Строим домашнюю сеть. Роутер

Сегодня большинство устройств снабжается специализированными радио-модулями, которые при помощи технологии Wi-Fi могут связываться с различными другими устройствами. Но основное предназначение данного модуля – выход в интернет на высокой скорости.

Несмотря на развитие современных технологий, провайдеры все ещё предоставляют интернет по проводной технологии. Именно поэтому на смену проводным роутерам пришли роутеры, работающие по технологии Wi-Fi. Данные устройства обеспечивают одновременный доступ к одному интернет-каналу множеству устройств.

Определение роутера

Роутер (или маршрутизатор) по сути своей является своего рода мини компьютером. Он выполняет функцию распределения ресурсов интернет-канала. Зона покрытия Wi-Fi-роутера может быть очень разной, все зависит от модели и её типа.

Используется роутер как точка доступа, которая выполняет следующие функции:

  • пересылку пакетов с данными между отдельными сегментами одной сети;
  • связывает различные сети между собой (каждая сеть может обладать своей собственной архитектурой);
  • может осуществлять пересылку различной информации на основе топологии сетевой архитектуры.

Имеется некоторое сходство между маршрутизатором и хабом (концентратором). Заключается оно в различном сетевом уровне, на которых работают эти два устройства. Роутер работает на 3-ей сетевой модели под названием OSI. Хаб же работает на 1-ом уровне или на 2-ом.

Назначение роутера

Wi-Fi-роутер предназначен для организации сетевого пространства. Причем применяется он не только в качестве моста для создания связи между интернет-провайдером и различными сетевыми устройствами, но также как связующее звено между различными устройствами локальной сети.

Существует три основных предназначения Wi-Fi-роутера:


Принцип работы роутера

Принцип работы всех роутеров самых разных типов (переносных, домашних, проводных и беспроводных) практически не отличается. Заключается он в нахождении по специальной таблице, содержащейся в памяти роутера, адреса получателя передаваемых данных. В случае отсутствия необходимого адресата, пакет попросту не обрабатывается, обнуляется.

Таблица маршрутизации выглядит примерно следующим образом:

Также информация может передаваться некоторыми другими способами, при которых используется:

  • адрес отправителя;
  • протоколы самых разных уровней;
  • содержимое заглавий сетевых пакетов;
  • различная другая информация.

Многие роутеры могут осуществлять следующие операции:

  • транслировать адреса, как получателя, так и отправителя;
  • фильтровать транзитный поток данных;
  • шифровать и расшифровывать данные.

Обзор роутеров

Существует множество моделей роутеров различных типов.

Условно все их можно разделить на следующие категории:


Также роутеры разделяются по типу подключения:


Домашний роутер – наиболее часто встречаемый вариант концентратора. Данное сетевое оборудование имеет несколько более крупные габаритные размеры, нежели остальные типы (внутренние, мини и автомобильные).

Но обладают рядом преимуществ перед своими собратьями:

  • большая зона покрытия;
  • простота настройки;
  • удобство эксплуатации.

Отличная модель домашнего роутера с компромиссной ценой — TP-Link TL-WR841N. Его работа довольно стабильна, а стоимость невысока.

Фото: оптимальное соотношение цена — качество

Автомобильные роутеры – наиболее миниатюрные из всех разновидностей. Они отличаются крайне компактными размерами. Также довольно часто производители оснащают его противоударным корпусом. К недостаткам можно отнести небольшую зону покрытия. Питание осуществляется обычно от автомобильной проводки – где присутствует напряжение 12 (В).

Одна из самых распространенных моделей роутеров 3G -UMTS ZTE MF60. Отличается компактностью и довольно долго держит заряд батареи.

Мини-роутеры, имеют очень скромные габаритные размеры. Они позволяют использовать его даже в местах, где количество свободного пространство очень ограничено. Данную разновидность сетевых устройств также иногда называют карманным Wi-Fi роутером.

Роутеры для телевизора –узкоспециализированное оборудование, предназначенное для подключения к телевизору. Используется с различными моделями, которые оснащаются возможностью подключения к интернету.

3G Wi-Fi роутеры – концентраторы, имеющие возможность подключаться к сотовой сети по средствам технологии 3G. Оснащаются специальным радиомодулем, позволяющим осуществлять коммуникацию через обычную сим-карту оператора сотой связи. Одним из самых популярных роутеров такого типа является H25A 3G WiFi.

Внешними Wi-Fi-роутерами называют все роутеры, располагающиеся вне персонального компьютера. Внутренние роутеры обычно представляют собой небольшого размера платы, помещающиеся внутрь системного блока персонального компьютера. По своему функционалу они практически не различаются. В некоторых случаях внутренние роутеры более удобны, так как их можно легко разместить внутри корпуса. И они не занимают место на столе или в другом месте.

Ни чем отличаться роутеры друг от друга глобально не могут. В основе работы всех устройств лежит один и тот же принцип.

Таблица стоимости роутеров

Роутеры разделяются на различные категории не только по типам, но также и по стоимости. Что делает выбор подходящей модели гораздо легче – можно легко подобрать как очень дорогую модель с множеством дополнительных функций, так и самую дешевую.

Функции и характеристики роутеров

Для комфортной работы дома или в офисе необходим Wi-Fi-роутер, умеющий поддерживать достаточно широкий канал, а также иметь хорошие эксплуатационные характеристики:

  • одна из самых важных характеристик роутеров – поддержка таких стандартов, как IEEE 802.11g, IEEE 802.11n. В первом случае возможен обмен данными на скорости в 54 Мбит/с через шлюз, во втором случае – до 600 Мбит/с;
  • желательно наличие USB-порта и возможности использования технологии 3Gдля подключения к интернету. Это даст возможность избежать наличия большого количества разнообразных проводов под ногами;
  • желательно чтобы роутер поддерживал работу с такими протоколами, как L2TPи PPTP. В противном случае работа с некоторыми Интернет-провайдерами будет попросту невозможна (например, с «Билайн»).

Видео: обзор Wi-Fi роутер «Upvel UR-309BN»

Возможности и отличия роутеров

Wi-Fi-роутер имеет множество возможностей:

  • в большинстве моделей имеется возможность подключения не только при помощи Wi-Fi, но также с использованием обычного сетевого кабеля (витой пары). Что позволяет объединять ПК в одну сеть для обмена данными между ними;
  • роутер закрепляет за каждым устройством сети персональный IP-адрес от DHCP-сервера;
  • интернет канал от провайдера может подключаться к роутеру при помощи интерфейса WAN;
  • многие маршрутизаторы оснащаются USB-разъемами.

Также некоторые роутеры могут отличаться от своих собратьев наличием различных дополнительных возможностей:

  • VoIP модуль позволяет пользоваться услугами IP-телефонии (на корпусе присутствует специальный разъём для подключения телефонной линии);
  • наличие USB-разъема позволяет подключать различные устройства напрямую к роутеру.

Обычно чем дороже модель маршрутизатора, тем большими возможностями он обладает. Многие не знают, как использовать различные дополнительные функции – вся необходимая информация имеется в сопроводительной документации устройства. С каждым годом производитель все сильнее упрощает технологию настройки и использования своих устройств, тем самым делая Wi-Fi-интернет все более доступным для широких масс.

Большинство даже не очень опытных пользователей уже давно знает, что означает словосочетание Wi-Fi-роутер. Так как интернет и беспроводные технологии связи уже очень плотно вошли в нашу жизнь. Именно поэтому в большинстве современных домов и квартир имеется устройство, выполняющее функцию распределения интернета между отдельными устройствами.

Распространение интернета стимулирует обычных пользователей активно участвовать в использовании новейших технологий без помощи посредников-специалистов. Как показала практика, истинного специалиста в сфере IT-технологий найти непросто, да и стоят их услуги недёшево. Другое дело - изобилие консультантов-дилетантов. И хотя цены на свои услуги они поддерживают на высоком уровне, качество и объём осуществляемых ими работ вполне по плечу обычному пользователю.

Проблемы организации локальной сети возникают не только перед системными администраторами предприятий и офисов. Изобилие цифровых устройств, находящихся в пользовании обычной среднестатистической семьи, невольно требует не только разделения трафика, но и включения их в общую сеть. Самым оптимальным вариантом решения этой проблемы является использование маршрутизатора (роутера).

Что такое маршрутизатор? Словами специалиста - это устройство, работающее как основное звено локальной сети. Маршрутизатор - это высокотехнологичный коммутатор, который, опираясь на информацию о топологии сети и определённые правила, принимает решение о пересылке пакетов между элементами, составляющими сеть.

Принцип работы маршрутизатора основывается на использовании адреса получателя, заложенного непосредственно в пакете данных, который определяется устройством по и выбирает путь передачи данных. В случае отсутствия маршрута для описания адреса пакет отбрасывается.

По другим способам определения маршрутов пересылки пакетов может использоваться адрес отправителя, для этого берутся во внимание протоколы верхних уровней и прочая информация, которую содержат заголовки пакетов конкретного сетевого уровня. Зачастую маршрутизаторы берут на себя функцию трансляции адресов как получателя, так и отправителя данных транзитного потока, основываясь на определенных правилах с целью ограничения доступа.

Для обычного пользователя вопрос о том, что такое маршрутизатор, находит куда более простой ответ. По сути, это компактный прибор, находящийся на входе локальной сети. В зависимости от его типа он может осуществлять передачу данных и по проводам, и по средствам беспроводных технологий организации связи.

Динамическая маршрутизация позволяет роутеру объединять в сеть большое количество элементов и даже несколько локальных контуров. Что такое маршрутизатор в данном случае? Это устройство, уже выходящее за рамки обычного связующего звена. С его помощью не только облегчается работа системного администратора, но и предоставляется возможность организовывать полноценную локальную сеть силами обычного пользователя.

Нам уже не приходится «заморачиваться» со специфическими понятиями и жаргоном специалистов, нет нужды вникать в классификацию протоколов. Достаточно пройти по пунктам все требования инструкции, и в результате нескольких минут работы локальная сеть с широкими возможностями к нашим услугам.

Процесс настройки роутера настолько прост, что его осилит даже школьник. Возможно возникновение некоторых рассогласований при определении сетевого адреса самого маршрутизатора, но они решаются либо автоматически, либо вручную (в зависимости от типа используемых устройств).

Если изначально определение роутера выглядело весьма запутанным из-за использования специфических терминов, то сейчас ответить на вопрос о том, что такое маршрутизатор, сможет любой, кто сталкивался с его настройкой и установкой. Простое и доступное устройство, облегчающее процесс организации сети, находит место и в офисе, и дома. Интерфейс работы с ним прост и интуитивно понятен. Заслуга разработчиков современных роутеров заключается в упрощении процесса их настройки, что делает их весьма распространенными и доступными среди широкой категории современных пользователей.

Современные цифровые компьютерные сети имеют чрезвычайно разветвленную топологию, множество соединений и сложнейшие алгоритмы адресации и перенаправления потоков траффика. Для обеспечения бесперебойной работы этой системы служат специальные устройства, маршрутизирующие информацию и следящие за ее корректной доставкой. Так что такое маршрутизатор?

Итак, что такое маршрутизатор? Это сетевое устройство, перенаправляющее пакеты данных в одной или нескольких подсетях в соответствие с некоторым заранее определенным принципом. В отличие от концентратора (хаба) и коммутатора (switch), которые просто соединяют компьютеры физической линией, маршрутизатор анализирует пакеты данных, определяет адресата и выбирает маршрут данных исходя из полученных сведений. Первые модели могли определять маршруты только по заданной администратором карте, современные же модели способны анализировать текущую производительность сети, отслеживать изменения топологии и определять классы приоритета траффика, предоставляя более быстрые каналы и короткие маршруты интерактивному контенту за счет менее значимых потоков файлов и, к примеру, электронной почты. Кроме профессиональных роутеров, отвечающих за функционирование сетей целых городов и регионов (так называемых маршрутизаторов уровня ядра) существуют и компактные модели, предназначенные для контроля и распределения траффика в отдельной квартире или офисе.

Маршрутизатор: устройство и принцип работы

Каждый маршрутизатор имеет один или несколько портов, память для хранения таблиц маршрутизации и процессор, обрабатывающий пакеты и другую служебную информацию.

Из каждого входящего пакета маршрутизатор извлекает адреса, сверяется с таблицей маршрутизации и, если обнаруживает, что имеется путь, по которому пункт назначения может быть достигнут, пересылает пакет через нужный порт. Однако, если адрес указан некорректно, маршрут отсутствует, либо пересылка запрещена настройками безопасности — пакет отбрасывается.

К системе безопасности относят:

  • Firewall — некоторые адреса или порты могут быть закрыты полностью, ни один пакет никогда не попадет и не покинет сеть при правильной настройке этой подсистемы.
  • VPN — виртуальные частные сети. При этом внутри (а точнее, «поверх») сети формируется виртуальный зашифрованный сегмент, имеющий собственную систему адресации. Чужие компьютеры не смогут отправить вредоносные пакеты при такой организации траффика.
  • NAT — трансляция сетевых адресов. Роутер изменяет заголовок пакета таким образом, чтобы скрыть подробности внутренней организации сети от внешних наблюдателей. Любой внутренний адрес транслируется в определенный внешний, прозрачно для приложений, использующих сеть.

Часто роутеры имеют систему автоматической генерации таблицы маршрутизации по заданным параметрам, указываемым либо администратором сети через специальный интерфейс, используя один из разработанных протоколов (RIP, OSPF, BGP), рассчитывающих метрики (производительность и приоритетность) сетей, размер пакета, классы траффика и прочие сведения.

Технологии современных маршрутизаторов

Современные маршрутизаторы умеют перенаправлять траффик не только в проводных сетях, но и осуществлять транслирование данных между наземными и беспроводными сегментами, породив целый класс устройств, называемых . Точно таким же образом к некоторым устройствам можно подключать оптоволоконные линии.

Часто в одном корпусе заключен не только маршрутизатор, но и сервер DHCP, автоматически настраивающий сетевые интерфейсы подключенных компьютеров и добавляющий их в таблицу маршрутизации, сервер печати, распознающий пакеты, предназначенные для принтера и управляющий подключенным к роутеру печатающим устройством, веб-сервер для организации веб-интерфейса к консоли управления и (фотографиям, музыке, видео), хранящемуся на дисках (технология, близкая к NAS).

Роутером может служить не только специальное устройство, но и компьютер со специфическим программным обеспечением и одной и более сетевыми платами.

Или шлюзом , называется узел сети с несколькими IP-интерфейсами (содержащими свой MAC-адрес и IP-адрес), подключенными к разным IP-сетям, осуществляющий на основе решения задачи маршрутизации перенаправление дейтаграмм из одной сети в другую для доставки от отправителя к получателю.

Представляют собой либо специализированные вычислительные машины, либо компьютеры с несколькими IP-интерфейсами, работа которых управляется специальным программным обеспечением.

Маршрутизация в IP-сетях

Маршрутизация служит для приема пакета от одного устройства и передачи его по сети другому устройству через другие сети. Если в сети нет маршрутизаторов, то не поддерживается маршрутизация. Маршрутизаторы направляют (перенаправляют) трафик во все сети, составляющие объединенную сеть.

Для маршрутизации пакета маршрутизатор должен владеть следующей информацией:

  • Адрес назначения
  • Соседний маршрутизатор, от которого он может узнать об удаленных сетях
  • Доступные пути ко всем удаленным сетям
  • Наилучший путь к каждой удаленной сети
  • Методы обслуживания и проверки информации о маршрутизации

Маршрутизатор узнает об удаленных сетях от соседних маршрутизаторов или от сетевого администратора. Затем маршрутизатор строит таблицу маршрутизации, которая описывает, как найти удаленные сети.

Если сеть подключена непосредственно к маршрутизатору, он уже знает, как направить пакет в эту сеть. Если же сеть не подключена напрямую, маршрутизатор должен узнать (изучить) пути доступа к удаленной сети с помощью статической маршрутизации (ввод администратором вручную местоположения всех сетей в таблицу маршрутизации) или с помощью динамической маршрутизации.

Динамическая маршрутизация - это процесс протокола маршрутизации, определяющий взаимодействие устройства с соседними маршрутизаторами. Маршрутизатор будет обновлять сведения о каждой изученной им сети. Если в сети произойдет изменение, протокол динамической маршрутизации автоматически информирует об изменении все маршрутизаторы. Если же используется статическая маршрутизация, обновить таблицы маршрутизации на всех устройствах придется системному администратору.

IP-маршрутизация - простой процесс, который одинаков в сетях любого размера. Например, на рисунке показан процесс пошагового взаимодействия хоста А с хостом В в другой сети. В примере пользователь хоста А запрашивает по ping IP-адрес хоста В. Дальнейшие операции не так просты, поэтому рассмотрим их подробнее:

  • В командной строке пользователь вводит ping 172.16.20.2. На хосте А генерируется пакет с помощью протоколов сетевого уровня и ICMP .

  • IP обращается к протоколу ARP для выяснения сети назначения для пакета, просматривая IP-адрес и маску подсети хоста А. Это запрос к удаленному хосту, т.е. пакет не предназначен хосту локальной сети, поэтому пакет должен быть направлен маршрутизатору для перенаправления в нужную удаленную сеть.
  • Чтобы хост А смог послать пакет маршрутизатору, хост должен знать аппаратный адрес интерфейса маршрутизатора, подключенный к локальной сети. Сетевой уровень передает пакет и аппаратный адрес назначения канальному уровню для деления на кадры и пересылки локальному хосту. Для получения аппаратного адреса хост ищет местоположение точки назначения в собственной памяти, называемой кэшем ARP.
  • Если IP-адрес еще не был доступен и не присутствует в кэше ARP, хост посылает широковещательную рассылку ARP для поиска аппаратного адреса по IP-адресу 172.16.10.1. Именно поэтому первый запрос Ping обычно заканчивается тайм-аутом, но четыре остальные запроса будут успешны. После кэширования адреса тайм-аута обычно не возникает.
  • Маршрутизатор отвечает и сообщает аппаратный адрес интерфейса Ethernet, подключенного к локальной сети. Теперь хост имеет всю информацию для пересылки пакета маршрутизатору по локальной сети. Сетевой уровень спускает пакет вниз для генерации эхо-запроса ICMP (Ping) на канальном уровне, дополняя пакет аппаратным адресом, по которому хост должен послать пакет. Пакет имеет IP-адреса источника и назначения вместе с указанием на тип пакета (ICMP) в поле протокола сетевого уровня.
  • Канальный уровень формирует кадр, в котором инкапсулируется пакет вместе с управляющей информацией, необходимой для пересылки по локальной сети. К такой информации относятся аппаратные адреса источника и назначения, а также значение в поле типа, установленное протоколом сетевого уровня (это будет поле типа, поскольку IP по умолчанию пользуется кадрами Ethernet_II). Рисунок 3 показывает кадр, генерируемый на канальном уровне и пересылаемый по локальному носителю. На рисунке 3 показана вся информация, необходимая для взаимодействия с маршрутизатором: аппаратные адреса источника и назначения, IP-адреса источника и назначения, данные, а также контрольная сумма CRC кадра, находящаяся в поле FCS (Frame Check Sequence).
  • Канальный уровень хоста А передает кадр физическому уровню. Там выполняется кодирование нулей и единиц в цифровой сигнал с последующей передачей этого сигнала по локальной физической сети.

  • Сигнал достигает интерфейса Ethernet 0 маршрутизатора, который синхронизируется по преамбуле цифрового сигнала для извлечения кадра. Интерфейс маршрутизатора после построения кадра проверяет CRC, а в конце приема кадра сравнивает полученное значение с содержимым поля FCS. Кроме того, он проверяет процесс передачи на отсутствие фрагментации и конфликтов носителя.
  • Проверяется аппаратный адрес назначения. Поскольку он совпадает с адресом маршрутизатора, анализируется поле типа кадра для определения дальнейших действий с этим пакетом данных. В поле типа указан протокол IP, поэтому маршрутизатор передает пакет процессу протокола IP, исполняемому маршрутизатором. Кадр удаляется. Исходный пакет (сгенерированный хостом А) помещается в буфер маршрутизатора.
  • Протокол IP смотрит на IP-адрес назначения в пакете, чтобы определить, не направлен ли пакет самому маршрутизатору. Поскольку IP-адрес назначения равен 172.16.20.2, маршрутизатор определяет по своей таблице маршрутизации, что сеть 172.16.20.0 непосредственно подключена к интерфейсу Ethernet 1.
  • Маршрутизатор передает пакет из буфера в интерфейс Ethernet 1. Маршрутизатору необходимо сформировать кадр для пересылки пакета хосту назначения. Сначала маршрутизатор проверяет свой кэш ARP, чтобы определить, был ли уже разрешен аппаратный адрес во время предыдущих взаимодействий с данной сетью. Если адреса нет в кэше ARP, маршрутизатор посылает широковещательный запрос ARP в интерфейс Ethernet 1 для поиска аппаратного адреса для IP-адреса 172.16.20.2.
  • Хост В откликается аппаратным адресом своего сетевого адаптера на запрос ARP. Интерфейс Ethernet 1 маршрутизатора теперь имеет все необходимое для пересылки пакета в точку окончательного приема. На рисунке показывает кадр, сгенерированный маршрутизатором и переданный по локальной физической сети.

Кадр, сгенерированный интерфейсом Ethernet 1 маршрутизатора, имеет аппаратный адрес источника от интерфейса Ethernet 1 и аппаратный адрес назначения для сетевого адаптера хоста В. Важно отметить, что, несмотря на изменения аппаратных адресов источника и назначения, в каждом передавшем пакет интерфейсе маршрутизатора, IP-адреса источника и назначения никогда не изменяются. Пакет никоим образом не модифицируется, но меняются кадры.

  • Хост В принимает кадр и проверяет CRC. Если проверка будет успешной, кадр удаляется, а пакет передается протоколу IP. Он анализирует IP-адрес назначения. Поскольку IP-адрес назначения совпадает с установленным в хосте В адресом, протокол IP исследует поле протокола для определения цели пакета.
  • В нашем пакете содержится эхо-запрос ICMP, поэтому хост В генерирует новый эхо-ответ ICMP с IP-адресом источника, равным адресу хоста В, и IP-адресом назначения, равным адресу хоста А. Процесс запускается заново, но в противоположном направлении. Однако аппаратные адреса всех устройств по пути следования пакета уже известны, поэтому все устройства смогут получить аппаратные адреса интерфейсов из собственных кэшей ARP.

В крупных сетях процесс происходит аналогично, но пакету придется пройти больше участков по пути к хосту назначения.

Таблицы маршрутизации

В стеке TCP/IP маршрутизаторы и конечные узлы принимают решения о том, кому передавать пакет для его успешной доставки узлу назначения, на основании так называемых таблиц маршрутизации (routing tables).

Таблица представляет собой типичный пример таблицы маршрутов, использующей IP-адреса сетей, для сети, представленной на рисунке.

Таблица маршрутизации для Router 2

В таблице представлена таблица маршрутизации многомаршрутная, так как содержится два маршрута до сети 116.0.0.0. В случае построения одномаршрутной таблицы маршрутизации, необходимо указывать только один путь до сети 116.0.0.0 по наименьшему значению метрики.

Как нетрудно видеть, в таблице определено несколько маршрутов с разными параметрами. Читать каждую такую запись в таблице маршрутизации нужно следующим образом:

Чтобы доставить пакет в сеть с адресом из поля Сетевой адрес и маской из поля Маска сети, нужно с интерфейса с IP-адресом из поля Интерфейс послать пакет по IP-адресу из поля Адрес шлюза, а «стоимость» такой доставки будет равна числу из поля Метрика.

В этой таблице в столбце "Адрес сети назначения" указываются адреса всех сетей, которым данный маршрутизатор может передавать пакеты. В стеке TCP/IP принят так называемый одношаговый подход к оптимизации маршрута продвижения пакета (next-hop routing) – каждый маршрутизатор и конечный узел принимает участие в выборе только одного шага передачи пакета. Поэтому в каждой строке таблицы маршрутизации указывается не весь маршрут в виде последовательности IP-адресов маршрутизаторов, через которые должен пройти пакет, а только один IP-адрес - адрес следующего маршрутизатора, которому нужно передать пакет. Вместе с пакетом следующему маршрутизатору передается ответственность за выбор следующего шага маршрутизации. Одношаговый подход к маршрутизации означает распределенное решение задачи выбора маршрута. Это снимает ограничение на максимальное количество транзитных маршрутизаторов на пути пакета.

Для отправки пакета следующему маршрутизатору требуется знание его локального адреса, но в стеке TCP/IP в таблицах маршрутизации принято использование только IP-адресов для сохранения их универсального формата, не зависящего от типа сетей, входящих в интерсеть. Для нахождения локального адреса по известному IP-адресу необходимо воспользоваться протоколом ARP.

Одношаговая маршрутизация обладает еще одним преимуществом - она позволяет сократить объем таблиц маршрутизации в конечных узлах и маршрутизаторах за счет использования в качестве номера сети назначения так называемого маршрута по умолчанию – default (0.0.0.0), который обычно занимает в таблице маршрутизации последнюю строку. Если в таблице маршрутизации есть такая запись, то все пакеты с номерами сетей, которые отсутствуют в таблице маршрутизации, передаются маршрутизатору, указанному в строке default. Поэтому маршрутизаторы часто хранят в своих таблицах ограниченную информацию о сетях интерсети, пересылая пакеты для остальных сетей в порт и маршрутизатор, используемые по умолчанию. Подразумевается, что маршрутизатор, используемый по умолчанию, передаст пакет на магистральную сеть, а маршрутизаторы, подключенные к магистрали, имеют полную информацию о составе интерсети.

Кроме маршрута default, в таблице маршрутизации могут встретиться два типа специальных записей - запись о специфичном для узла маршруте и запись об адресах сетей, непосредственно подключенных к портам маршрутизатора.

Специфичный для узла маршрут содержит вместо номера сети полный IP-адрес, то есть адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Предполагается, что для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае, когда в таблице есть разные записи о продвижении пакетов для всей сети N и ее отдельного узла, имеющего адрес N,D, при поступлении пакета, адресованного узлу N,D, маршрутизатор отдаст предпочтение записи для N,D.

Записи в таблице маршрутизации, относящиеся к сетям, непосредственно подключенным к маршрутизатору, в поле "Метрика" содержат нули («подключено»).

Алгоритмы маршрутизации

Основные требования к алгоритмам маршрутизации:

  • точность;
  • простота;
  • надёжность;
  • стабильность;
  • справедливость;
  • оптимальность.

Существуют различные алгоритмы построения таблиц для одношаговой маршрутизации. Их можно разделить на три класса:

  • алгоритмы простой маршрутизации;
  • алгоритмы фиксированной маршрутизации;
  • алгоритмы адаптивной маршрутизации.

Независимо от алгоритма, используемого для построения таблицы маршрутизации, результат их работы имеет единый формат. За счет этого в одной и той же сети различные узлы могут строить таблицы маршрутизации по своим алгоритмам, а затем обмениваться между собой недостающими данными, так как форматы этих таблиц фиксированы. Поэтому маршрутизатор, работающий по алгоритму адаптивной маршрутизации, может снабдить конечный узел, применяющий алгоритм фиксированной маршрутизации, сведениями о пути к сети, о которой конечный узел ничего не знает.

Проста маршрутизация

Это способ маршрутизации не изменяющийся при изменении топологии и состоянии сети передачи данных (СПД).

Простая маршрутизация обеспечивается различными алгоритмами, типичными из которых являются следующие:

  • Случайная маршрутизация – это передача сообщения из узла в любом случайно выбранном направлении, за исключением направлений по которым сообщение поступило узел.
  • Лавинная маршрутизация – это передача сообщения из узла во всех направлениях, кроме направления по которому сообщение поступило в узел. Такая маршрутизация гарантирует малое время доставки пакета, засчет ухудшения пропускной способности.
  • Маршрутизация по предыдущему опыту – каждый пакет имеет счетчик числа пройденных узлов, в каждом узле связи анализируется счетчик и запоминается тот маршрут, который соответствует минимальному значению счетчика. Такой алгоритм позволяет приспосабливаться к изменению топологии сети, но процесс адаптации протекает медленно и неэффективно.

В целом, простая маршрутизация не обеспечивает направленную передачу пакета и имеет низкую эффективности. Основным ее достоинством является обеспечение устойчивой работы сети при выходе из строя различных частей сети.

Фиксированная маршрутизация

Этот алгоритм применяется в сетях с простой топологией связей и основан на ручном составлении таблицы маршрутизации администратором сети. Алгоритм часто эффективно работает также для магистралей крупных сетей, так как сама магистраль может иметь простую структуру с очевидными наилучшими путями следования пакетов в подсети, присоединенные к магистрали, выделяют следующие алгоритмы:

  • Однопутевая фиксированная маршрутизация – это когда между двумя абонентами устанавливается единственный путь. Сеть с такой маршрутизацией неустойчива к отказам и перегрузкам.
  • Многопутевая фиксированная маршрутизация – может быть установлено несколько возможных путей и вводится правило выбора пути. Эффективность такой маршрутизации падает при увеличении нагрузки. При отказе какой-либо линии связи необходимо менять таблицу маршрутизации, для этого в каждом узле связи храниться несколько таблиц.

Адаптивная маршрутизация

Это основной вид алгоритмов маршрутизации, применяющихся маршрутизаторами в современных сетях со сложной топологией. Адаптивная маршрутизация основана на том, что маршрутизаторы периодически обмениваются специальной топологической информацией об имеющихся в интерсети сетях, а также о связях между маршрутизаторами. Обычно учитывается не только топология связей, но и их пропускная способность и состояние.

Адаптивные протоколы позволяют всем маршрутизаторам собирать информацию о топологии связей в сети, оперативно отрабатывая все изменения конфигурации связей. Эти протоколы имеют распределенный характер, который выражается в том, что в сети отсутствуют какие-либо выделенные маршрутизаторы, которые бы собирали и обобщали топологическую информацию: эта работа распределена между всеми маршрутизаторами, выделяют следующие алгоритмы:

  • Локальная адаптивная маршрутизация – каждый узел содержит информацию о состоянии линии связи, длины очереди и таблицу маршрутизации.
  • Глобальная адаптивная маршрутизация – основана на использовании информации получаемой от соседних узлов. Для этого каждый узел содержит таблицу маршрутизации, в которой указано время прохождения сообщений. На основе информации, получаемой из соседних узлов, значение таблицы пересчитывается с учетом длины очереди в самом узле.
  • Централизованная адаптивная маршрутизация – существует некоторый центральный узел, который занимается сбором информации о состоянии сети. Этот центр формирует управляющие пакеты, содержащие таблицы маршрутизации и рассылает их в узлы связи.
  • Гибридная адаптивная маршрутизация – основана на использовании таблицы периодически рассылаемой центром и на анализе длины очереди с самом узле.

Показатели алгоритмов (метрики)

Маршрутные таблицы содержат информацию, которую используют программы коммутации для выбора наилучшего маршрута. Чем характеризуется построение маршрутных таблиц? Какова особенность природы информации, которую они содержат? В данном разделе, посвященном показателям алгоритмов, сделана попытка ответить на вопрос о том, каким образом алгоритм определяет предпочтительность одного маршрута по сравнению с другими.

В алгоритмах маршрутизации используется множество различных показателей. Сложные алгоритмы маршрутизации при выборе маршрута могут базироваться на множестве показателей, комбинируя их таким образом, что в результате получается один гибридный показатель. Ниже перечислены показатели, которые используются в алгоритмах маршрутизации:

  • Длина маршрута.
  • Надежность.
  • Задержка.
  • Ширина полосы пропускания.

Длина маршрута.

Длина маршрута является наиболее общим показателем маршрутизации. Некоторые протоколы маршрутизации позволяют администраторам сети назначать произвольные цены на каждый канал сети. В этом случае длиной тракта является сумма расходов, связанных с каждым каналом, который был траверсирован. Другие протоколы маршрутизации определяют "количество пересылок" (количество хопов), т. е. показатель, характеризующий число проходов, которые пакет должен совершить на пути от источника до пункта назначения через элементы объединения сетей (такие как маршрутизаторы).

Надежность.

Надежность, в контексте алгоритмов маршрутизации, относится к надежности каждого канала сети (обычно описываемой в терминах соотношения бит/ошибка). Некоторые каналы сети могут отказывать чаще, чем другие. Отказы одних каналов сети могут быть устранены легче или быстрее, чем отказы других каналов. При назначении оценок надежности могут быть приняты в расчет любые факторы надежности. Оценки надежности обычно назначаются каналам сети администраторами. Как правило, это произвольные цифровые величины.

Задержка.

Под задержкой маршрутизации обычно понимают отрезок времени, необходимый для передвижения пакета от источника до пункта назначения через объединенную сеть. Задержка зависит от многих факторов, включая полосу пропускания промежуточных каналов сети, очереди в порт каждого маршрутизатора на пути передвижения пакета, перегруженность сети на всех промежуточных каналах сети и физическое расстояние, на которое необходимо переместить пакет. Т. к. здесь имеет место конгломерация нескольких важных переменных, задержка является наиболее общим и полезным показателем.

Полоса пропускания.

Полоса пропускания относится к имеющейся мощности трафика какого-либо канала. При прочих равных показателях, канал Ethernet 10 Mbps предпочтителен любой арендованной линии с полосой пропускания 64 Кбайт/с. Хотя полоса пропускания является оценкой максимально достижимой пропускной способности канала, маршруты, проходящие через каналы с большей полосой пропускания, не обязательно будут лучше маршрутов, проходящих через менее быстродействующие каналы.