Способы уменьшения уровня боковых лепестков в системах излучателей. Способы уменьшения уровня боковых лепестков в системах излучателей Вывод выражения для дн лар

Относительный (нормированный к максимуму ДН) уровень излучения антенны в направлении боковых лепестков. Как правило, УБЛ выражается в децибелах , реже определяют УБЛ «по мощности» или «по полю» .

Пример диаграммы направленности антенны и параметры ДН: ширина, КНД, УБЛ, относительный уровень заднего излучения

ДН реальной (конечных размеров) антенны - осциллирующая функция, в которой выделяют глобальный максимум, являющийся центром главного лепестка ДН, а также прочие локальные максимумы ДН и соответствующие им так называемые боковые лепестки ДН. Термин боковой следует понимать как побочный , а не буквально (лепесток, направленный «вбок»). Лепестки ДН нумеруют по порядку начиная с главного, которому присваивают номер ноль. Дифракционный (интерференционный) лепесток ДН, возникающий в разреженной антенной решетке , боковым не считается. Минимумы ДН, разделяющие лепестки ДН, называют нулями (уровень излучения в направлениях нулей ДН может быть сколь угодно малым, однако в реальности излучение всегда присутствует). Область бокового излучения разбивают на подобласти: область ближних боковых лепестков (прилегающую к главному лепестку ДН), промежуточную область и область задних боковых лепестков (вся задняя полусфера).

  • Под УБЛ понимают относительный уровень наибольшего бокового лепестка ДН . Как правило, наибольшим по величине является первый (прилегающий к главному) боковой лепесток.

Для антенн с высокой направленностью используют также средний уровень бокового излучения (нормированная к своему максимуму ДН усредняется в секторе углов бокового излучения) и уровень дальних боковых лепестков (относительный уровень наибольшего бокового лепестка в области задних боковых лепестков).

Для антенн продольного излучения для оценки уровня излучения в направлении «назад» (в направлении, противоположном направлению главного лепестка ДН) используется параметр относительный уровень заднего излучения (от англ. front/back , F/B - отношение вперед/назад), и при оценке УБЛ это излучение не учитывается. Также для оценки уровня излучения в направлении «вбок» (в направлении, перпендикулярном главному лепестку ДН) используется параметр относительный бокового излучения (от англ. front/side , F/S - отношение вперед/вбок).

УБЛ, как и ширина главного лепестка ДН, являются параметрами, определяющими разрешающую способность и помехозащищённость радиотехнических систем. Поэтому в технических заданиях на разработку антенн этим параметрам уделяется большое значение. Ширину луча и УБЛ контролируют как при вводе антенны в эксплуатацию, так и в процессе эксплуатации.

Цели снижения УБЛ

  • В режиме приёма антенна с низким УБЛ «более помехоустойчива», поскольку лучше осуществляет селекцию по пространству полезного сигнала на фоне шума и помех, источники которых расположены в направлениях боковых лепестков
  • Антенна с низким УБЛ обеспечивает системе бо́льшую электромагнитную совместимость с другими радиоэлектронными средствами и высокочастотными устройствами
  • Антенна с низким УБЛ обеспечивает системе бо́льшую скрытность
  • В антенне системы автосопровождения цели возможно ошибочное сопровождение по боковым лепесткам
  • Снижение УБЛ (при фиксированной ширине главного лепестка ДН) ведёт к росту уровня излучения в направлении главного лепестка ДН (к росту КНД): излучение антенны в направлении, отличном от главного - пустая потеря энергии. Однако, как правило, при фиксированных габаритах антенны снижение УБЛ ведёт к снижению КИП, расширению главного лепестка ДН и снижению КНД .

Расплатой за более низкий УБЛ является расширение главного лепестка ДН (при фиксированных размерах антенны), а также, как правило, более сложная конструкция распределительной системы и меньший КПД (в ФАР).

Способы снижения УБЛ

Поскольку ДН антенны в дальней зоне и амплитудно-фазовое распределение (АФР) токов по антенне связаны между собой преобразованием Фурье , то УБЛ как вторичный параметр ДН определяется законом АФР. Основным способом снижения УБЛ при проектировании антенны является выбор более плавного (спадающего к краям антенны) пространственного распределения амплитуды тока. Мера этой «плавности» - коэффициент использования поверхности (КИП) антенны.

  • Марков Г. Т., Сазонов Д. М. Антенны. - М. : Энергия, 1975. - С. 528.
  • Воскресенский Д. И. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток.. - М. : Радиотехника, 2012.
  • ГОСТ Р 50867-96

    Группа Э58

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

    АНТЕННЫ РАДИОРЕЛЕЙНЫХ ЛИНИЙ СВЯЗИ

    Классификация и общие технические требования

    Antennas of microwave telecommunication lines.
    Classification and main technical requirements


    ОКС 33.060.20
    ОКСТУ 6577

    Дата введения 1997-01-01

    Предисловие

    1 РАЗРАБОТАН И ВНЕСЕН Министерством связи Российской Федерации

    2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта России от 21 марта 1996 г. N 193

    3 ВВЕДЕН ВПЕРВЫЕ

    1 ОБЛАСТЬ ПРИМЕНЕНИЯ

    1 ОБЛАСТЬ ПРИМЕНЕНИЯ

    Настоящий стандарт распространяется на антенны радиорелейных линий (РРЛ), предназначенные для приема (передачи) электромагнитной энергии в диапазонах частот, выделенных для РРЛ.

    Стандарт устанавливает общие технические требования к номенклатуре электрических параметров и конструкции антенн РРЛ, определяет методы измерения электрических параметров.

    2 НОРМАТИВНЫЕ ССЫЛКИ

    3 ОПРЕДЕЛЕНИЯ

    В настоящем стандарте применяются следующие термины с соответствующими определениями.

    3.1 РАБОЧИЙ ДИАПАЗОН ЧАСТОТ - полоса, ограниченная верхней и нижней рабочими частотами, в пределах которой заданные электрические параметры антенны остаются неизменными или меняются в допустимых пределах.

    3.2 ЗАЩИТНОЕ ДЕЙСТВИЕ - уменьшение сигнала, принимаемого антенной с направления противоположного главному или в определенном заданном секторе углов, по сравнению с этим же сигналом, принимаемым в главном направлении.

    3.3 ГАРАНТИРОВАННАЯ ДИАГРАММА НАПРАВЛЕННОСТИ - огибающая пиковых значений лепестков реальной диаграммы направленности.

    Примечание - Допускается превышение уровня гарантированной диаграммы направленности не более чем на 3 дБ и не более чем 10% пиков боковых лепестков реальной диаграммы направленности.

    3.4 ОТНОСИТЕЛЬНОЕ ЗАЩИТНОЕ ДЕЙСТВИЕ - защитное действие, приведенное к уровню излучения изотропной антенны.

    3.5 Остальные термины - по ГОСТ 24375 .

    4 КЛАССИФИКАЦИЯ

    4.1 По количеству используемых в схеме зеркал антенны подразделяют на однозеркальные, состоящие из основного зеркала и облучателя, двухзеркальные, состоящие из основного и вспомогательного зеркал и облучателя, и многозеркальные, состоящие из основного и двух или нескольких вспомогательных зеркал и облучателя.

    4.2. По месту расположения облучателя антенны подразделяют на осесимметричные, когда облучающая система расположена вдоль фокальной оси в центре раскрыва антенны, и неосесимметричные (с вынесенным облучателем), когда облучающая система смещена относительно центра раскрыва антенны.

    4.3 По количеству рабочих диапазонов антенны подразделяют на одно-, двух- и многодиапазонные.

    4.4 По показателям качества (в основном по помехозащищенности) антенны в соответствии с международной классификацией подразделяют на три основные категории - стандартные, высококачественные и сверхвысококачественные.

    Примечание - Кроме перечисленных основных категорий существуют категории антенн, улучшенных по одному из параметров.

    4.5. По количеству рабочих поляризаций антенны подразделяют на однополяризационные, работающие на одной поляризации, и двухполяризационные, работающие на двух поляризациях.

    4.6 По количеству рабочих направлений антенны подразделяют на однолучевые, работающие в одном направлении, и с угловым разносом, работающие в двух или нескольких направлениях.

    5 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

    5.1 Общие требования

    Антенны должны соответствовать требованиям настоящего стандарта и техническим условиям на антенну конкретного вида.

    5.2 Требования к электрическим параметрам

    5.2.1 При разработке, конструировании и изготовлении антенн должны быть нормированы следующие электрические параметры:

    - рабочий диапазон частот;

    - характеристика поляризации;

    - коэффициент усиления;

    - показатель согласования антенны с фидерным трактом;

    - ширина главного лепестка по уровню половинной мощности;

    - ширина главного лепестка по нулям или по уровню минус 15 или минус 20 дБ;

    - уровень первого бокового лепестка;

    - защитное действие;

    - уровень максимумов кроссполяризации или максимальный уровень кроссполяризационного излучения в заданном пространственном секторе углов вблизи направления главного излучения;

    - уровень бокового излучения в круговом или заданном секторе углов.

    Примечание - Указанные параметры подлежат контролю при проведении сертификационных испытаний антенн.

    5.2.2 Рабочий диапазон конкретной антенны РРЛ должен соответствовать рабочему диапазону радиорелейной системы связи, в составе которой должна работать антенна*.
    ______________
    * Рабочий диапазон радиорелейной системы связи устанавливается в соответствии с Международным Регламентом Радиосвязи, Российской таблицей распределения полос частот между службами и соответствующими решениями ГКРЧ России.


    Ширина рабочей полосы рабочего диапазона ограничивается нижней и верхней частотами.

    5.2.3 Поляризация антенн РРЛ должна быть линейная, горизонтальная и/или вертикальная.

    Примечание - При необходимости допустима работа на вращающейся поляризации.

    5.2.4 Коэффициент усиления антенны должен быть задан на одной (средней) или трех (крайних и средней) частотах рабочего диапазона или в виде минимально допустимого в пределах всего рабочего диапазона значения с разделением, при необходимости, по поляризациям.

    Коэффициент усиления должен быть задан в децибелах.

    5.2.5 Показатель согласования антенны с фидерным трактом должен быть задан коэффициентом стоячей волны по напряжению (КСВн) в виде максимально допустимого в пределах рабочего диапазона значения с разделением, при необходимости, по поляризациям.

    Примечание - Допускается задавать показатель согласования в виде коэффициента отражения.

    5.2.6 Ширина главного лепестка по уровню половинной мощности должна быть задана на одной (средней) или трех (крайних и средней) частотах рабочего диапазона с разделением, при необходимости, по плоскостям и поляризациям.

    Примечание - При необходимости задают ширину главного лепестка и по нулям или по уровню минус 15 или минус 20 дБ.

    5.2.7 Уровень первого бокового лепестка должен быть задан в виде максимально допустимого в пределах рабочего диапазона значения с разделением, при необходимости, по плоскостям и поляризациям.

    5.2.8 Защитное действие антенны должно быть задано в виде минимально допустимого в пределах рабочего диапазона значения с разделением, при необходимости, по плоскостям и поляризациям.

    5.2.9 Уровень максимумов кроссполяризации или уровень кроссполяризационного излучения в заданном пространственном секторе углов вблизи направления главного излучения должен быть задан в виде максимально допустимого в пределах рабочего диапазона значения с разделением, при необходимости, по плоскостям и поляризациям.

    5.2.10 Уровень бокового излучения должен быть задан в виде гарантированных ДН (основных и кроссполяризационных) одновременно для обеих поляризаций или с разделением по поляризациям в горизонтальной или в горизонтальной и вертикальной, или в нескольких наиболее характерных плоскостях.

    5.2.11 Уровень первого бокового лепестка, уровень максимумов кроссполяризации (или уровень кроссполяризационного излучения в заданном пространственном секторе углов вблизи направления главного излучения) и уровень бокового излучения задают в децибелах относительно уровня излучения в главном направлении.

    5.2.12 Разделение параметров по плоскостям (главные - горизонтальная и вертикальная) и поляризациям (плоскости и ) применяют в том случае, когда различие в величине параметров превосходит заданную точность.

    5.2.13 Кроме основных параметров, указанных в 5.2.1, могут быть заданы производные параметры - коэффициент использования поверхности раскрыва и относительное защитное действие.

    5.2.14 При включении в состав антенны дополнительных элементов - волноводных переходов, изгибов, защитного от атмосферных осадков укрытия и др., влияющих на электрические параметры, значение каждого из электрических параметров должно быть задано с учетом их влияния, если эти элементы составляют неотъемлемую часть антенны, если же в зависимости от включения дополнительных элементов имеется несколько исполнений антенны, то величина всех или только зависимых от исполнения антенны параметров должна быть указана отдельно для каждого исполнения.

    5.2.15 Нормы на электрические параметры антенн определяются при проектировании конкретных радиорелейных систем связи в зависимости от протяженности пролетов РРЛ, условий распространения и параметров используемой аппаратуры (мощности передатчиков, чувствительности приемников и др.), назначения систем связи (магистральная, зоновая), количества каналов (многоканальная или малоканальная), способа используемой модуляции (аналоговая или цифровая), требований к электромагнитной совместимости и т.д. и указываются в технических условиях на антенну конкретного вида.

    5.2.16 Ориентировочные значения основных параметров антенн, применяемых на РРЛ, даны в приложении А.

    5.2.17 Общие требования к проведению измерений параметров антенн изложены в приложении Б.

    5.3 Требования к конструкции

    5.3.1 Конструкция антенны должна включать зеркало, облучатель и элементы крепления антенны к несущей конструкции.

    Примечание - В состав антенны может быть включена подставка и устройство для юстировки.

    5.3.2 Масса и габаритные размеры антенны должны быть минимизированы.

    5.3.3 Направление волноводного выхода облучателя (горизонтальное, вертикальное, наклонное) должно быть задано в зависимости от конструктивных параметров системы в целом.

    5.3.4 Выход облучателя должен иметь типоразмер и соединитель, обеспечивающие стыковку с соответствующими элементами фидерного тракта или радиорелейной аппаратуры. Требования к выходу облучателя устанавливаются в технических условиях на антенну конкретного вида.

    5.3.5 Волноводный тракт облучателя, при необходимости, должен быть герметичным и испытываться при избыточном давлении воздуха, заданном в технических условиях на антенну конкретного вида.

    5.3.6 Конструкция антенны должна обеспечивать механическую прочность и нормы на электрические параметры, установленные в технических условиях, при эксплуатации антенны в заданных климатических районах при заданной высоте установки.

    5.3.7 Антенна должна сохранять заданные техническими условиями электрические параметры и не должна иметь механических повреждений после испытаний на транспортирование, определяемых техническими условиями на антенну конкретного вида.

    5.3.8 Срок службы антенны, если это не оговорено особыми условиями, должен быть не менее 20 лет.

    5.3.9 Требования к маркировке и упаковке должны быть указаны в технических условиях на антенну конкретного вида.

    5.3.10 В конструкции антенны должно быть предусмотрено грузозахватывающее отверстие для ее подъема, спуска и удержания на весу при монтажных и ремонтных работах.

    5.3.11 В конструкции неосесимметричных антенн целесообразно предусмотреть возможность их визуальной юстировки.

    5.3.12 Элементы конструкции антенны не должны иметь острых кромок, углов и поверхностей, представляющих источник опасности, за исключением оговоренных в конструкторской документации.

    5.3.13 Конструкция антенны должна обеспечивать удобный доступ к элементам, которые при эксплуатации требуют особого контроля или замены.

    5.3.14 Максимально допустимая высота установки антенны определяется в зависимости от требований системы, в составе которой она должна работать.

    5.3.15 При отсутствии специальных требований антенны должны быть рассчитаны на работу в V ветровом, IV снеговом и гололедном районах при температуре окружающего воздуха от минус 50 до +50 °С и влажности 100% при температуре +25 °С.

    5.4 Требования к электромагнитной совместимости, экологической безопасности и электробезопасности

    5.4.1 Уровень бокового излучения вновь разрабатываемых, модернизируемых и закупаемых за рубежом антенн, определяющий электромагнитную совместимость систем связи, должен соответствовать требованиям, приведенным в приложении В.

    5.4.2 Требования к экологической безопасности и электробезопасности определяются техническими условиями на радиорелейную аппаратуру конкретного вида.

    ПРИЛОЖЕНИЕ А (справочное). ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ ОСНОВНЫХ ПАРАМЕТРОВ АНТЕНН, ПРИМЕНЯЕМЫХ В НАСТОЯЩЕЕ ВРЕМЯ НА РРЛ

    ПРИЛОЖЕНИЕ А
    (справочное)

    А.1 Коэффициент усиления антенн РРЛ составляет от 20 до 50 дБ.

    Примечание - При необходимости могут использоваться антенны как с меньшими, так и с большими значениями коэффициента усиления.

    А.2 КСВн антенн, используемых для работы в магистральных радиорелейных системах большой емкости и в системах с протяженным волноводным трактом, составляет величину от 1,04 до 1,08.

    КСВн антенн, используемых для работы в зоновых системах и системах не имеющих протяженного волноводного тракта (аппаратура непосредственно присоединена ко входу антенны), составляет величину от 1,15 до 1,4.

    Примечание - Целесообразно использовать антенны с низкими значениями КСВн, в т.ч. и ниже указанных нижних пределов.

    А.3 Ширина главного лепестка по уровню половинной мощности однолучевых остронаправленных антенн РРЛ составляет величину от долей градуса до нескольких градусов.

    А.4 Уровень бокового излучения антенн РРЛ соответствует справочным диаграммам направленности, приведенным в приложении В.

    А.5 Относительное защитное действие стандартных антенн составляет от 0 до 10 дБ, высококачественных - от 10 до 20 дБ, сверхвысококачественных - от 20 до 40 дБ.

    Примечание - Целесообразно использовать антенны с более высоким защитным действием.

    А.6 Уровень первого бокового лепестка составляет от минус 15 до минус 30 дБ.

    Примечание - Целесообразно использовать антенны с низким уровнем первого бокового лепестка, в т.ч. и ниже указанного нижнего предела.

    А.7 Уровень максимумов кроссполяризации (или уровень кроссполяризационного излучения в заданном пространственном секторе углов вблизи направления главного излучения) составляет от минус 15 до минус 30 дБ, а при одновременной работе на двух поляризациях - от минус 30 до минус 35 дБ.

    Примечание - Целесообразно использовать антенны с низким уровнем максимумов кроссполяризации.

    A.8 Коэффициент использования поверхности раскрыва антенн РРЛ составляет от 0,4 до 0,7 (от 40 до 70%).

    Примечание - Целесообразно использовать антенны с высоким коэффициентом использования, в т.ч. и более указанного выше верхнего предела.

    ПРИЛОЖЕНИЕ Б (рекомендуемое). ОБЩИЕ ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ИЗМЕРЕНИЙ ПАРАМЕТРОВ АНТЕНН

    Б.1 Измерения антенн проводят на специально оборудованном полигоне или в безэховых, покрытых специальным поглощающим материалом, камерах. Место и способ измерений выбирают с учетом обеспечения требуемой точности определения величины измеряемых параметров в рабочем диапазоне частот.

    Б.2 При измерениях, если это не оговорено особо в технических условиях на антенну конкретного вида, должны использоваться типовые схемы измерения и типовая измерительная аппаратура, обеспечивающие необходимую точность измеряемых величин в рабочем диапазоне частот.

    Б.3 Примеры типовых схем измерения диаграмм направленности и коэффициента усиления приведены на рисунках Б.1-Б.3.

    Примечание - Допускается использование других схем и методов измерения электрических параметров, обеспечивающих заданную техническими условиями на антенну конкретного вида точность измерения.

    Б.4 Прямому измерению подлежат следующие параметры:

    - коэффициент усиления;

    - коэффициент стоячей волны;

    - диаграммы направленности (основные и кроссполяризационные).

    Рисунок Б.1 - Структурная схема измерения диаграмм направленности (измерительные

    Передача

    1 - генератор; 2, 8 - кабель высокочастотный; 3, 7, 9 - коаксиально-волноводный переход; 4 - ферритовый вентиль; 5 - измерительный (поляризационный) аттенюатор; 6 - развязывающий аттенюатор; 10 - волноводный переход от круглого сечения к прямоугольному; 11 - вспомогательная (передающая) антенна.

    Прием

    12 - испытуемая антенна; 13 - волноводный переход от круглого сечения к прямоугольному; 14 - коаксиально-волноводный переход; 15 - кабель высокочастотный; 16 - измерительный приемник; 17, 19 - кабель низкочастотный; 18 - усилитель; 20 - самописец.

    Примечания



    Рисунок Б.1 - Структурная схема измерения диаграмм направленности (измерительные
    аттенюаторы расположены на передаче)

    Рисунок Б.2 - Структурная схема измерения диаграмм направленности (измерительные аттенюаторы расположены на приеме)

    Передача

    1 - генератор; 2 - кабель высокочастотный; 3 - коаксиально-волноводный переход; 4 - волноводный переход от круглого сечения к прямоугольному; 5 - вспомогательная (передающая) антенна.

    Прием

    6 - испытуемая антенна; 7 - волноводный переход от круглого сечения к прямоугольному; 8, 10 - развязывающий аттенюатор; 9 - измерительный (поляризационный) аттенюатор; 11 - детекторная секция; 12, 14 - кабель низкочастотный; 13 - усилитель низкочастотный; 15 - самописец.

    Примечания

    1 При использовании волноводного тракта с гибкими волноводными вставками и приемо-передающей аппаратуры с волноводными входами (выходами) кабели высокочастотные и коаксиально-волноводные переходы из схемы исключаются.

    2 При прямоугольном сечении волноводного выхода облучателя волноводные переходы от круглого к прямоугольному сечению не используются.

    Рисунок Б.2 - Структурная схема измерения диаграмм направленности (измерительные
    аттенюаторы расположены на приеме)

    Рисунок Б.З - Структурная схема измерения коэффициента усиления (измерительные аттенюаторы расположены на передаче)

    Передача

    1 - генератор; 2, 8 - кабель высокочастотный; 3, 7, 9 - коаксиально-волноводный переход; 4 - ферритовый вентиль; 5 - измерительный (поляризационный) аттенюатор; 6 - развязывающий аттенюатор; 10 - волноводный переход от круглого к прямоугольному сечению; 11 - вспомогательная (передающая) антенна.

    Прием

    12 - испытуемая антенна; 13, 15 - волноводный переход от круглого к прямоугольному сечению; 14 - измерительная (эталонная) антенна; 16 - развязывающий аттенюатор; 17 - измерительная секция; 18 - кабель низкочастотный; 19 - усилитель низкочастотный.

    Примечания

    1 При использовании волноводного тракта с гибкими волноводными вставками и приемо-передающей аппаратуры с волноводными входами (выходами) кабели высокочастотные и коаксиально-волноводные переходы из схемы исключаются.

    2 При прямоугольном сечении волноводного выхода облучателя волноводные переходы от круглого к прямоугольному сечению не используются.

    Рисунок Б.З - Структурная схема измерения коэффициента усиления (измерительные
    аттенюаторы расположены на передаче)

    Б.5 По основным диаграммам направленности определяют ширину главного лепестка по уровню половинной мощности и по нулям (или по уровню минус 15 или минус 20 дБ), уровень первого бокового лепестка, уровень бокового излучения и гарантированные диаграммы направленности на основной поляризации.

    Б.6 По кроссполяризационным диаграммам направленности определяют уровень максимумов кроссполяризации и/или уровень кроссполяризационного излучения в заданном пространственном секторе углов вблизи направления главного излучения, уровень бокового излучения и гарантированные диаграммы направленности на перекрестной поляризации.

    Б.7 Косвенно определяют следующие параметры:

    - защитное действие;

    - коэффициент использования поверхности раскрыва;

    - относительное защитное действие.

    Б.8 Объем измерений определяется техническими условиями на антенну конкретного вида.

    Б.9 Методы измерений антенн конкретных типов должны быть указаны в технических условиях на антенну конкретного вида.

    ПРИЛОЖЕНИЕ В (рекомендуемое). СПРАВОЧНЫЕ ДИАГРАММЫ НАПРАВЛЕННОСТИ АНТЕНН РАДИОРЕЛЕЙНЫХ СИСТЕМ ПРЯМОЙ ВИДИМОСТИ

    В.1 Справочные диаграммы направленности в соответствии с Рекомендацией* используют при отсутствии реальных диаграмм направленности для решения вопросов электромагнитной совместимости, а именно:

    - при предварительном изучении вопросов исключения источников помех в координационной зоне;

    - при повторном использовании радиочастот в радиорелейной сети, когда одни и те же радиочастоты могут многократно использоваться либо на участках, значительно удаленных друг от друга, либо на участках линий, расходящихся от одной станции по разным направлениям, либо на одном участке с использованием кроссполяризации.
    ______________
    * По мере изменения Ассамблеей МСЭ Рекомендации 699 следует пользоваться более новыми ее редакциями, принятыми с учетом новейших достижений в области разработки и конструирования антенн после 1994 г.

    В.2 Справочные диаграммы направленности являются огибающими максимумов лепестков реальных диаграмм направленности наиболее типовых и наиболее часто используемых (на момент принятия последней редакции указанной выше рекомендации) антенн радиорелейных систем прямой видимости, при этом допускается, что малый процент пиков боковых лепестков реальных диаграмм направленности может превышать уровень, ограниченный справочной диаграммой.

    В.3 Справочные диаграммы направленности не могут служить для разработчиков и потенциальных потребителей предельно допустимой величиной, ограничивающей снизу или сверху уровень бокового излучения, однако они могут являться для них ориентиром при оценке качества вновь разрабатываемой или закупаемой антенной техники относительно некоего среднего мирового уровня.

    В.4 Для увеличения пропускной способности целесообразно использовать антенны с лучшими (по сравнению со справочными) диаграммами направленности.

    Примечание - Допускается использование антенн и с худшими диаграммами направленности (в этом случае при решении вопросов электромагнитной совместимости следует пользоваться только реальными диаграммами направленности).

    В.5 В соответствии с решением Ассамблеи радиосвязи МСЭ (Рекомендация ), при отсутствии конкретной информации о диаграмме направленности антенны, следует использовать приведенные ниже справочные диаграммы в диапазоне частот 1-40 ГГц.

    В.5.1 В случае, когда отношение диаметра радиорелейной антенны к рабочей длине волны , должно использоваться выражение

    где - коэффициент усиления относительно изотропно излучающей антенны;

    - угол отклонения от оси;

    - коэффициент усиления главного лепестка относительно изотропно излучающей антенны, дБ;

    и - диаметр антенны и длина волны, выраженные в одних и тех же единицах;

    - коэффициент усиления первого лепестка

    • Уровень боковых лепестков (УБЛ) (англ. side lobe level, SLL) диаграммы направленности (ДН) антенны - относительный (нормированный к максимуму ДН) уровень излучения антенны в направлении боковых лепестков. Как правило, УБЛ выражается в децибелах, реже определяют УБЛ «по мощности» или «по полю».

      ДН реальной (конечных размеров) антенны - осциллирующая функция, в которой выделяют глобальный максимум, являющийся центром главного лепестка ДН, а также прочие локальные максимумы ДН и соответствующие им так называемые боковые лепестки ДН. Термин боковой следует понимать как побочный, а не буквально (лепесток, направленный «вбок»). Лепестки ДН нумеруют по порядку начиная с главного, которому присваивают номер ноль. Дифракционный (интерференционный) лепесток ДН, возникающий в разреженной антенной решетке, боковым не считается. Минимумы ДН, разделяющие лепестки ДН, называют нулями (уровень излучения в направлениях нулей ДН может быть сколь угодно малым, однако в реальности излучение всегда присутствует). Область бокового излучения разбивают на подобласти: область ближних боковых лепестков (прилегающую к главному лепестку ДН), промежуточную область и область задних боковых лепестков (вся задняя полусфера).

      Под УБЛ понимают относительный уровень наибольшего бокового лепестка ДН. Как правило, наибольшим по величине является первый (прилегающий к главному) боковой лепесток.Для антенн с высокой направленностью используют также средний уровень бокового излучения (нормированная к своему максимуму ДН усредняется в секторе углов бокового излучения) и уровень дальних боковых лепестков (относительный уровень наибольшего бокового лепестка в области задних боковых лепестков).

      Для антенн продольного излучения для оценки уровня излучения в направлении «назад» (в направлении, противоположном направлению главного лепестка ДН) используется параметр относительный уровень заднего излучения (от англ. front/back, F/B - отношение вперед/назад), и при оценке УБЛ это излучение не учитывается. Также для оценки уровня излучения в направлении «вбок» (в направлении, перпендикулярном главному лепестку ДН) используется параметр относительный бокового излучения (от англ. front/side, F/S - отношение вперед/вбок).

      УБЛ, как и ширина главного лепестка ДН, являются параметрами, определяющими разрешающую способность и помехозащищённость радиотехнических систем. Поэтому в технических заданиях на разработку антенн этим параметрам уделяется большое значение. Ширину луча и УБЛ контролируют как при вводе антенны в эксплуатацию, так и в процессе эксплуатации.

    Связанные понятия

    Фотонный кристалл - твердотельная структура с периодически изменяющейся диэлектрической проницаемостью либо неоднородностью, период которой сравним с длиной волны света.

    Волоко́нная брэ́гговская решётка (ВБР) - распределённый брэгговский отражатель (разновидность дифракционной решетки), сформированный в светонесущей сердцевине оптического волокна. ВБР обладают узким спектром отражения, используются в волоконных лазерах, волоконно-оптических датчиках, для стабилизации и изменения длины волны лазеров и лазерных диодов и т. д.

    Ширина главного лепестка и уровень боковых лепестков

    Ширина ДН (главного лепестка) определяет степень концентрации излучаемой электромагнитной энергии. Ширина ДН - это угол между двумя направлениями в пределах главного лепестка, в которых амплитуда напряжённости электромагнитного поля составляет уровень 0,707 от максимального значения (или уровень 0,5 от максимального значения по плотности мощности). Ширина ДН обозначается так:

    2и - это ширина ДН по мощности на уровне 0,5;

    2и - ширина ДН по напряжённости на уровне 0,707.

    Индексом Е или Н обозначают ширину ДН в соответствующей плоскости: 2и, 2и. Уровню 0,5 по мощности соответствует уровень 0,707 по напряжённости поля или уровень - 3 дБ в логарифмическом масштабе:

    Экспериментально ширину ДН удобно определять по графику, например, как это показано на рисунке 11.

    Рисунок 11

    Уровень боковых лепестков ДН определяет степень побочного излучения антенной электромагнитного поля. Он влияет на качество электромагнитной совместимости с ближайшими радиоэлектронными системами.

    Относительный уровень бокового лепестка - это отношение амплитуды напряжённости поля в направлении максимума первого бокового лепестка к амплитуде напряжённости поля в направлении максимума главного лепестка (рисунок 12):

    Рисунок 12

    Выражается этот уровень в абсолютных единицах, либо в децибелах:

    Коэффициент направленного действия и коэффициент усиления передающей антенны

    Коэффициент направленного действия (КНД) количественно характеризует направленные свойства реальной антенны по сравнению с эталонной ненаправленной (изотропной) с ДН в виде сферы:

    КНД - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности П(и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности излучения антенн одинаковы:

    С учётом (25) можно получить:

    Коэффициент усиления (КУ) антенны - это параметр, который учитывает не только фокусирующие свойства антенны, но и её возможности по преобразованию одного вида энергии в другой.

    КУ - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности ПЭ (и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности, подведённые к антеннам, одинаковы.

    Коэффициент усиления можно выразить через КНД:

    где - коэффициент полезного действия антенны. На практике используют - коэффициент усиления антенны в направлении максимального излучения.

    Фазовая диаграмма направленности. Понятие о фазовом центре антенны

    Фазовая диаграмма направленности - это зависимость фазы электромагнитного поля, излучаемого антенной, от угловых координат.

    Так как в дальней зоне антенны векторы поля Е и Н синфазны, то и фазовая ДН в одинаковой степени относится к электрической и магнитной составляющей ЭМП, излучаемого антенной. Обозначается фазовая ДН следующим образом: Ш = Ш (и, ц) при r = const.

    Если Ш (и, ц) = const при r = const, то это означает, что антенна формирует фазовый фронт волны в виде сферы. Центр этой сферы, в котором находится начало системы координат, называют фазовым центром антенны (ФЦА). Следует отметить, что фазовый центр имеют не все антенны.

    У антенн, имеющих фазовый центр и многолепестковую амплитудную ДН с чёткими нулями между ними, фаза поля в соседних лепестках отличается на р (180°). Взаимосвязь между амплитудной и фазовой диаграммами направленности одной и той же антенны иллюстрируется на рисунке 13.

    Рисунок 13 - Амплитудная и фазовая ДН

    Направление распространения ЭМВ и положение её фазового фронта в каждой точке пространства взаимно перпендикулярны.

    Уровень задних и боковых лепестков диаграммы направленности по напря­жению γυ определяется как отношение ЭДС на клеммах антенны при приеме -со стороны максимума заднего или бокового лепестка к ЭДС со стороны мак­симума основного лепестка. Когда антенна имеет несколько задних и боковых лепестков различной величины, то указывается обычно уровень наибольшего лепестка. Уровень задних и боковых лепестков можно определить также по мощности (γ Ρ), возведя в квадрат уровень задних и боковых лепестков по напряжению. На диаграмме направленности, показанной на рис. 16, задние и боковые лепестки имеют одинаковый уровень, равный 0,13 (13%) по ЭДС или 0,017 (1,7%) по мощности. Задние и боковые лепестки направленных прием­ных телевизионных антенн находятся обычно в пределах 0,1… ,25 (по напря­жению).

    В литературе при описании направленных свойств приемных телевизион­ных антенн часто указывают уровень задних и боковых лепестков, равный среднему арифметическому из уровней лепестков на средней и крайних часто­тах телевизионного канала. Допустим, что уровень лепестков (по ЭДС) диа­граммы направленности антенны 3-го канала (f = 76… 84 МГц) составляет: на частотах 75 МГц - 0,18; 80 МГц - 0,1; 84 МГц - 0,23. Средний уровень ле­пестков будет равен (0,18+0,1+0,23)/3, т. е. 0,17. Помехозащищенность антенны может быть охарактеризована средним уровнем лепестков только в том случае, если в полосе частот телевизионного канала нет резких «выбросов» уровня ле­пестков, значительно превышающих средний уровень.

    Необходимо сделать важное замечание, касающееся помехозащищенности антенны с вертикальной поляризацией. Обратимся к диаграмме направленности, изображенной на рис. 16. На этой диаграмме, характерной для антенн гори­зонтальной поляризации в горизонтальной плоскости, основной лепесток отделен от задних и боковых лепестков направлениями нулевого приема. Антенны вер­тикальной поляризации (например, антенны «волновой канал» с вертикальным расположением вибраторов) направлений нулевого приема в горизонтальной плоскости не имеют. Поэтому задние и боковые лепестки в этом случае однозначно не определены и помехозащищенность определяется на практике, как Отношение уровня сигнала, принятого с переднего направления, к уровню сиг­нала, принятого с заднего направления.

    Коэффициент усиления. Чем направленнее антенна, т. е. чем меньше угол раствора основного лепестка и меньше уровень задних и боковых лепестков диаграммы направленности, тем больше ЭДС на клеммах антенны.

    Представим себе, что в некоторую точку электромагнитного поля помещен симметричный полуволновый вибратор, ориентированный на максимум приема, т. е. расположенный так, что его продольная ось перпендикулярна направле­нию прихода радиоволны. На подключенной к вибратору согласованной на­грузке развивается определенное напряжение Ui, зависящее от напряженности поля в точке приема. Поместим далее! в ту же точку поля вместо полуволнового вибратора ориентированную на максимум приема антенну с большей направ­ленностью, например антенну типа «волновой канал», диаграмма направлен­ности которой изображена на рис. 16. Будем считать, что эта антенна имеет ту же нагрузку, что и полуволновый вибратор, и так же с ней согласована. Так как антенна «волновой канал» является более направленной, чем полувол­новый вибратор, то и напряжение на ее нагрузке U2 будет больше. Отношение напряжений U 2 /’Ui и представляет собой коэффициент усиления Ки четырех­элементной антенны по напряжению или, как его иначе называют, по «полю».

    Таким образом, коэффициент усиления антенны по напряжению или по «полю» можно определить как отношение напряжения, развиваемого антенной на согласованной нагрузке, к напряжению, развиваемому на той же нагрузке согласованным с ней полуволновым вибратором. Обе антенны считаются рас­положенными в той же точке электромагнитного поля и ориентированными на максимум приема. Часто применяется также понятие коэффициента усиления по мощности Кр, который равен квадрату коэффициента усиления по напряже­нию (К Р = Ки 2).

    В определении коэффициента усиления необходимо подчеркнуть два мо­мента. Во-первых, для того чтобы антенны различных конструкций можно было соноставить друг с другом, каждую из них сравнивают с одной и той же антен­ной - полуволновым вибратором, который считается эталонной антенной. Вовторых, для получения на практике выигрыша в напряжении или мощности, определяемых коэффициентом усиления, нужно сориентировать антенну на мак­симум принимаемого сигнала, т. е. так, чтобы максимум главного лепестка диаграммы направленности был ориентирован в сторону прихода радиоволны. Коэффициент усиления зависит от типа и конструкции антенны. Обратимся для пояснения к антенне типа «волновой канал». Коэффициент усиления этой антенны возрастает с увеличением числа директоров. Четырехэлементная ан­тенна (рефлектор, активный вибратор и два директора) имеет коэффициент усиления по напряжению, равный 2; семиэлементная (рефлектор, активный виб­ратор и пять директоров) - 2,7. Это означает, что если вместо полуволнового

    вибратора использовать четырехэлементную антенну) то напряжение на входе телевизионного приемника возрастет в 2 раза (мощность в 4 раза), а семиэле­ментную- в 2,7 раза (мощность в 7,3 раза).

    Значение коэффициента усиления антенны указывают в литературе либо па отношению к полуволновому вибратору, либо по отношению к так называемому изотропному излучателю. Изотропный излучатель представляет собой такую воображаемую антенну, у которой полностью отсутствуют направленные свой­ства, и пространственная диаграмма направленности имеет соответственно* вид -сферы. В природе изотропных излучателей не существует, и такой излучатель является просто удобным эталоном, с которым можно сравнивать направлен­ные свойства различных антенн. Расчетное значение коэффициента усиления полуволнового вибратора по напряжению относительно изотропного излучателя составляет 1,28 (2.15 дБ). Поэтому если известен коэффициент усиления какойлибо антенны по напряжению относительно изотропного излучателя, то, раз­делив его на 1,28. получим коэффициент усиления этой антенны относительно полуволнового вибратора. Когда коэффициент усиления относительно изотроп­ного излучателя указан в децибелах, то для определения коэффициента уси­ления относительно полуволнового вибратора нужно вычесть 2,15 дБ. Например, коэффициент усиления антенны по напряжению относительно изотропного из­лучателя равен 2,5 (8 дБ). Тогда коэффициент усиления этой же антенны относительно полуволнового вибратора составит 2,5/1,28, т. е. 1,95^ а в децибе­лах 8-2,15 = 5,85 дБ.

    Естественно, что реальный выигрыш по уровню сигнала на входе телеви­зора, даваемый той или иной антенной, не зависит от того, по отношению к какой эталонной антенне-полуволновому вибратору или изотропному излуча­телю - указан коэффициент усиления. В настоящей книге значения коэффи­циента усиления указаны по отношению к полуволновому вибратору.

    В литературе направленные свойства антенн часто оценивают коэффициент том направленного действия КНД, который представляет собой выигрыш в мощности сигнала в нагрузке при условии, что антенна не имеет потерь. Коэф­фициент направленного действия связан с коэффициентом усиления по мощно­сти Кр соотношением

    Если измерить напряжение на входе приемника, то можно по этой же фор­муле определить напряженность поля в месте приема.