Тактовая частота. Что такое центральный процессор

Исторически сложилось, что тактовая частота процессора представляет собой главный показатель быстродействия компьютера, и в своё время даже необразованный человек, не знающий, чем оптический диск отличается от гибкого, мог с уверенностью заявить, что чем больше гигагерц в машине, тем лучше, и никто бы с ним не поспорил. Сегодня, в середине компьютерной эры, такого рода мода прошла, и разработчики стараются уйти в сторону создания более совершенной архитектуры, увеличения количества кэш-памяти и количества процессорных ядер, но тактовая частота является "королевой" характеристик. В общем смысле, это то количество элементарных операций (тактов), которое процессор может произвести за секунду времени.

Отсюда следует то, что чем выше тактовая частота процессора, тем больше элементарных операций способен выполнить компьютер, и, следовательно, тем быстрее он работает.

Тактовая частота передовых процессоров колеблется от двух до четырёх гигагерц. Она определяется умножением частоты шины процессора на определённый коэффициент. К примеру, Core i7 использует множитель х20 и имеет частоту шины, равную 133 МГц, в результате чего тактовая частота процессора составит 2660 МГц.

Современные и ядра

Несмотря на то, что ранее "многоядерность" была в новинку, на сегодняшний день на рынке практически не осталось одноядерных процессоров. И ничего удивительного в этом нет, ведь компьютерная индустрия не стоит на месте.

Поэтому следует ясно представлять, как рассчитывается тактовая частота для процессоров, имеющих два и более ядра.

Стоит сказать, что существует распространённое заблуждение насчёт вычисления частоты для таких процессоров. Например: "Имеется двухъядерный процессор с тактовой частотой в 1.8 ГГц, следовательно, его суммарная частота будет составлять 2 х 1.8ГГц=3.6ГГц, правильно?". Нет, неправильно. К сожалению, количество ядер никак не влияет на конечную тактовую частоту, если ваш процессор работал со скоростью в 3 ГГц, так он работать и будет, но при большем количестве ядер увеличатся его ресурсы, а это, в свою очередь, очень сильно повысит работоспособность.

Не стоит также забывать, что для современного процессора особо важен объем кэш-памяти. Это самая быстрая память ЭВМ, в которой дублируется рабочая информация, для которой необходим более быстрый доступ в данный момент времени.

Так как этот очень дорог и трудоёмок в производстве, его значения сравнительно малы, но этих показателей достаточно для того, чтобы увеличить производительность всей системы без изменения таких параметров, как тактовая частота.

Максимальная тактовая частота процессора и разгон

Насколько бы ваш компьютер ни был хорош, когда-нибудь он все же устареет. Но не спешите нести его на помойку и с распростёртым кошельком бежать в ближайший магазин электроники. Большинство современных процессоров и видеокарт предусматривает дополнительный (помимо заводского) разгон, и, имея хорошую систему охлаждения, вы сможете поднять уровень номинальной частоты на 200-300 ГГц. Для экстремалов и любителей больших цифр также существует "оверклокинг" призывающий выжать из техники максимум. Многие люди, занимающиеся таким опасным делом, могут без труда разогнать одноядерный процессор до 6-7 ГГц, а некоторые даже ставят рекордные показатели в 8.2 ГГц.

Частота? ГГц? 2.6? Ghz?

С точки зрения технической, звучит определение так:

Тактовая частота – это количество произведенных тактов за определенное количество времени.

Для меня это тоже был темный лес, когда на первом курсе я писал это в тетрадке, учившись на программиста. Тогда я, как и многие сейчас вообще не понимал, что это означает и для чего это нужно?

Объясню на примеры, с ним будет легче разобраться, как это работает. Начнем.

Объяснение на примере

Давайте представим, что 1 удар по музыкальному барабану – это 1 такт у процессора. Берем для сравнения два барабана, по одному ударяют 120 раз в минуту, по второму ударяют 80 раз в минуту, будет очевидным, что частотность звука первого барабана выше и громче, чем у второго.

Для самостоятельного эксперимента можете взять в руку обычную пишущую ручку, засечь 10 секунд и сделать 10 ударов ребром от ручки по столу, а затем за тоже самое время сделать 20 ударов, итог будет тот же что и с барабанами.
Еще нужно понимать, что если у музыканта будет четыре барабана, вместо одного, то количество ударов не умножиться на кол‐во барабанов, а распределяется на все, тем самым появятся более широкие возможности в проигрывании звуков.

Запомнить! Количество ядер не умножается на гигагерцы.

И именно поэтому, нигде в описаниях нет таких больших цифр, как 12Ghz или 24ГГц, ну и т.д., если только в результатах оверклокинга, и то навряд ли.
В микропроцессоре за такт выполняется какое‐то количество команд. То есть чем выше тактовая частота, тем больше выполненных команд за определенное количество времени происходит внутри микропроцессора.

Кстати, о том, что там внутри, вы можете узнать в статье – « », которая уже появилась на блоге. Дальше интересней, так что , чтобы всегда быть в курсе о появлении новых статей.

В чем измеряется и как обозначается

В гигагерцах или в мегагерцах, в сокращенном виде обозначается как – ГГц или МГц, Ghz или Mhz.

3.2 Ghz = 3200 Mhz – это одно и тоже, только в разных величинах.

На сайтах, в описании частота обозначается по разному. Примеры приведены ниже и выделены синим цветом.

Влияние в работе и играх

В работе за компьютером это параметр влияет на:

  • производительность системы
  • отзывчивость и быстроту работы
  • вычислительную мощность
  • выполнение нескольких запущенных задач в одно и тоже время
  • и многое др.

Как влияет в играх? Напрямую зависит от того, сколько нужно мощности для игры. Производители рекомендуют использовать от 3,0Ггц и выше. Все зависит именно от самой игры и рекомендаций, которые к ней прилагаются. Где их смотреть? Можете почитать , в которой подробно я все рассказал.

Одна из моделей CPU, которая имеет самую большую тактовую частоту на момент написания статьи – это Intel i7‐8700K.

Многие конечно считают, что это параметр не самый важный, но этот показатель напрямую влияет на производительность пк, поэтому если у вас есть возможность приобрести более высокую гигагерцовость, советую его рассмотреть.

На мой взгляд я бы рассматривал вот эти оптимальных моделей для различных задач:

  • INTEL Pentium G5600
  • AMD Ryzen 3 2200G
  • INTEL Core i3 8100
  • INTEL Core i5 8400
  • INTEL Core i7 8700

Для каких задач они предназначены? Можете посмотреть в статье как , чтобы потом не пожалеть.

Цены не указываю, так как они всегда меняются, так что смотрите. Выбор за вами.

Надеюсь вам стало все понятно. На этом буду заканчивать. Чтобы оставаться в курсе о появлении новых, понятных и интересных статей на моем блоге , оставляйте комментарии, мне всегда интересно ваше мнение. Спасибо за внимание. До встречи в новых статьях.

Каждый пользователь компьютерной техники не редко задавался этим вопросом, особенно решив приобрести, новое оборудование. Но для того чтобы ответить на вопрос — тактовая частота процессора на что же она влияет, необходимо в первую очередь понять, что собой она представляет?

ВЛИЯНИЕ ТАКТОВОЙ частоты процессора на производительность?

Этот показатель говорит о количестве производимых процессором вычислений в одну секунду. Ну и естественно, что чем выше частота, тем больше операций в единицу времени может произвести процессор. У современных устройств этот показатель находится в пределах от 1 до 4 ГГц. Определяется он путем умножения базовой или внешней частоты на определенный коэффициент. Увеличить частоту процессора можно путем его «разгона». Мировые лидеры по производству этих устройств некоторые свои изделия ориентируют на возможный их разгон.

При выборе такого устройства важным показателем производительности является не только его частота. На это влияет также ядреность процессора.
В настоящее время практически не осталось таких устройств, которые имеют только одно ядро. Многоядерные процессоры полностью вытеснили с рынка своих одноядерных предшественников.

О ядерности и тактовой частоте

Начнем с того, что утверждение, что процессор имеет частоту равную общей суме этого показателя каждого из ядер не верное. Но почему многоядерный процессор лучше и эффективнее? Потому, что каждое из ядер производит свою часть общей работы, если это позволяет, обрабатывая процессором программа. Таким образом, ядреность значительно увеличивает производительность системы, в том случае если обрабатываемую информацию можно разделить на части. Но если это сделать невозможно, работает только одно ядро процессора. При этом общая его производительность равна тактовой частоте этого ядра.

В общем, если вам предстоит работа с графикой, статическим изображением, видео, музыкой многоядерный процессор как раз то, что необходимо. Но если вы игроман, то в этом случае лучше брать не сильно многоядерный процессор, потому что программисты могут и не предусматривать разделение программных процессов на части. Поэтому, для игр более мощный процессор подойдет лучше.

Об архитектуре процессора

Кроме этого, производительность системы зависит и от архитектуры процессора. Естественно, что чем короче путь сигнала от точки отправки до точки назначения, тем быстрее производится обработка информации. По этой причине процессоры от компании Intel работают лучше, чем от фирмы AMD, при одинаковой тактовой частоте.
Итоги

Таким образом, тактовая частота процессора — это его сила или мощь. Она влияет на производительность системы. Но при этом необходимо не забывать что этот параметр, кроме мощности, зависит от количества ядер и от архитектуры этого устройства. Выбирать процессор необходимо с учетом того, с чем ему в будущем нужно будет работать? Для игр лучше брать процессор помощнее, для всего остального подойдет многоядерный процессор с не очень большой тактовой частотой.

Тактовая частота процессора – это количество обработанной информации, то есть количество синхронизирующих тактов, за одну секунду. Измеряется тактовая частота в МегаГерцах (Mhz). Как правило, чем выше тактовая частота, тем быстрее запускаются программы и игры, то есть количество выполняемых операций в секунду возрастает, однако системы с одной и той же тактовой частотой могут иметь различную производительность, так как на выполнение одной операции разным процессорам может требоваться различное количество тактов.

Производительность.

Производительность – эффективность используемой тактовой частоты. Чем больше ожидаемая скорость выполнения задач устройства, тем больше количество «лошадиных сил» требуется «под капотом». Современные устройства обеспечивают всё большие разрешения видеоизображения на дисплеях, миллионы цветов (сотни тысяч оттенков яркости) или высококачественный звук. Кроме того, все современные устройства поддерживают графический интерфейс пользователя (также известный под названием GUI (ГУЙ)), позволяющий управлять при помощи указания нужного места на экране и нажатия пальцем или кнопкой мыши. Вся эта красота требует создания, записи и перемещения миллиардов нулей и единиц в секунду, то есть достаточной производительности.

Ядро процессора.

Ядро процессора – это часть процессора, осуществляющая выполнение одного потока команд. Одноядерные процессоры используют конвейерную обработку тактов, а многоядерные – параллельную. Иными словами, многоядерные процессоры выполняют одновременно несколько операций, тем самым быстрее справляясь с задачами пользователя.

Энергопотребление.

Процессор с низким энергопотреблением позволит продлить время автономной работы устройства от аккумуляторной батареи. «Гонка» за частотой процессора и его производительностью привела к увеличению энергопотребления. Поэтому компании стали устанавливать системы энергосбережения, температурные датчики, обеспечивающие защиту от перегрева и снижающие частоту процессора при недопустимом увеличении температуры, на программном уровне реализовывать энергосберегающие режимы для «засыпания» процессора, а также устанавливать аккумуляторы большой ёмкости.



Оперативная память.

Оперативная память – это временная память, влияющая на многозадачность устройства, в которой работают запущенные пользователем программы . Оперативную память также называют «мозгом» компьютера, потому что это место, где выполняется основная работа. Большой объём оперативной памяти позволяет запустить одновременно больше программ и игр, а так же позволяет ускорить все процессы, связанные с обработкой информации.

Встроенная память.

Память на жёстком диске – это память, которая предназначена для загрузки и установки пользовательских файлов (программ, приложений, виджетов, мультимедийных файлов и игр). В устройствах она характеризуется размером жёсткого диска (в некоторых случаях используется флэш-память). Чем больше объём, тем больше можно сохранить информации. В этих устройствах может быть ещё и расширяемая память. В Интернет-планшетах для этой памяти предусмотрен слот под карту памяти. В ноутбуках и нетбуках кроме слота присутствуют разъёмы под съёмный флеш-диск или жёсткий диск.

Операционная система.

Операционная система – это комплекс программ, которые задействуют ресурсы компьютера (процессор, оперативная и постоянная память), деятельность которых направлена на выполнение задач пользователя. Операционную систему, ещё называют «хозяйкой» всего оборудования. Первая её функция – это указание способа функционирования микропроцессора и управление большим массивом памяти. Вторая функция операционной системы заключается в индексировании всей информации, находящейся во встроенной памяти. От того какая система установлена на устройстве, зависит производительность. В салонах «Евросеть» распространены три операционные системы, на ноутбуках и нетбуках – это Windows, а на Интернет-планшетах Android и iOS.

Многозадачность – это способность запуска и одновременной работы нескольких программ. Многозадачность реализовывается на уровне операционной системы и позволяет оптимизировать процессы, увеличить скорость работы и повысить комфорт от использования устройства.

Видеокарта.

Видеокарта – это устройство для отображения на компьютере видео и графики. Видеокарты бывают двух видов: интегрированные (встроенные) и дискретные (съёмные). Дискретная карта производительнее интегрированных аналогов, что даёт возможность работать со сложными графическими программами (к примеру, 3D-MAX (3-Д Макс)) и высокую производительность в играх.

Дисплей.

Дисплеи отличаются такими характеристиками как: диагональ, разрешение, соотношение сторон и покрытие экрана. Диагональможет быть в диапазонеот 4 до 19 дюймов (1 дюйм равен 2,54 см) для ноутбуков, нетбуков и планшетов. Разрешение – это количество точек, из которых будет состоять изображение. Разрешение экрана–от 800x600 до 1366x768 точек, что позволяет в полной мере насладиться красотой заставки или фотографий. Нетбуки чаще имеют разрешение: 1024x600. Широкоформатные экраны, имеют не квадратную форму, а вид вытянутого прямоугольника, что позволяет: удобно просматривать WEB-страницы и полнометражные фильмы.

Покрытие экрана – матовое или глянцевое?

Матовое покрытие не создаёт бликов на экране при дневном свете, на нём менее заметны отпечатки пальцев и глаза устают меньше.

Глянцевое покрытие придаёт изображению больше яркости и контрастности, однако

при прямом попадании света на дисплей изображение тускнеет, и появляются блики.

Разрядность процессора - это число одновременно обрабаты­ваемых процессором битов, поэтому процессор может быть 8-, 16-, 32-, 64-разрядным. Чем больше разрядность процессора, тем больше информации он может обработать.Разрядность процессора измеряют в битах. Иногда уточняют и разрядность шины адреса. Она показывает, сколько ячеек (адресов) внутренней памяти может быть использовано данным процессором (так называемое адресное пространство процессора).

Тактовая частота количество тактов (элементарных действий), выполняемых процессором в секунду. Тактовая частота измеряется в мегагерцах (1 МГц - миллион тактов в секунду) или гигагерцах (1 ГГц- миллиард тактов в секунду). Очевидно, что тактовая частота влияет на скорость работы, быс­тродействие процессора. Чем она выше, тем быстрее работает процессор и тем больше информации он может обработать. Повышение тактовой час­тоты происходит от одной модели процессора к другой. Например, первые модели процессоров Intel (8088) работали с тактовой частотой 8 МГц, а сов­ременные (Pentium IV) - до 4 ГГц.

Многоядерный процессор , т.е. может состоять из нескольких процессоров, объединённых в одном корпусе.

Устройства ввода

Устройства ввода предназначены для ввода информации от пользователя в компьютер.

Человек получает информацию из окружающего мира с помощью органов чувств: зрения, слуха, обоняния, осязания, вкуса. Однако человек не воспринимает электрические импульсы и очень плохо понимает информацию, представленную в форме последовательностей нулей и единиц, следовательно, в состав компьютера должны входить специальные устройства ввода и вывода информации.

Устройства ввода «переводят» информацию с языка человека на машинный язык компьютера, а устройства вывода, наоборот, «переводят» информацию с машинного языка в формы, доступные для человеческого восприятия.

Устройства ввода устройства с помощью которых человек вводит информацию в ЭВМ.

Клавиатура –устройство для ручного ввода числовой и текстовой информации в ЭВМ от пользователя.

Световое перо – специальная ручка с помощью которой можно рисовать на экране ЭВМ.

Мышь – манипулятор для ввода информации и работы с графическим интерфейсом.

Трекбол - аналогично мыши, но выполнен в форме шара. Используется в основном портативных ПК.

Тачпад сенсорная панель, чувствительная к нажатию пальцев.

Сканер – для ввода в компьютер фотографий, рисунков.

Джойстик – игровой манипулятор.

Цифровые камеры (фотоаппараты и видеокамеры) – формируют изображения в компьютерном формате (цифровом формате, имеют память, аналогичную компьютерной.)

Микрофон для ввода звуковой информации, подключается к входу звуковой карты.

Устройства вывода

Устройства вывода предназначены для вывода информации из памяти ЭВМ.

Монитор – устройство для вывода информации на экран.

Принтер устройство для распечатки информации на бумагу.

Графопостроитель (плоттер) - устройство для вывода на бумагу сложных чертежей, схем, плакатов большого формата (А1). Принцип действия плоттера такой же, как и у струйного принтера.

Акустические колонки или наушники - используются для вывода звука и подключаются к выходу звуковой пла­ты. Звуковая плата - это наиболее позднее устройство персонального ком­пьютера, которое выполняет вычислительные операции, связанные с обра­боткой звука, речи, музыки.

Стример – устройство для записи информации на магнитную ленту с компьютера, (на мини –кассеты с большой емкостью от 0,5 Гбайт до 2 Гбайт) т.е. это магнитофон со специальными возможностями.

Устройства, выполняющие одновременно функции и ввода и вывода информации.

Звуковая приставка – комплекс устройств для воспроизведения звука, для записи звука в программы. Включает звуковую плату, звуковые колонки, микрофон.

Модем – устройство для обмена информацией между компьютерами через телефонную сеть.

Факс-модем – устройство, сочетающее возможности модема и средства для обмена изображениями с другими факсами через обычные телефонные аппараты.

НГМД, НЖМД, НМЛ – совместные устройства для ввода и вывода информации на магнитные носители (гибкий диск, жесткий диск, лента).

Магистрально – модульный принцип построения компьютера

Связь и обмен информацией между отдельными устройствами компьютера производится с помощью информационной магистрали, которую обычно называют шиной. Конструктивно она выполнена заодно с платой. Магистраль можно представить себе как пучок проводов, к которому подсоединены все устройства ЭВМ. Посылая по магистрали электрические сигналы, любой модуль ЭВМ может передавать информацию другим модулям.


Шина данных (8, 16, 32, 64 бита)

Шина адреса (16, 20, 24, 32, 36 битов) МАГИСТРАЛЬ

Шина управления

Клавиатура

Клавиатура предназначена для ручного ввода информации в компьютер от пользователя. Стандартная клавиатура содержит 101 (104) клавиши.

Число клавиш на клавиатурах может несколько отличаться, но назначение одинаковых клавиш на разных клавиатурах совпадает.