Закон Ома для замкнутой цепи. Сторонние силы

то есть напряжение между полюсами источника

тока зависит от ЭДС и работы сторонних сил по перемещению единичного заряда от одного полюса источника к другому.

2. Сформулируйте и запишите закон Ома для замкнутой цепи

Сила тока в замкнутой электрической цепи пропорциональна ЭДС источника и обратно пропорционально сопротивлению цепи.

3. В чем различие встречного и согласованного включения последовательно соединенных источников тока?

Говорят, что 2-й источник включен встречно первому, если они, работая в одиночку, создают токи, идущие в одном направлении. 3-й источник включен согласованно с первым, если токи, создаваемые ими, направлены одинаково.

4. Сформулируйте закон Ома для замкнутой цепи с несколькими последовательно соединенными источниками тока. Приведите формулу этого закона.

Сила тока в замкнутой электрической цепи с последовательно соединенными источниками тока прямо пропорциональна сумме их

ЭДС и обратно пропорционально сопротивлению цепи.

5. Как определить направление тока в замкнутой цепи с несколькими последовательно соединенными источниками тока?

Если

то ток течет по часовой стрелке. В обратном случае - против часовой стрелки.

Содержание:

Каждый специалист, ремонтирующий и обслуживающий электроустановки, должен хорошо знать и применять на практике закон Ома для замкнутой цепи. Это действительно так, поскольку закономерности, открытые немецким физиком Георгом Омом, лежат в основе всей электротехники. Данный закон стал весомым вкладом в дальнейшее развитие научных знаний в области электричества.

Физические свойства закона Ома

Прямая взаимосвязь между силой тока, напряжением, подведенным к сети, и была обнаружена Омом в 1826 году. В дальнейшем, понятие напряжения было заменено на более точный термин - электродвижущую силу (ЭДС). После теоретического обоснования этой зависимости был выведен закон для замкнутой цепи. Его важной особенностью считается обязательное отсутствие какого-либо внешнего возмущения. Поэтому стандартные формулировки потеряют свою актуальность, если, например, поместить проводник в переменное магнитное поле.

Для экспериментов по выводу закона использовалась простейшая схема, состоящая из источника питания, обладающего ЭДС и подключенных к нему двух выводов, соединенных с резистором. В проводнике начинают в определенном направлении перемещаться элементарные частицы, несущие заряд. Таким образом, представляется в виде отношения ЭДС к общему сопротивлению всей цепи: I = E/R.

В представленной формуле Е - является электродвижущей силой, измеряемой в вольтах, I - сила тока в амперах, а R выступает в роли электрического сопротивления резистора, измеряемого в омах. При этом, учитываются все составляющие сопротивления и при расчетах используется их суммарное значение. Они включают сопротивление самого резистора, проводника (r) и источника питания (r0). Окончательно формула будет выглядеть так: I = E/(R+r+r0). Если значение внутреннего сопротивления источника тока r0 превышает сумму R+r, то в этом случае отсутствует зависимость силы тока от характеристик подключенной нагрузки, а источник ЭДС исполняет роль источника тока. Когда r0 ниже суммы R+r, получается обратная пропорция тока с суммарным внешним сопротивлением, а напряжение поступает за счет источника питания.

Закон Ома для выполнения расчетов

Точные расчеты требуют учета всех потерь напряжения, в том числе и в местах соединений. Для определения электродвижущей силы на выводах источника тока замеряется разность потенциалов при разомкнутой цепи, когда нагрузка полностью отключена. В этом случае применяется не только закон Ома для замкнутой цепи, но и закон, действующий . Данный участок считается однородным, поскольку здесь принимается в расчет только разность потенциалов, без учета ЭДС. Это дает возможность рассчитать каждый элемент электрической цепи по формуле I=U/R, в которой U является разностью потенциалов или напряжением, измеряемым в вольтах.

Замеры выполняются с помощью вольтметра при подключении щупов к выводам нагрузки или сопротивления. Полученное значение напряжения будет всегда ниже электродвижущей силы. Это наиболее распространенная формула, позволяющая найти любую составляющую при наличии двух известных.

Закон Ома для замкнутой цепи имеет много общего с законом, выведенным для магнитной цепи. В этой системе проводник выполнен в виде замкнутого магнитопровода. В качестве источника выступает обмотка катушки по виткам которой протекает электрический ток. Появляющийся магнитный поток (Ф) замыкается на магнитопровод и начинает циркулировать по контуру. Он находится в непосредственной зависимости от магнитодвижущей силы и сопротивления материала, через который проходит. Данное явление выражено формулой Ф=F/Rm, в которой F представляет собой магнитодвижущую силу, а Rm служит сопротивлением, вызывающим затухание.

Как рассчитать цепи

Вернёмся ещё раз к рис. 7.1. Здесь изображена замкнутая проводящая цепь. На участке цепи 1-а -2 движение носителей заряда происходит под действием только электростатической силы=q . Такие участки называютсяоднородными .

Совсем по-другому обстоят дела на участке контура 2-b -1. Здесь на заряды действует не только электростатическая, но и сторонняя сила. Полную силунайдем, сложив эти две:

.

Участок замкнутого контура, где наряду с электростатической силой действуют и сторонние силы, называют неоднородным .

Можно показать, что на однородном участке цепи средняя скорость направленного движения носителей заряда пропорциональна действующей на них силе. Для этого достаточно сравнить формулы, полученные на прошлой лекции: =
(6.3) и=(6.13).

Пропорциональность скорости силе, а плотности тока - напряжённости сохранится и в случае неоднородного участка цепи. Но теперь напряжённость поля равна сумме напряжённостей электростатического поля и поля сторонних сил
:

. (7.5)

Это уравнение закона Ома в локальной дифференциальной форме для неоднородного участка цепи.

Теперь перейдём к закону Ома для неоднородного участка цепи в интегральной форме.

Выделим двумя близкими сечениями S участокdl трубки тока (рис. 7.3.). Сопротивление этого участка:

,

а плотность тока можно связать с силой тока:

.

Рис. 7.3.

Эти два выражения используем в уравнении (7.5), спроецировав его предварительно на линию тока:

Проинтегрировав последнее уравнение по неоднородному участку 1-2, получим:

.

Произведение IR 1-2 =U - напряжение на участке 1-2;

первый интеграл справа == 1 – 2 - разность потенциалов на концах участка;

второй интеграл == 1-2 - э.д.с. источника тока.

Учтя всё это, конечный результат запишем в виде:

. (7.6)

Это закон Ома для неоднородного участка цепи в интегральной форме . Обратите внимание, что напряжение на неоднородном участке цепиU не совпадает с разностью потенциалов на его концах ( 1 – 2):

IR 1-2 =U 1-2 = ( 1 – 2) + 1-2 . (7.7)

Эти две величины равны только в случае однородного участка, где источники тока отсутствуют и  1-2 = 0. Тогда:

U 1-2 = 1 – 2 .

Для замкнутого контура уравнение закона Ома (7.6) несколько видоизменяется, так как разность потенциалов в этом случае равна нулю:

. (7.8)

В законе Ома для замкнутой цепи (7.8) R - полное сопротивление контура, складывающееся из внешнего сопротивления цепи R 0 и внутреннего сопротивления источника r :

R =R 0 +r .

    1. Правила Кирхгофа

Рассмотренные нами законы постоянного тока позволяют рассчитать токи в сложных разветвлённых электрических цепях. Эти расчёты упрощаются, если пользоваться правилами Кирхгофа.

Правил Кирхгофа два: правило токов иправило напряжений .

Правило токов относится к узлам цепи, то есть, к таким точкам схемы, где сходятся не менее трёх проводников (рис. 7.4.). Правило токов гласит: алгебраическая сумма токов в узле равняется нулю:

. (7.9)

Рис. 7.4.

При составлении соответствующего уравнения, токи, втекающие в узел, берутся со знаком плюс, а покидающие его - со знаком минус. Так, для узла А (рис. 7.3.) можно записать:

I 1 –I 2 –I 3 +I 4 –I 5 = 0.

Это первое правило Кирхгофа является следствием уравнения непрерывности (см. (6.7)) или закона сохранения электрического заряда.

Правило напряжений относится к любому замкнутому контуру разветвлённой цепи.

Выделим, например, в разветвлённой сложной цепи замкнутый элемент 1-2-3-1 (рис. 7.5.). Произвольно обозначим в ветвях контура направления токов I 1 ,I 2 ,I 3 . Для каждой ветви запишем уравнение закона Ома для неоднородного участка цепи:

Участок
.

Здесь R 1 ,R 2 ,R 3 -полное сопротивление соответствующих ветвей. Сложив эти уравнения, получим формулу второго правила Кирхгофа:

I 1 R 1 –I 2 R 2 –I 3 R 3 = 1 + 2 – 3 – 4 + 5 .

Правило напряжений формулируется так: в любом замкнутом контуре алгебраическая сумма падений напряжения равна алгебраической сумме э.д.с., встречающихся в этом контуре:

. (7.10)

Рис. 7.5.

При составлении уравнения (7.10) второго правила Кирхгофа задаются направлением обхода: в нашем примере - по часовой стрелке. Токи, совпадающие с направлением обхода, берутся со знаком плюс (I 1), токи противоположного направления - со знаком минус (–I 2 , –I 3).

Э.д.с. источника берётся со знаком плюс, если он создаёт ток, совпадающий с направлением обхода (+ 1 , + 2 , + 5). В противном случае э.д.с. отрицательна (– 3 , – 4).

В качестве примера составим уравнения правил Кирхгофа для конкретной электрической схемы - измерительного моста Уитстона (рис. 7.6.). Мост образуют четыре резистора R 1 ,R 2 ,R 3 ,R 4 . В точкахA иB к мосту подключен источник питания (,r ), а в диагоналиBD - измерительный гальванометр с сопротивлениемR g .

Рис. 7.6.

      Во всех ветвях схемы произвольно обозначим направления токовI 1 ,I 2 , I 3 , I 4 , I g , I  .

      В схеме четыре узла: точки A ,B ,C ,D . Для трёх из них составим уравнения первого правила Кирхгофа - правила токов:

точка А : I  – I 1 – I 4 = 0; (1)

точка B : I 1 – I 2 – I g = 0; (2)

точка D : I 4 + I g – I 3 = 0. (3)

      Для трёх контуров цепи ABDA ,BCDB иADC A составим уравнения второго правила Кирхгофа. Во всех контурах направление обхода по часовой стрелке.

ABDA : I 1 R 1 + I g R g – I 4 R 4 = 0; (4)

BCDB : I 2 R 2 – I 3 R 3 – I g R g = 0; (5)

ADC A : I 4 R 4 + I 3 R 3 + I r = . (6)

Таким образом, мы получили систему шести уравнений, решая которую можно найти все шесть неизвестных токов.

Но чаще мост Уитстона используется для измерения неизвестного сопротивления R x R 1 . В этом случае резисторыR 2 ,R 3 иR 4 - переменные. Меняя их сопротивления, добиваются того, чтобы ток в измерительной диагонали моста оказался равным нулюI g = 0. Это означает, что:

I 1 =I 2 см. (1),

I 3 =I 4 см.(3),

I 1 R 1 = I 4 R 4 см. (4),

I 2 R 2 = I 3 R 3 см. (5).

Учитывая эти упрощающие обстоятельства, приходим к выводу, что:

,

.

Замечательно, что для определения неизвестного сопротивления нужно знать лишь сопротивления резисторов моста R 2 ,R 3 иR 4 . Э.д.с. источника, его внутреннее сопротивление, как и сопротивление гальванометра при таком измерении не играют никакой роли.

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Валентина:

Вы спасли нашего сына от увольнения! Дело в том что недоучившись в институте, сын пошел в армию. А вернувшись, восстанавливаться не захотел. Работал без диплома. Но недавно начали увольнять всех, кто не имеет «корочки. Поэтому решили обратиться к вам и не пожалели! Теперь спокойно работает и ничего не боится! Спасибо!

Закон Ома для замкнутой цепи показывает - значение тока в реальной цепи зависит не только от сопротивления нагрузки, но и от сопротивления источника.

Формулировка закона Ома для замкнутой цепи звучит следующим образом: величина тока в замкнутой цепи, состоящей из источника тока, обладающего внутренним и внешним нагрузочным сопротивлениями, равна отношению электродвижущей силы источника к сумме внутреннего и внешнего сопротивлений.

Впервые зависимость тока от сопротивлений была экспериментально установлена и описана Георгом Омом в 1826 году.

Формула закона Ома для замкнутой цепи записывается в следующем виде:

  • I [А] – сила тока в цепи,
  • ε [В] – ЭДС источника напряжения,
  • R [Ом] – сопротивление всех внешних элементов цепи,
  • r [Ом] – внутреннее сопротивление источника напряжения

Физический смысл закона

Потребители электрического тока вместе с источником тока образуют замкнутую электрическую цепь. Ток, проходящий через потребитель, проходит и через источник тока, а значит, току кроме сопротивления проводника оказывается сопротивление самого источника. Таким образом, общее сопротивление замкнутой цепи будет складываться из сопротивления потребителя и сопротивления источника.

Физический смысл зависимости тока от ЭДС источника и сопротивления цепи заключается в том, что чем больше ЭДС, тем больше энергия носителей зарядов, а значит больше скорость их упорядоченного движения. При увеличении сопротивления цепи энергия и скорость движения носителей зарядов, следовательно, и величина тока уменьшаются.

Зависимость можно показать на опыте. Рассмотрим цепь, состоящую из источника, реостата и амперметра. После включения в цепи идет ток, наблюдаемый по амперметру, двигая ползунок реостата, увидим, что при изменении внешнего сопротивления ток будет меняться.

Примеры задач на применение закона Ома для замкнутой цепи

К источнику ЭДС 10 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 4 Ом. Найти силу тока в цепи и напряжение на зажимах источника.

При подключении к батарее гальванических элементов резистора сопротивлением 20 Ом сила тока в цепи была 1 А, а при подключении резистора сопротивлением 10 Ом сила тока стала 1,5 А. Найти ЭДС и внутреннее сопротивление батареи.