Реферат: Базовые схемы режимов самовозбуждения. Режимы самовозбуждения генератора Жесткий режим самовозбуждения автогенератора

Мягкий режим.

Если рабочая точка находится на участке характеристики iK(uБЭ) с наибольшей крутизной, то режим самовозбуждения называется мягким.

Проследим за изменениями амплитуды тока первой гармоники в зависимости от величины коэффициента обратной связи КОС. Изменение КОС приводит к изменению угла наклона a прямой обратной связи (рис.2)

Рисунок 2. Мягкий режим самовозбуждения

При КОС = КОС1 состояние покоя устойчиво и генератор не возбуждается, амплитуда колебаний равна нулю (рис. 2 б). Величина КОС = КОС2 = ККР является граничной (критической) между устойчивостью и неустойчивостью состояния покоя. При КОС = КОС3 > ККР состояние покоя неустойчиво, генератор возбудится, и величина Im1 установится соответствующей точке А. При увеличении КОС величина первой гармоники выходного тока будет плавно расти и при КОС = КОС4 установится в точке Б. При уменьшении КОС амплитуда колебаний будет уменьшаться по той же кривой и колебания сорвутся при коэффициенте обратной связи КОС = КОС2 < ККР.

В качестве выводов можно отметить следующие особенности мягкого режима самовозбуждения:

Ø для возбуждения не требуется большой величины коэффициента обратной связи КОС;

Ø возбуждение и срыв колебаний происходят при одном и том же значении коэффициента обратной связи ККР;

Ø возможна плавная регулировка амплитуды стационарных колебаний путем изменения величины коэффициента обратной связи КОС;

Ø как недостаток следует отметить большое значение постоянной составляющей коллекторного тока, что приводит к малому значению КПД.

Жесткий режим.

Если рабочая точка находится на участке характеристики iK = f (uБЭ) с малой крутизной S < SMAX, то режим самовозбуждения называется жестким.

Рисунок 3. Жесткий режим самовозбуждения

Возбуждение автогенератора произойдет, когда коэффициент обратной связи превысит величину КОС3 = КОСКР. Дальнейшее увеличение КОС приводит к небольшому увеличению амплитуды первой гармоники выходного (коллекторного) тока Im1 по пути В-Г-Д. Уменьшение КОС до КОС1 не приводит к срыву колебаний, так как точки В и Б устойчивы, а точка А устойчива справа. Колебания срываются в точке А, т. е. при КОС < КОС1, так как точка А неустойчива слева.

Таким образом, можно отметить следующие особенности работы генератора при жестком режиме самовозбуждения:

Ø для самовозбуждения требуется большая величина коэффициента обратной связи КОС;

Ø возбуждение и срыв колебаний происходят ступенчато при разных значениях коэффициента обратной связи КОС;

Ø амплитуда стационарных колебаний в больших пределах изменяться не может;

Ø постоянная составляющая коллекторного тока меньше, чем в мягком режиме, следовательно, значительно выше КПД.

Сравнивая положительные и отрицательные стороны рассмотренных режимов самовозбуждения, приходим к общему выводу: надежное самовозбуждение генератора обеспечивает мягкий режим, а экономичную работу, высокий КПД и более стабильную амплитуду колебаний – жесткий режим.

Стремление объединить эти преимущества привело к идее использования автоматического смещения, когда генератор возбуждается при мягком режиме самовозбуждения, а его работа происходит в жестком режиме. Сущность автоматического смещения рассмотрена ниже.

Автоматическое смещение.

Сущность режима заключается в том, что для обеспечения возбуждения автогенератора в мягком режиме исходное положение рабочей точки выбирается на линейном участке проходной характеристики с максимальной крутизной. Эквивалентное сопротивление контура выбирается таким, чтобы выполнялись условия самовозбуждения. В процессе нарастания амплитуды колебаний режим по постоянному току автоматически изменяется и в стационарном состоянии устанавливается режим работы с отсечкой выходного тока (тока коллектора), т. е. автогенератор работает в жестком режиме самовозбуждения на участке проходной характеристики с малой крутизной (рис. 4).

Рисунок 4. Принцип автоматического смещения автогенератора

Напряжение автоматического смещения получают обычно за счет тока базы путем включения в цепь базы цепочки R Б C Б (рис. 5).

Рисунок 5. Схема автоматического смещения за счет тока базы

Начальное напряжение смещения обеспечивается источником напряжения Е Б. При возрастании амплитуды колебаний увеличивается напряжение на резисторе R Б, создаваемое постоянной составляющей базового тока I Б0 . Результирующее напряжение смещения (Е Б - I Б0 R Б) при этом уменьшается, стремясь к Е Б С Т.

В практических схемах начальное напряжение смещения обеспечивается с помощью базового делителя R Б1 , R Б2 (рис. 6).

Рисунок 6. Автоматическое смещение с помощью базового делителя

В этой схеме начальное напряжение смещения

Е Б.НАЧ. =Е К -(I Д +I Б0)R Б2 ,

где I Д =Е К /(R Б1 +R Б2) – ток делителя.

При возрастании амплитуды колебаний постоянная составляющая тока базы IБ 0 увеличивается и смещение ЕБ уменьшается по величине, достигая значения ЕБСТ в установившемся режиме. Конденсатор СБ предотвращает короткое замыкание резистора RБ1 по постоянному току.

Следует отметить, что введение в схему генератора цепи автоматического смещения может привести к явлению прерывистой генерации. Причиной ее возникновения является запаздывание напряжения автоматического смещения относительно нарастания амплитуды колебаний. При большой постоянной времени t = RБСБ (рис. 8.41) колебания быстро нарастают, а смещение остается практически неизменным – ЕБ.НАЧ. Далее смещение начинает изменяться и может оказаться меньше той критической величины, при которой еще выполняются условия стационарности, и колебания сорвутся. После срыва колебаний емкость СБ будет медленно разряжаться через RБ и смещение вновь будет стремиться к ЕБ.НАЧ. Как только крутизна станет достаточно большой, генератор снова возбудится. Далее процессы будут повторяться. Таким образом, колебания периодически будут возникать и снова срываться.

Прерывистые колебания, как правило, относятся к нежелательным явлениям. Поэтому очень важно расчет элементов цепи автоматического смещения проводить так, чтобы исключить возможность возникновения прерывистой генерации.

Для исключения прерывистой генерации в схеме (рис. 4) величину CБ выбирают из равенства

Автогенератор с трансформаторной обратной связью

Рассмотрим упрощенную схему транзисторного автогенератора гармонических колебаний с трансформаторной обратной связью (рис. 7).

Рисунок 7. Автогенератор с трансформаторной обратной связью

Назначение элементов схемы:

Ø транзистор VT p-n-p типа, выполняет роль усилительного нелинейного элемента;

Ø колебательный контур LKCKGЭ задает частоту колебаний генератора и обеспечивает их гармоническую форму, вещественная проводимость GЭ характеризует потери энергии в самом контуре и во внешней нагрузке, связанной с контуром;

Ø катушка LБ обеспечивает положительную обратную связь между коллекторной (выходной) и базовой (входной) цепями, она индуктивно связана с катушкой контура LК (коэффициент взаимоиндукции М);

Ø источники питания ЕБ и ЕК обеспечивают необходимые постоянные напряжения на переходах транзистора для обеспечения активного режима его работы;

Ø конденсатор СР разделяет генератор и его нагрузку по постоянному току;

Ø блокировочные конденсаторы СБ1 и СБ2 шунтируют источники питания по переменному току, исключая бесполезные потери энергии на их внутренних сопротивлениях.

Мягкий режим характеризуется безусловным быстрым установлением стационарного режима при включении автогенератора.

Жесткий режим требует дополнительных условий для установления колебаний: либо большой величины коэффициента обратной связи, либо дополнительного внешнего воздействия (накачки).

В АГ с мягким режимом положение рабочей точки не зависит от развивающихся колебаний. Для наилучшего возбуждения желательно, чтобы рабочая точка активного элемента находилась в середине линейного участка ДПХ, то есть в точке максимального усиления (рис.10).

В АГ с жестким режимом возбуждения рабочую точку устанавливают в области нижнего нелинейного участка (близко к отсечке) так, чтобы ток в отсутствие генерации был бы близок к нулю. Из-за малого коэффициента усиления начальные колебания могут не развиться (рис.11).

Для анализа качества режима возбуждения используют так называемые колебательные характеристики АГ: зависимость амплитуды выходного напряжения усилителя (или коэффициента усиления) от амплитуды входного напряжения при разомкнутом контуре АГ, причем размыкание можно осуществить в любой удобной точке, например так, как показано на рис.12.

Мягкий режим самовозбуждения характеризуется постоянно вогнутой кривой с максимальной крутизной в начале координат. Цепь обратной связи в координатах колебательной характеристики называется линией обратной связи (ЛОС).Так как то в координатах уравнение линии обратной связи имеет вид , а

в координатах ЛОС представляет собой линию, параллельную оси абсцис.

Точка пересечения нелинейной колебательной характеристики с ЛОС в соответствии с уравнением баланса амплитуд определяет стационарные амплитуды и.

На рис. 13 показаны типичный вид колебательной характеристики АГ с мягким самовозбуждением и несколько ЛОС.>

Из рис.13 видно, что при колебательная характеристика и ЛОС имеют две точки пересечения О и М , причем т. О является неустойчивой, а М – устойчива.

Действительно, рассмотрим случай, при котором имеет место устойчивая генерация (рис. 14).

Пусть при включении АГ в некоторый момент времени на выходе возникло напряжение с амплитудой . Это колебание через цепь обратной связи передается на вход с амплитудой . В свою очередь напряжение вызовет на выходе напряжение (см. по стрелкам на рис.14) и т.д. Далее можно осуществить переход с колебательной характеристики на ЛОС, с ЛОС на колебательную характеристику и т. д. , пока в результате не попадем в точку М . Такого рода графики называют диаграммами Ламерея. Эта диаграмма показывает, что любое, сколь угодно малое возмущение при включении АГ приводит его в стационарное состояние, определяемое точкой М. На рис. 15показано, что т. М является стационарной при изменениях амплитуды от .

Аналогичные диаграммы можно рассматривать, используя рис. 13,б.

Для изменения величины стационарной амплитуды в АГ с мягким режимом достаточно менять величину коэффициента обратной связи. При увеличении К ос от нуля автоколебания не возникают до тех пор, пока величина К ос не достигнет величины К ос ,кр =1/К(0) , где К(0) - коэффициент усиления при , т. е. при возбуждении АГ. Дальнейшее увеличение К ос приводит к увеличению (см. рис. 16). Уменьшение К ос приводит к изменению по той же линии, что и при увеличении. Можно построить аналогичный график для амплитуды сигнала в выходной цепи АГ.

Жесткий режим самовозбуждения АГ характеризуется вогнуто-выпуклой колебательной характеристикой с одной или несколькими точками перегиба и соответственно с более чем двумя точками пересечения (рис. 17).

Такой вид характеристики имеют АГ, рабочая точка усилительного элемента которых находится на нижнем сгибе проходной характеристики. Легко показать, что точки О и М в этом случае устойчивы, а точка N – неустойчивая. Пока амплитуда на выходебудет меньше , автоколебания нарастать не будут (см. диаграмму рис.18)

Для того, чтобы перевести генератор в состояние М при данном К ос, необходимо подпитать АГ дополнительным сигналом (со стороны входа или выхода), называемым сигналом возбуждения или накачки. При этом величина сигнала накачки должна превышать величину, определяемую точкой N. В этом случае сигнал накачки по цепи обратной связи приведет генератор к стационарному состоянию М (см. рис. 19).

Для возбуждения такого АГ можно не использовать дополнительную накачку, а установить такую сильную обратную связь, чтобы генератор самовозбуждался; при этом должно выполняться условие. Учитывая, что в этом случае К(0) достаточно мало, выполнить условие можно только при очень глубокой обратной связи. Этот факт иллюстрируется рис. 20.

Пока , амплитуда автоколебаний равна нулю. При в автогенераторе

установятся колебания с амплитудой . Дальнейшее увеличение К ос приведет к плавному уменьшению амплитуды. Если теперь уменьшать К ос , то амплитуда колебаний со стороны входа усилителя будет плавно уменьшаться до тех пор, пока коэффициент обратной связи не достигнет величины , при котором ЛОС касается выпуклой части колебательной характеристики. Амплитуда стационарных колебаний при этом будет равна . Дальнейшее уменьшение К ос приведет к срыву автоколебаний. Таким образом, в АГ с жесткой колебательной характеристикой нельзя установить колебания с амплитудой меньшей, чем . Аналогичные рассуждения можно привести и для амплитуды выходного сигнала АГ, но поскольку есть однозначная связь между входной и выходной амплитудами, этого можно не делать.

Достоинством режима мягкого самовозбуждения является простота вывода АГ в требуемый стационарный режим. Недостатком – низкий КПД из-за большой величины постоянной составляющей тока. В АГ с жестким режимом достоинством является отсутствие постоянного тока (или его малая величина) в режиме покоя АГ.

Используя цепи автоматического смещения во входной цепи, можно добиться совмещения достоинств обоих типов возбуждения: в момент запуска рабочая точка находится в точке максимальной крутизны (на середине линейного участка), а с нарастанием амплитуды рабочая точка смещается в сторону отсечки из-за выпрямляющих свойств входного p-n-перехода и цепочки автоматического смещения. Пример принципиальной схемы такого АГ приведен на рис. 21.

На сопротивлении R б выделяется постоянное напряжение, пропорциональное амплитуде подаваемого на вход колебания. На рис. 22 показана картина перехода АГ в стационарное состояние.

Установившийся режим при этом характеризуется работой транзистора с углом отсечки 90 0 . Благодаря колебательному контуру усилителя на выходе развиваются гармонические автоколебания.

В зависимости от значений постоянных питающих напряжений, подведенных к электродам усилительного элемента, и от коэффициента К ос возможны два режима самовозбуждения: мягкий и жесткий.

1.Режим мягкого самовозбуждения.

В данном режиме рабочую точку А выбирают на линейном участке вольт-амперной характеристики усилительного элемента, что обеспечивает начальный режим работы усилительного элемента без отсечки выходного тока i вых (рис. №2).

Рис. № 2. Диаграмма, мягкого режима самовозбуждения.

В этих условиях самовозбуждение возникает от самых незначительных изменений входного напряжения U вх, всегда имеющихся в реальных условиях из-за флуктуаций носителей заряда.

Сначала колебания в автогенераторе нарастают относительно быстро. Затем из-за нелинейности вольт-амперной характеристики усилительного элемента рост амплитуды колебаний замедляется, поскольку напряжение на его входе попадает на участки вольт-амперной характеристики со все меньшей статической крутизной, а это приводит к уменьшению средней крутизны S ср и коэффициента передачи К ос цепи обратной связи.

Нарастание колебаний происходит до тех пор, пока коэффициент передачи К уменьшится до единице. В результате в автогенераторе установиться стационарный режим, которому соответствует определенная амплитуда выходных колебаний, причем угол отсечки выходного тока 0>90 0 . Частота этих колебаний очень близка к резонансной частоте колебательной системы.

Если бы усилительный элемент имел линейную вольт-амперную характеристику, нарастание амплитуды автоколебаний происходило бы до бесконечности, что физически невозможно. Поэтому в линейной цепи получить устойчивые автоколебания с постоянной амплитудой невозможно.

Из-за нелинейности воль-амперной характеристики форма выходного тока i вых усилительного элемента получается несинусоидальной. Однако при достаточно большой добротности (50…200) колебательной системы первая гармоника этого тока и, следовательно, напряжение на выходе автогенератора представляют собой почти гармонические колебания.

2. Режим жесткого самовозбуждения.

При этом режиме напряжение смещения U 0 задают таким, чтобы при малых амплитудах входного напряжения ток через усилительный элемент не проходил. Тогда незначительный колебания, возникшие в контуре, не могут вызвать ток выходной цепи, и самовозбуждение автогенератора не наступает. Колебания возникают только при их достаточно большой начальной амплитуде, что не всегда можно обеспечить. Процесс возникновения и нарастания колебаний при жестком режиме самовозбуждения иллюстрирует с помощью рис.№3.

Рис.№ 3. Диаграмма жесткого самовозбуждения

Из рассмотрения этого рисунка видно, что при малых начальных амплитудах входного напряжения (кривая1) ток i вых =0 и автоколебания не возникают. Они возникают только при достаточно большой начальной амплитуде напряжения (кривая 2) и быстро нарастают до установившегося значения. В стационарном режиме усилительный элемент работает у углами отсечки выходного тока 0<90 0 .

Для удобства эксплуатации автогенератора целесообразнее применить мягкий режим самовозбуждения, так как в этом режиме колебания возникают сразу после включения источника питания. Однако при жестком режиме колебаний с углом отсечки 0<90 0 обеспечиваются более высокий КПД автогенератора и меньшие тепловые потери. Поэтому в стационарном режиме автогенератора более выгоден именно режим с малыми углами отсечки выходного тока усилительного тока усилительного элемента.

Автоматическое смещение. Его применение обеспечивает возможность работы автогенератора при первоначальном включении в режиме мягкого самовозбуждения с последующими автоматическим переходом в режим жесткого самовозбуждения. Этого достигают применением в автогенераторе специальной цепи автоматического смещения.

На рис.№ 4а изображена упрощенная принципиальная схема автогенератора на биполярном транзисторе VT, нагрузкой которого служит колебательный контур L2C2. Напряжение положительной обратной связи создается на катушке L1 и подводится между базой и эмиттером транзистора. Начальное напряжение6 смещения на базе транзистора создается источником включена цепь авто-смещения R1C1.

Процесс возникновения и нарастания колебаний иллюстрируется с помощью рис.№ 4б. В первый момент после включения генератора, т.е. в момент появления колебаний, рабочая точка А находится на участке максимальной крутизны вольт-амперной характеристики транзистора. Благодаря этому колебания возникают легко в условиях мягкого режима самовозбуждения. По мере возрастания амплитуды увеличивается ток базы, постоянная составляющая которого создает падение напряжения U см на резисторе R1 (переменная составляющая этого тока проходит через конденсатор C1). Так как напряжение U см приложено между базой и эмиттером в отрицательной полярности, результирующее постоянное напряжение на базе U 0 - U см уменьшается, что вызывает смещение рабочей точки вниз по характеристике транзистора и переводит автогенератор в режим работы с малыми углами отсечки коллекторного тока при этом токи коллектора i к и базы i б имеют вид последовательности импульсов, а напряжение на выходе U вых, создаваемое первой гармоникой коллекторного тока, представляет собой синусоидальное колебание с неизменной амплитудой.

Таким образом, цепь автоматического смещения R1C1в автогенераторе выполняет роль регулятора процесса самовозбуждения и обеспечивает в первоначальный момент условия мягкого самовозбуждения с последующим переходом в более выгодный режим с малыми углами отсечки.

Достоинство мягкого режима - удобство в эксплуатации, так как колебания возникают автоматически сразу после включения источника питания. Недостаток мягкого режима - низкий КПД выходной цепи, так как автогенератор в установившемся режиме работает колебаниями первого рода.

При жестком режиме самовозбуждения КПД выходной цепи высокий, но в эксплуатации значительное неудобство: для возбуждения генератора нужно иметь еще один автогенератор, чтобы запустить работающий колебаниями второго рода.

Объединить достоинства обоих режимов самовозбуждения - удобство в эксплуатации с высоким КПД - и избавиться от недостатков можно схемным решением: применить в схеме автогенератора автоматическое смещение, как показано на рис.

В этой схеме в момент включения исходная рабочая точка на проходной характеристике транзистора напряжением с делителя R1R2 устанавливается на середине характеристики. Колебания возникают мягко, в режиме колебаний первого рода, т. е. от нуля. По мере нарастания амплитуды колебаний увеличивается амплитуда выходного тока, который создает на резисторе R3 напряжение смещения, сдвигающее рабочую точку влево в область отсечки, как показано на рис. 2.10,а. Таким образом, колебания возникают автоматически, а в установившемся режиме автогенератор работает колебаниями второго рода с высоким КПД.

Наклон колебательной характеристики определяется значением коэффициента обратной связи Ко.с. На рис. 2.12 показано положение линии обратной связи при различных коэффициентах обратной связи.

Здесь видно, что с уменьшением обратной связи амплитуда установившихся колебаний уменьшается Uуст2

4 Прерывистая генерация

Прерывистая генерация . Положение рабочей точки в установившемся режиме определяет режим работы транзистора, а следовательно, и параметры автогенератора. А для установления рабочей точки в заданное положение необходимо правильно выбрать элементы смещения R3C3. Если же сопротивление автосмещения выбрать больше требуемого, то напряжение смещения увеличится и сместит рабочую точку еще дальше влево в области отсечки (рис. 2.13).



Амплитуда коллекторного тока уменьшится и окажется недостаточной для поддержания колебаний, они прекратятся.

После прекращения колебаний в контуре транзистор оказывается закрытым, коллекторный ток не протекает. В закрытом состоянии транзистор удерживается напряжением на конденсаторе Сэ, приложенным между базой и эмиттером. Во время генерации конденсатор зарядился змиттерным током. После прекращения колебаний этого тока нет и конденсатор не подзаряжается, а, наоборот, начинает разряжаться через резистор R3. Напряжение смещения спадает по экспоненте (участок 2-3 на рис. 2.1З). Рабочая точка на характеристике транзистора смещается вправо. В тот момент, когда рабочая точка окажется на таком участке характеристики, что коллекторный ток окажется достаточным для восполнения всех потерь в контуре, т. е. будет выполняться баланс.амплитуд, колебания возникнут снова. Они будут нарастать и снова сорвутся. Таким образом, процесс возникновения, нарастания и срыва колебаний будет повторяться. Автогенератор будет работать в режиме прерывистой генерации. На выходе получаются радиоимпульсы, период повторения которых определяется параметрами RэСэ. Прерывистая генерация используется для получения радиоимпульсов.

Учебные вопросы:

1Амплитудные характеристики режимов самовозбуждения

4 Прерывистая генерация

1 Амплитудные характеристики режимов самовозбуждения

Для того чтобы более детально проследить процесс возникновения, нарастания и установления колебаний в автогенераторе, удобно воспользоваться графическим методом с помощью колебательной характеристики и линии обратной связи.

Колебательной характеристикой называется зависимость амплитуды первой гармоники коллекторного тока от амплитуды управляющего напряжения на базе транзистора Iк1 = ф(UБЭ). Вид колебательной характеристики зависит от положения рабочей точки на проходной характеристике транзистора Iк=f(eбэ).

При работе транзистора в режиме колебаний первого рода, т. е. когда рабочая точка А выбрана на середине линейного участка проходной характеристики, как показано на рис. 2.10,а, колебательная характеристика имеет выпуклую форму (рис. 2.10,6,1). При увеличении амплитуды входного напряжения амплитуда выходного тока сначала достаточно быстро возрастает вследствие постоянства крутизны Sд= const). Затем рост выходного тока замедляется из-за нелинейности нижнего и верхнего изгиба характеристики транзистора.

Если рабочая точка на переходной характеристике транзистора выбрана в области отсечки выходного тока В (режим колебаний второго рода), то колебательная характеристика начинается несколько правее нуля. Затем по мере увеличения входного (управляющего) напряжения колебательная характеристика имеет нижний изгиб, соответствующий нелинейному нижнему участку проходной характеристики и соответственно верхний изгиб (рис. 2.10,6,11).

Линией обратной связи называется графически выраженная зависимость напряжения обратной связи от тока в выходной цепи транзистора. Поскольку цепь обратной связи линейна, то линия обратной связи представляет собой прямую линию, восходящую из начала координат (рис. 2.10,в).

Чтобы проследить процесс возникновения, нарастания и установления колебаний, совместим колебательную характеристику и линию обратной связи на одном графике.



2 Мягкий режим самовозбуждения.

Мягкий режим самовозбуждения . На рис. 2.11,а амплитудная колебательная характеристика генераторов в режиме колебаний первого рода (кривая линия) и амплитудная характеристика обратной связи автогенератора (прямая линия) совмещены на одном графике. Поскольку исходная рабочая точка находится на среднем крутом участке проходной характеристики транзистора (см. рис. 2.10,а), то даже самые малые изменения напряжения на входе транзистора вызовут изменения выходного тока. А такие малые изменения напряжения в схеме имеются всегда либо за счет флуктуации носителей зарядов, либо за счет включения напряжения источника питания.

Допустим, что в контуре за счет флуктуации появился ток Ib1m (рис. 2.1 \,а). Этот ток по цепи обратной связи создает на входе напряжение возбуждения U1. Это напряжение в соответствии с колебательной характеристикой вызывает в выходной цепи ток I2. При токе I2 ,на входную цепь автогенератора в соответствии с линией обратной связи наводится напряжение U2, которое вызывает ток I3, и т. д. Последовательность нарастания колебаний показана на рис. 2.11 ,а стрелками. Так, колебания в контуре будут нарастать до значения, определяемого точкой В пересечения колебательной характеристики и линии обратной связи. Точка В соответствует режиму установившихся колебаний: в выходной цепи протекает ток Iуст, на участке база - эмиттер создается напряжение U уст. В точке В выполняется баланс амплитуд, и в автогенераторе устанавливаются устойчивые колебания.

Действительно, если на (выходе автогенератора ток уменьшился до значения I3, то он через цепь обратной связи будет создавать на входе напряжение U3 и колебания снова возрастут до установившегося значения. Если же за счет внешнего воздействия ток в контуре увеличится, например, до значения Iv, то потери в контуре оказываются больше и напряжение на вход по цепи обратной связи наведено меньше. Колебания уменьшаются до установившегося значения.

Из рассмотренного следует, что на участке, где колебательная характеристика проходит над линией связи, пополнения больше потерь и колебания нарастают. На участке, где колебательная характеристика ниже линии обратной связи, пополнения меньше потерь и колебания уменьшаются. В точке В пересечения амплитудных характеристик пополнения равны потерям.

Таким образом, в режиме колебаний первого рода колебания в автогенераторе возникают после включения источника питания самостоятельно и нарастают до установившегося значения плавно, мягко. Поэтому такой режим колебаний называют мягким режимом самовозбуждения.

3 Жесткий режим самовозбуждения.

Жесткий режим самовозбуждения. Если рабочая точка на проходной характеристике транзистора выбрана в области отсечки выходного тока, колебательная характеристика пересекается с линией обратной связи в двух точках, как показано на рис. 2.11,б.

В области 1 кривая проходит под прямой - это значит, как было показано выше, что потери в контуре превышают пополнения энергии и колебания не возникают. В области 2 кривая проходит над прямой - это значит, что потери в контуре меньше, чем пополнения, и колебания могут нарастать. Из этого видно, что в режиме колебаний второго рода колебания автоматически, от флуктуации, возникнуть не могут (участок 0-1 на рис. 2.11,б). Для возникновения колебаний в автогенераторе в режиме колебаний второго рода необходимо во входную цепь транзистора подать напряжение значительной амплитуды UB03б>Uн Только после этого резкого, жесткого внешнего скачка напряжения колебания возникают и быстро нарастают. Отсюда и режим самовозбуждения называется жестким. Колебания нарастают до установившегося значения, соответствующего точке В устойчивых колебаний.