины магнитного поля внутри соленоида (обмотка электромагнитного реле, электромагнитной форсунки, катушки зажигания, электромагнитного датчика частоты вращения) напряжение ЭДС самоиндукции может достигать десятков/тысяч Вольт. Величина напряжения ЭДС самоиндукции зависит в основном от индуктивности обмотки и скорости изменения величины магнитного поля. Для электромагнитных исполнительных механизмов, величина магнитного поля наиболее быстро изменяется при его разрушении, то есть при быстром отключении напряжения питания соленоида.

В некоторых случаях, эффект ЭДС самоиндукции нежелателен, и применяются меры для его уменьшения/устранения. Но некоторые электрические цепи спроектированы так, чтобы получить максимальный всплеск ЭДС самоиндукции, например, система зажигания бензинового двигателя.

A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению ЭДС самоиндукции вторичной обмотки катушки зажигания ограниченному напряжением пробоя свечи зажигания и соответствует 8,3 кило Вольт.

Некоторые системы зажигания при напряжении питания 12 Вольт способны развивать напряжение ЭДС самоиндукции до 40-50 тысяч Вольт.

Эта заметка будет постепенно пополняться простыми, но полезными приёмами работы с осциллографом.

Вступление

Главный вопрос, на который следует ответить: "что можно измерить с помощью осциллографа?" Как ты уже знаешь, этот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой цепи. Значит с помощью осциллографа в основном можно (я не говорю про супер функции супер-современных приборов):

  • Определить форму сигнала
  • Определить частоту и период сигнала
  • Измерить амплитуду сигнала
  • Не напрямую, но измерить ток тоже можно (закон Ома в руки)
  • Определить угол сдвига фазы сигнала
  • Сравнивать сигналы между собой (если прибор позволяет)
  • Определять АЧХ
  • Забыл что-то упомянуть? Напомните в комментариях!

Все дальнейшие примеры следует делались с рассчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.

Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети).

Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.


Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.

Виды сигналов

Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график.

Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.

Амплитуда, частота, период

Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно.

Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!

Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться только только пульсации источника питания.

Амплитуду переменного напряжения легко определить зная цену деления В/дел и просто посчитать число клеток по оси ординат, которые занимает этот сигнал от нулевого значения (среднего), до максимального.


Если посмотреть на экран осциллографа на картинке выше и предположить, что В/дел = 1В, тогда амплитуда синусоиды будет 1.3В.

А если предположить, что Время/дел (развертка) установлено в 1 миллисекунду, тогда период этой синусоиды будет занимать 4 клетки, а зачит период T = 4 мс. Легко? Давай теперь вычислим частоту этой синусоиды. Частота и период связаны формулой: F = 1/T (Т в секундах). Следовательно F = 1/ (4*10 -3) и равняется 250 Гц.

Конечно, это очень грубая прикидка, которая годится только для вот таких чистеньких и красивых сигналов. А если подать вместо чистой синусоиды какую-нибудь музыкальную композицию, то в ней будет множество разных частот и на глазок уже не прикинешь. Чтобы определить какие частоты входят в эту композицию потребуется анализатор спектра. А это уже другой прибор.

Измерение частоты

Как я уже писал выше, с помощью осциллографа можно измерять и частоту. А ещё можно не просто измерить частоту какого-нибудь синусоидального сигнала, а даже сравнить частоты двух сигналов, к примеру, с помощью фигур Лиссажу.

Это очень удобно, когда хочется, например, откалибровать собранный своими руками генератор сигналов, а частотомера под руками нет. Тогда и приходят на помощь фигуры Лиссажу. Жаль не все аналоговые осциллографы могут их показывать.

Сдвиг фаз

Частенько бывает так, что фаза тока и фаза напряжения расходятся. Например, после прохождения через конденсатор, индуктивность или целую цепь. И если у тебя есть двухканальный осциллограф, то легко можно посмотреть как сильно отличаются фазы тока и напряжения (А если есть современный цифровой, то там есть даже специальная функция для измерения сдвига фаз. Круто!) . Для этого следует подключить осциллограф вот таким образом:

ЛАБОРАТОРНАЯ РАБОТА 10 КЛАСС.

Знакомство с интерфейсом цифрового осциллографа.

Измерение силы тока с помощью осциллографа

1. Вспомните, что перед изъятием устройства «флэш»-памяти из USB-порта, Вы всегда отключаете напряжение на этом порту, используя опцию «Безопасное извлечение».

Будьте внимательны с USB-портом компьютера, короткое замыкание его контактов может привести к выходу из строя не только порта, но и всего компьютера!!!

Источником постоянного тока в работах по электродинамике будет служить один из USB-портов компьютера. Подсоедините блок коммутации USB-порта с электрической цепью (в дальнейшем источник тока ) к одному из USB-портов. Ко второму USB-порту подсоедините кабелем датчик напряжения осциллографический (в дальнейшем осциллограф ).Подключите щупы осциллографа к выходным клеммам источникапостоянного тока.

Если возникают проблемы с настройкой осциллографа или иного датчика, возможно, вы запустили программу раньше установления драйвера датчика, опросите еще раз датчик

(кнопка ) или перезагрузите программу.

2. Запустите программу «Цифровая лаборатория». В открывшемся окне со списком работ выберите сценарий работы 3.1 «Знакомство с интерфейсом осциллографа». Окно со списком работ можно вызвать и нажав кнопку в верхнем меню программы.

3. Осциллограф – устройство позволяющее измерять напряжение постоянного и

меняющегося во времени электрического сигнала. Используя кнопку , откройте окно настроек параметров компьютера (рис.1)

Рис.1 Ознакомьтесь с содержанием вложенных списков параметров настройки в каждом из

окошек настройки параметров. Осциллограф может измерять одновременно напряжение на двух участках цепи по двум каналам. Установите «галочку» в окошке выбора «красного» канала (Канал №1). Режим работы «авто» и развертку «5 мс/дел», чувствительность Канала №1 «1 В/дел», положение нулевой линии «0», вид сигнала «Постоянный» * , установите «галочку» в окошках «Отображение сигнала» и

* Опция «Переменный» в окне «Вид сигнала» при настройке параметров регистрации осциллографического датчика позволяет отсечь постоянную или медленно меняющуюся (с характерным временем около 0,1 с) составляющую напряжения и показывать только быстро меняющийся сигнал (с характерным временем 0,05с и менее). В наборе работ «Цифровая лаборатория. Базовый уровень» такая опция нигде не используется.


«Отображение нулевой линии». Параметры в остальных окнах можно пока не менять. Зафиксируйте выбранные параметры (кнопка )


4. Запустите измерения в программе «Цифровая лаборатория (кнопка ) и после прописывания нулевой линии красной линией подключите выводы осциллографа в «красной» оплетке к клеммам источника тока. Обратите внимание, в какую сторону смещается сигнал при подключении кабеля с синим наконечником к клемме источника

«+», а с красным наконечником – к клемме «минус». Остановите измерения (кнопка )

и левой кнопкой мыши установите желтый вертикальный маркер на рабочем поле на первом делении по горизонтали. Обратите внимание на числовые значения напряжения

и времени в левом верхнем углу (или в нижней части окна) окна регистрации. Время

отсчитывается от зеленого вертикального маркера, стоящего на левой границе рабочего поля. Вы можете сместить зеленый маркер правой кнопкой мыши. Клик правой кнопкой за левой границей окна регистрации возвращает зеленый маркер на левый край поля.

5. Вернитесь в окно установки параметров осциллографа, измените чувствительность по напряжению Канала №1 и временную развертку. Включите регистрацию по Каналу №2, установив в окне вида сигнала (рис.1) – «Постоянный». Приняв параметры, проверьте, как изменились показания осциллографа на рабочем поле. Заменив щупы Канала №1 (красного) на щупы Канала №2, проверьте, как работает Канал №2, затем снимите сигнал с источника обоими каналами, присоединив клеммы каналов так, чтобы сигнал от них был разной полярности.

6. Соберите электрическую цепь, состоящую из последовательно соединенных резистора с сопротивлением 200 Ом, переменного сопротивления (его сопротивление меняется от 0 до 100 Ом), светодиода, ключа и источника тока. К выходным клеммам источника тока подключите клеммы Канала №1 осциллографа, а к концам резистора 200 Ом – клеммы Канала №2 (рис.2). Замкнув ключ и вращая ручку переменного сопротивления, убедитесь, что показания на клеммах источника тока не меняется, а напряжение на резисторе 200 Ом меняется синхронно с изменением яркости светодиода (светодиод будет гореть, только если соблюдена верная полярность подведенного напряжения). Остановите регистрацию при максимальной яркости светодиода и замерьте напряжение на резисторе в 200 Ом.

сопротивлением Rш=10 Ом (рис.3), оставив щупы осциллографа на резисторе 200 Ом. Замкните цепь, запустите регистрацию, и, остановив регистрацию, убедитесь, что напряжение на резисторе в 200 Ом и яркость светодиода не изменились. Резистор в 10 Ом с сопротивлением малым по сравнению с общим сопротивлением цепи будем называть шунтом . Шунт в данной цепи уменьшает силу тока примерно на 5%, то есть


не влияет и на напряжение на элементах в цепи и яркость светодиода. Включая его в участок цепи, через который нужно измерить силу тока, измеряя напряжение на нем, измеряют силу тока, поскольку для резистора выполняется закон Ома I=U/R.

8. Исключите из цепи (рис.3) светодиод. Переключите щупы Канала №1 осциллографа с

источника тока, на шунт. Откройте вкладку «Исходные данные» (кнопка ) и внесите в

таблицу значение сопротивления шунта = 10 Ом (рис.4).

Рис.4 Выберите полярность подключения осциллографического датчика таким образом, чтобы

по каждому из каналов регистрировался положительный сигнал. Запустите регистрацию и, получив сигнал с обоих каналов осциллографа, остановите регистрацию. Установив желтый маркер на экран. Перейдите на вкладку «Таблица окна «Обработка» и выберите ячейку в столбце «U, В» (рис. 5).

(синяя оплетка кабеля осциллографа и синий цвет сигнала на экране) осциллографа в выбранную ячейку Таблицы. Для заполнения столбца с напряжением на шунте выберите ячейку в столбце «Uш, В» (рис.5) и нажмите кнопку красного цвета - значение напряжения измеренного на Канале №1 (красная оплетка и красный цвет сигнала на экране) отправится в соответствующую ячейку Таблицы. Рассчитайте значение силу тока через шунт и внесите ее в ячейку в нижней части таблицы (рис.5). После внесения «Исходных данных» эта «серая» ячейка становится «желтой», при внесении правильного значения – «зеленой», при внесении ошибочного значения – «красной». При «зеленой» ячейке дальнейшие расчеты значения и заполнение соответствующих ячеек в Таблице осуществляется автоматически (рис.6).


9. Запустите регистрацию и, меняя положение ручки резистора с переменным напряжением, добейтесь смены напряжения на резисторе 200 Ом и силы тока (и соответственно напряжения на шунте) в цепи. Останавливая запись, зарегистрируйте несколько значений напряжений на резисторе и шунте. Без заполнения нескольких строк в Таблице построения Графика (см.п.10) не будет осуществляться.

ВНИМАНИЕ! Напоминаем, что увеличение числа строк в Таблице осуществляется кнопкой на клавиатуре при заполнении хотя бы одной ячейки в предыдущей строке.

10. Перейдите на вкладку «График U(Iш) зависимости напряжения на резисторе 200 Ом от силы тока через резистор (она равна силе тока через шунт) и проанализируйте полученный график. Выбрав в окошке подбора функций для описания экспериментального графика функцию Y=AX (подбор наилучшей прямой осуществляется по нажатию на кнопку рядом с окном выбора вида функции, рис.7), убедитесь, что закон Ома U=RI выполняется, а коэффициент пропорциональности А соответствует

значению сопротивлению резистора R 200 Ом.

11. Занесите в Отчет (кнопка ) один из экранов с сигналом осциллографа, содержание вкладок « Исходные данные» и «Таблица», полученный график U(I), а также фото последней электрической цепи, на которой проводились измерении, сделанное с помощью ВЕБ - камеры, и скриншот окна настроек осциллографа (сочетание клавиш Alt-PrtScr), при которых проводились измерения.

ВНИМАНИЕ! Копирование в Отчет содержимого любой вкладки окна «Обработка» и кадр видео с установкой, регистрируемый ВЕБ – камерой, осуществляется в место, указываемое не курсором клавиатуры, а КУРСОРОМ МЫШИ. Содержимое вкладки НЕ ВСТАВЛЯЕТСЯ В ОТЧЕТ, ЕСЛИ ВЫ НЕ ОТКРЫВАЛИ эту вкладку.