Как собрать усилитель звука с микросхемы stk4152. Микросхемы - усилители низкой частоты (5)

Чтобы эффективно побороть различные помехи в сети, необходимо использовать простые стабилизаторы тока. Современные производители занимаются промышленным изготовлением таких устройств, благодаря чему каждая модель отличается своими функциональными и техническими характеристиками. В бытовой отрасли нет больших требований к стабилизаторам тока, но высококачественное измерительное оборудование всегда нуждается в стабильном напряжении.

Краткое описание

Опытные мастера прекрасно знают, что простейшие ограничители тока представлены в виде обычных резисторов. Такие агрегаты часто называют стабилизаторами , что не является действительностью, так как они не способны убрать все помехи при колебании напряжения на своём входе. Использование резистора в схеме питания того или иного прибора возможно только в том случае, если всё входное напряжение стабилизируется.

В иной ситуации даже мельчайшие скачки напряжения воспринимаются как повышенная нагрузка, что негативно отражается на работе всего устройства. Эффективность работы резистивных ограничителей тока является довольно низкой, так как потребляемая ими энергия рассеивается в виде тепла.

Более высоким уровнем КПД обладают те конструкции, которые изготовлены на базе готовых интегральных микросхем линейных стабилизаторов. Схемы таких устройств отличаются минимальным набором элементов, простотой настройки и отсутствием помех. Чтобы избежать нежелательного перегрева регулирующего элемента, различия между входным и выходным напряжением должны быть минимальными. В противном случае корпус микросхемы будет вынужден рассеивать всю невостребованную энергию, что в несколько раз снижает итоговый показатель КПД.

Наибольшей эффективностью обладают схемы с широтно-импульсной модуляцией. Их производство основано на использовании универсальных микросхем, где присутствует цепь обратной связи и специальные защитные механизмы, благодаря чему существенно возрастает надёжность всего устройства. Использование импульсного трансформатора ведёт к удержанию схемы, что положительно влияет на уровень КПД и продолжительность эксплуатационного срока. Стоит отметить, что такие стабилизаторы мастера часто изготавливают своими руками, используя для этого специальные детали.

Функциональные возможности

Только тот мастер, который хорошо знает принцип работы стабилизатора тока, сможет эффективно применять это устройство в различных сферах. Основная сложность в том, что электросети насыщены различными помехами, которые негативно влияют на работоспособность оборудования и приборов. Чтобы эффективно преодолеть источники отрицательного воздействия, специалисты повсюду применяют стабилизаторы напряжения и тока.

В каждом таком изделии присутствует незаменимый элемент - трансформатор , который обеспечивает стабильную и безотказную работу всей системы. Даже самая элементарная схема обязательно укомплектована универсальным выпрямительным мостом, который соединён с разными резисторами, а также конденсаторами. К главным эксплуатационным характеристикам относятся предельный уровень сопротивления и индивидуальная ёмкость.

Квалифицированные специалисты отмечают, что простой стабилизатор тока функционирует по самой элементарной схеме. Всё дело в том, что электрический ток поступает на основной трансформатор, благодаря чему меняется его предельная частота. На входе она всегда совпадает с этим показателем в электросети, находясь в пределах 50 герц. Только после того, как произошло преобразование тока, предельная частота будет снижена до оптимальной отметки.

Стоит отметить, что в традиционной схеме присутствуют мощные высоковольтные выпрямители, которые помогают определить полярность напряжения. А вот конденсаторы участвуют в качественной стабилизации тока, резисторы устраняют имеющиеся помехи.

Изготовление простого преобразователя для светодиодов

Опытные мастера согласятся, что собрать качественный и долговечный стабилизатор не так уж и сложно. Главная особенность состоит в том, что на блок может быть установлена целая система низковольтных конденсаторов на 20 вольт, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор, выполненный своими руками - это вариант LM317. Потребуется только правильно рассчитать резистор для используемого светодиода с помощью специализированного онлайн-калькулятора.

Важным фактом остаётся то, что для слаженной работы такого агрегата отлично подходит подручное питание:

  • Стандартный блок на 19 вольт от ноутбука.
  • На 24 В.
  • Более мощный агрегат на 32 вольт от обычного принтера.
  • Либо на 9 или на 12 вольт от какой-либо бытовой электроники.

К основным преимуществам такого преобразователя всегда относят его доступность, минимальное количество элементов, высокую степень надёжности, а также наличие в магазинах. Собирать самостоятельно более сложную схему весьма нерационально. Если мастер не обладает необходимым опытом, тогда импульсный стабилизатор тока лучше купить в готовом виде. При необходимости его всегда можно усовершенствовать.

Продолжительность работы светодиода без потери яркости зависит от режима. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, - их довольно трудно сжечь. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора. Сам процесс сборки состоит из нескольких основных этапов:

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включённого в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора).
  4. После внимательной проверки правильности соединений перед подключением собирается цепь.

Для любого устройства можно добиться подачи 10 А (задаётся низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения. Максимальная мощность LM317 - 1.5 ампер. Если есть необходимость увеличить ток, то в схему можно добавить полевой или обычный транзистор.

Универсальная регулируемая модель

Многие мастера сталкиваются с необходимостью использования высококачественного стабилизатора, который позволил бы проводить настройки сети в широком диапазоне. Некоторые современные схемы отличаются тем, что в них предусмотрено наличие токозадающего резистора с пониженными характеристиками. Сами специалисты отмечают, что такое устройство позволяет проводить усиление напряжения в другом резисторе. Это состояние принято называть усиленным напряжением ошибки.

Параметры опорного и ошибочного напряжения можно сравнить при помощи опорного усилителя, благодаря этому мастер осуществляет настройку состояния полевого транзистора. Стоит отметить, что такая схема требует дополнительного питания, которое обязательно должно поступать к отдельному разъёму. Всё дело в том, что питающее напряжение должно обеспечивать слаженную работу абсолютно всех компонентов используемой схемы. Допустимый уровень не должен быть превышен, так как это чревато преждевременной поломкой оборудования.

Чтобы максимально правильно настроить работу регулируемого стабилизатора тока, необходимо использовать специальный ползунок. Именно подстроечный резистор позволяет мастеру выставить максимальное значение тока. Настройка сети получается более гибкой, так как все параметры можно самостоятельно корректировать в зависимости от интенсивности эксплуатации.

Многофункциональный прибор

Среднюю сложность изготовления имеют драйверы для светодиодов на 220 В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство из них также возможно доработать, узнав модель контроллера преобразователя. Параметры обычно задаются одним или несколькими резисторами.

В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).

Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.

Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:

  • В сопроводительной документации к микросхеме.
  • В datasheet.
  • В стандартной схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1-3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов - чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.

Незаменимое устройство постоянного тока

Даже начинающий мастер знает, что такой агрегат работает по принципу двойного интегрирования . Абсолютно во всех моделях за этот процесс отвечают преобразователи. Универсальные двухканальные транзисторы предназначены для увеличения существующих динамических характеристик. Важно помнить, что для устранения тепловых потерь нужно использовать конденсаторы с большой ёмкостью.

Сделать показатель выпрямления можно только благодаря точному расчёту необходимого значения. Как показывает практика, если при выходном напряжении постоянного тока получается 12 ампер, то предельное значение должно составлять 5 В. Устройство сможет стабильно поддерживать рабочую частоту на отметке 30 Гц. Относительно порогового напряжения - всё зависит от блокировки сигнала, который поступает от трансформатора. Но фронт импульсов не должен превышать 2 МКС.

Только качественное преобразование тока позволяет обеспечить слаженную работу главных транзисторов. В этой схеме допускается использование исключительно полупроводниковых диодов. Если резисторы балластные, то это чревато большими тепловыми потерями. Именно поэтому коэффициент рассевания существенно увеличивается. Мастер может увидеть, что амплитуда колебаний возросла, а процесс индуктивности не произошёл.

Современная схема на базе КРЕН

Такое устройство будет стабильно работать только с элементами LM317 и КР142ЕН12. Это связано с тем, что они выступают в качестве универсальных стабилизаторов напряжения, хорошо справляясь с током до 1.5 А и выходным напряжением до 40 вольт. В классическом тепловом режиме эти элементы способны качественно рассеивать мощность до 10 Ватт. Сами микросхемы отличаются низким собственным потреблением, так как этот показатель составляет всего 8 мА. Главное, что этот показатель остаётся неизменным даже в том случае, если напряжение колеблется.

Отдельного внимания заслуживает микросхема LM317, которая способна удерживать постоянное напряжение на основном резисторе. Этот агрегат с неизменным сопротивлением обеспечивает максимальную стабильность проходящего через него тока, благодаря чему его часто называют токозадающим резистором. Современные стабилизаторы на КРЕН отличаются от своих аналогов относительной простотой, за счёт чего активно эксплуатируются в качестве зарядки для аккумуляторов и для электронной нагрузки.

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, ). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно .

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и R set .

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора R sens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, ). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема .

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации - это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы - драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Есть еще очень похожие светодиоды - SMD 5730 (без единички в названии). У них мощность всего 0.5 Вт и максимальный ток 0.18 А. Так что не перепутайте.

Так как при последовательном подключении светодиодов общее напряжение будет равно сумме напряжений на каждом из светодиодов, то минимальное напряжение питания схемы должно быть: Uпит = 2.5 + 12 + (3.3 х 10) = 47.5 Вольт.

Рассчитать сопротивление и мощность резистора под другие значения тока можно с помощью простенькой программки Regulator Design (скачать).

Очевидно, что чем выше выходное напряжение стабилизатора, тем больше тепла будет выделяться на токозадающем резисторе и, следовательно, тем хуже КПД. Поэтому для наших целей лучше подойдет LM7805, чем LM7812.

LM317

Не менее эффективным получается линейный стабилизатор тока для светодиодов на LM317 . Типовая схема включения:

Простейшая схема включения LM317 для светодиодов, позволяющая собрать мощный светильник, состоит из выпрямителя с емкостным фильтром, стабилизатора тока и 93 светодиодов SMD 5630 . Здесь применены MXL8-PW35-0000 (3500K, 31 Lm, 100 mA, 3.1 V, 400 mW, 5.3x3 mm).

Если такая большая гирлянда из светодиодов не нужна, то к драйверу на LM317 для питания светодиодов придется добавить балластный резистор или конденсатор (чтобы загасить лишнее напряжение). Как это сделать мы очень подробно рассматривали в .

Недостаток такой схемы токового драйвера для светодиодов в том, что при повышении напряжения в сети выше 235 вольт, LM317 окажется за пределами расчетного режима работы, а при снижении до ~208 вольт и ниже, микросхема совсем перестает стабилизировать и глубина пульсаций будет целиком и полностью зависеть от емкости С1.

Поэтому использовать такой светильник нужно там, где напряжение более менее стабильно. И на емкости этого конденсатора не стоит экономить. Диодный мост можно взять готовый (например, миниатюрный MB6S) или собрать из подходящих диодов (U обр не менее 400 В, прямой ток >= 100 мА). Отлично подойдут упомянутые выше 1N4007 .

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (!!!) не мерцающих (!!!) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением .


Иногда у автолюбителей появляется необходимость ограничить ток заряда АКБ, проверить тот или иной источник питания или пропустить напряжение через диоды. Чтобы осуществить одну из этих задач, есть смысл применить стабилизатор тока для светодиодов своими руками. Подробнее о том, какие существуют схемы для разработки данного девайса, вы узнаете ниже.

[ Скрыть ]

Схемы стабилизаторов и регуляторов тока

Источники тока не имеют ничего общего с источниками напряжения. Предназначение первых заключается в стабилизации выходного параметра, а также возможном изменении выходного напряжения. Это происходит так, чтобы уровень ток все время был одинаковым. Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем.

На КРЕНке

Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317. Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт. Но это возможно только в том случае, если будет соблюдаться тепловой режим.

В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3.

Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T).

Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля. Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса. Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты.

На двух транзисторах

Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач.


Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе. В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться. При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2.

Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена. Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта. Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1.

На операционном усилителе (на ОУ)


Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2. Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы.

Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта. Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку. Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4.

На микросхеме импульсного стабилизатора


В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы.

Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие:

  • уровень опорного напряжения — 1.5 вольт;
  • коэффициент полезного действия при нагрузке от 10 мили ампер до 1 ампера составит около 90%;
  • показатель питания составляет от 2 до 16.5 вольт;
  • мощность на выходе достигает 15 ватт (автор видео — Андрей Канаев).

Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр. При обратном процессе устройство будет увеличивать данный показатель. Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр.

Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт.

Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель.

Заключение

В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д. Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора. Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи.

Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше.

Видео «Устройство для питания светодиодов»

Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь).

Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.

После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.

В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.

Зачем нужны преобразователи

Все дело в том, что прямое падение напряжения на , как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой .

Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать : многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.

Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.

В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной . Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.

Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.

Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.

Если под рукой не окажется транзистора структуры n-p-n, то можно применить , например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.

Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.

Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.

Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.

Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521 ().

Преобразователи с дросселем

Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1 , содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.

При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.

Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.

При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.

Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.

Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.

Схемы с обратной связью по току

А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.

В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.

При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.

Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.

Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.

При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.

Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.

Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.

Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.

Интегральные стабилизаторы тока

В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.

На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.

Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.

Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.

Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.

В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.

При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.

Борис Аладышкин