Измерение параметров спектра радиосигналов. Виды сигналов, используемых в системах радиосвязи Виды радиосигналов и их основные параметры

В качестве переносчика сообщений используются высокочастотные электромагнитные колебания (радиоволны) соответствующего диапазона, способные распространяться на большие расстояния.

Колебание несущей частоты, излучаемое передатчиком, характеризуется: амплитудой, частотой и начальной фазой. В общем случае оно представляется в виде:

i = I m sin(ω 0 t + Ψ 0) ,

где: i – мгновенное значение тока несущего колебания;

I m – амплитуда тока несущего колебания;

ω 0 – угловая частота несущего колебания;

Ψ 0 – начальная фаза несущего колебания.

Первичные сигналы (передаваемое сообщение, преобразованное в электрическую форму), управляющие работой передатчика, могут изменять один из этих параметров.

Процесс управления параметрами тока высокой частоты с помощью первичного сигнала, называется модуляцией (амплитудной, частотной, фазовой). Для телеграфных видов передач применяется термин «манипуляция».

В радиосвязи, для передачи информации, применяются радиосигналы:

радиотелеграфные;

радиотелефонные;

фототелеграфные;

телекодовые;

сложные виды сигналов.

Радиотелеграфная связь различается: по способу телеграфирования; по способу манипуляции; по применению телеграфных кодов; по способу использования радиоканала.

В зависимости от способа и скорости передачи радиотелеграфные связи делятся на ручные и автоматические. При ручной передаче манипуляция осуществляется телеграфным ключом с использованием кода МОРЗЕ. Скорость передачи (при слуховом приеме) составляет 60–100 знаков в минуту.

При автоматической передаче манипуляция осуществляется электромеханическими устройствами, а прием с помощью печатающих аппаратов. Скорость передачи 900–1200 знаков в минуту.

По способу использования радиоканала телеграфные передачи подразделяются на одноканальные и многоканальные.

По способу манипуляции к наиболее распространенным телеграфным сигналам относятся сигналы с амплитудной манипуляцией (АТ – амплитудный телеграф – А1), с частотной манипуляцией (ЧТ и ДЧТ – частотная телеграфия и двойная частотная телеграфия – F1 и F6), с относительной фазовой манипуляцией (ОФТ – фазовая телеграфия – F9).

По применению телеграфных кодов используются телеграфные системы с кодом МОРЗЕ; стартстопные системы с 5-ти и 6-ти значным кодом и другие.

Телеграфные сигналы представляют собой последовательность прямоугольных импульсов (посылок) одинаковой или различной длительности. Наименьшая по длительности посылка называется элементарной.

Основные параметры телеграфных сигналов: скорость телеграфирования (V) ; частота манипуляции (F) ;ширина спектра (2D f) .



Скорость телеграфирования V равна количеству элементарных посылок, передаваемых за одну секунду, измеряется в бодах. При скорости телеграфирования 1 бод за 1 с передается одна элементарная посылка.

Частота манипуляции F численно равна половине скорости телеграфирования V и измеряется в герцах: F= V/2 .

Амплитудно-манипулированный телеграфный сигнал имеет спектр (рис.2.2.1.1), в котором кроме несущей частоты, содержится бесконечное множество частотных составляющих, расположенных по обе стороны от нее, с интервалами равными частоте манипуляции F. На практике для уверенного воспроизведения телеграфного радиосигнала достаточно принять кроме сигнала несущей частоты по три составляющих спектра, расположенных по обе стороны от несущей. Таким образом, ширина спектра амплитудно-манипулированного телеграфного ВЧ сигнала равна 6F. Чем больше частота манипуляции, тем шире спектр ВЧ телеграфного сигнала.

Рис. 2.2.1.1. Временное и спектральное представление сигнала АТ

При частотной манипуляции ток в антенне по амплитуде не изменяется, а меняется только частота в соответствии с изменением манипулирующего сигнала. Спектр сигнала ЧТ (ДЧТ) (рис. 2.2.1.2) представляет собой как бы спектр двух (четырех) независимых амплитудно-манипулированных колебаний со своими несущими частотами. Разность между частотой «нажатия» и частотой «отжатия» называется разносом частот, обозначается ∆f и может находиться в пределах 50 – 2000 Гц (чаще всего 400 – 900 Гц). Ширина спектра сигнала ЧТ составляет 2∆f+3F.

Рис.2.2.1.2. Временное и спектральное представление сигнала ЧТ

Для повышения пропускной способности радиолинии применяются многоканальные радиотелеграфные системы. В них на одной несущей частоте радиопередатчика, можно передавать одновременно две и более телеграфные программы. Различают системы с частотным уплотнением каналов, с временным разделением каналов и комбинированные системы.

Простейшей двухканальной системой является система двойного частотного телеграфирования (ДЧТ). Сигналы, манипулированные по частоте в системе ДЧТ передаются путем изменения несущей частоты передатчика вследствие одновременного воздействия на него сигналов двух телеграфных аппаратов. При этом используется то, что сигналы двух аппаратов, работающих одновременно, могут иметь лишь четыре сочетания передаваемых посылок. При таком способе в любой момент времени излучается сигнал одной частоты, соответствующий определенному сочетанию манипулированных напряжений. В приемном устройстве имеется дешифратор, с помощью которого формируются телеграфные посылки постоянного напряжения по двум каналам. Уплотнение по частоте заключается в том, что частоты отдельных каналов размещаются на различных участках общего диапазона частот и все каналы передаются одновременно.

При временном разделении каналов радиолиния предоставляется каждому телеграфному аппарату последовательно с помощью распределителей (рис.2.2.1.3).

Рис.2.2.1.3. Многоканальная система с временным разделением каналов

Для передачи радиотелефонных сообщений применяются в основном амплитудно-модулированные и частотно-модулированные высокочастотные сигналы. Модулирующий НЧ сигнал представляет собой совокупность большого количества сигналов разных частот, расположенных в некоторой полосе. Ширина спектра стандартного НЧ телефонного сигнала, как правило, занимает полосу 0,3–3,4 кГц.

Основные параметры радиосигнала. Модуляция

§ Мощность сигнала

§ Удельная энергия сигнала

§ Длительность сигнала T определяет интервал времени, в течение которого сигнал существует (отличен от нуля);

§ Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:

§ Ширина спектра сигнала F - полоса частот, в пределах которой сосредоточена основная энергия сигнала;

§ База сигнала есть произведение длительности сигнала на ширину его спектра . Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: чем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;

§ Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума (S/N или SNR);

§ Объём передаваемой информации характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон

§ Энергетическая эффективность (потенциальная помехоустойчивость) характеризует достоверность передаваемых данных при воздействии на сигнал аддитивного белого гауссовского шума, при условии, что последовательность символов восстановлена идеальным демодулятором. Определяется минимальным отношением сигнал/шум (E b /N 0), которое необходимо для передачи данных через канал с вероятностью ошибки, не превышающей заданную. Энергетическая эффективность определяет минимальную мощность передатчика, необходимую для приемлемой работы. Характеристикой метода модуляции является кривая энергетической эффективности - зависимость вероятности ошибки идеального демодулятора от отношения сигнал/шум (E b /N 0).

§ Спектральная эффективность - отношение скорости передачи данных к используемой полосе пропускания радиоканала.

    • AMPS: 0,83
    • NMT: 0,46
    • GSM: 1,35

§ Устойчивость к воздействиям канала передачи характеризует достоверность передаваемых данных при воздействии на сигнал специфичных искажений: замирания вследствие многолучевого распространения, ограничение полосы, сосредоточенные по частоте или времени помехи, эффект Доплера и др.

§ Требования к линейности усилителей. Для усиления сигналов с некоторыми видами модуляции могут быть использованы нелинейные усилители класса C, что позволяет существенно снизить энергопотребление передатчика, при этом уровень внеполосного излучения не превышает допустимые пределы. Данный фактор особенно важен для систем подвижной связи.

Модуля́ция (лат. modulatio - размеренность, ритмичность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).



Передаваемая информация заложена в управляющем (модулирующем) сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим. Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую.

В результате модуляции спектр низкочастотного управляющего сигнала переносится в область высоких частот. Это позволяет при организации вещания настроить функционирование всех приёмо-передающих устройств на разных частотах с тем, чтобы они «не мешали» друг другу.

В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.

Сигнал - физический процесс, отображающий сообщение. В технических системах чаще всего используются электрические сигналы. Сигналы, как правило, являются функциями времени.

1. Классификация сигналов

Сигналы можно классифицировать по различным признакам:

1. Непрерывные ( аналоговые) - сигналы, которые описываются непрерывными функциями времени, т.е. принимают непрерывное множество значений на интервале определения. Дискретные - описываются дискретными функциями времени т.е. принимают конечное множество значений на интервале определения.

Детерминированные - сигналы, которые описываются детерминированными функциями времени, т.е. значения которых определены в любой момент времени. Случайные - описываются случайными функциями времени, т.е. значения которых в любой момент времени является случайной величиной. Случайные процессы (СП) можно классифицировать на стационарные, нестационарные, эргодические и неэргодические, а так же, гауссовы, марковские и т.д.

3. Периодические - сигналы, значения которых повторяются через интервал, равный периоду

х (t) = х (t+nT), где n = 1,2,...,¥; T - период.

4. Kаузальные - сигналы, имеющие начало во времени.

5. Финитные - сигналы конечной длительности и равные нулю вне интервала определения.

6. Когерентные - сигналы, совпадающие во всех точках определения.

7. Ортогональные - сигналы противоположные когерентным.

2. Характеристики сигналов

1. Длительность сигнала ( время передачи) Т с - интервал времени, в течении которого существует сигнал.

2. Ширина спектра F c - диапазон частот, в пределах которых сосредоточена основная мощность сигнала.

3. База сигнала - произведение ширины спектра сигнала на его длительность.

4. Динамический диапазон D c - логарифм отношения максимальной мощности сигнала - P max к минимальной - P min (минимально-различи-мая на уровне помех):

D c = log (P max /P min).

В выражениях, где может быть использованы логарифмы с любым основанием, основание логарифма не указывается.

Как правило, основание логарифма определяет единицу измерения (например: десятичный - [Бел], натуральный - [Непер]).

5. Объем сигнала определяется соотношениемV c = T c F c D c .

6. Энергетические характеристики: мгновенная мощность - P (t); средняя мощность - P ср и энергия - E. Эти характеристики определяются соотношениями:

P (t) = x 2 (t); ; (1)

где T = t max - t min .

3. Математические модели случайных сигнлов

Детерминированное, т.е. заранее известное сообщение, не содержит информации, т.к получателю заранее известно, каким будет переда-ваемый сигнал. Поэтому сигналы носят статистический характер .

Случайный (стохастический, вероятностный) процесс - процесс, который описывается случайными функциями времени.

Случайный процесс Х (t) может быть представлен ансамблем неслучайных функций времени x i (t), называемых реализациями или выборками (см. рис.1).


Рис.1. Реализации случайного процесса X (t)

Полной статистической характеристикой случайного процесса является n - мерная функция распределения: F n (x 1 , x 2 ,..., x n ; t 1 , t 2 ,..., t n), или плотность вероятности f n (x 1 , x 2 ,..., x n ; t 1 , t 2 ,..., t n).

Использование многомерных законов связанно с определенными трудностями,

поэтому часто ограничиваются использованием одномерных законов f 1 (x, t), характеризующих статистические характеристики случайного процесса в отдельные моменты времени, называемые сечениями случайного процесса или двумерных f 2 (x 1 , x 2 ; t 1 , t 2), характеризующих не только статистические характеристики отдельных сечений, но и их статистическую взаимосвязь.

Законы распределения являются исчерпывающими характеристиками случайного процесса, но случайные процессы могут быть достаточно полно охарактеризованы и с помощью, так называемых, числовых характеристик (начальных, центральных и смешанных моментов). При этом наиболее часто используются следующие характеристики: математическое ожидание (начальный момент первого порядка)

; (2)

средний квадрат (начальный момент второго порядка)

; (3)

дисперсия (центральный момент второго порядка)

; (4)

корреляционная функция, которая равна корреляционному моменту соответствующих сечений случайного процесса

. (5)

При этом справедливо следующее соотношение:

(6)

Стационарные процессы - процессы, в которых числовые характеристики не зависят от времени.

Эргодические процессы - процесс, в которых результаты усреднения и по множеству совпадают.

Гауссовы процессы - процессы с нормальным законом распределения:

(7)

Этот закон играет исключительно важную роль в теории передачи сигналов, т.к большинство помех являются нормальными.

В соответствии с центральной предельной теоремой большинство случайных процессов являются гауссовыми.

Марковский процесс - случайный процесс, у которых вероятность каждого последующего значения определяется только одним предыдущим значением.

4. Формы аналитического описания сигналов

Сигналы могут быть представлены во временной, операторной или частотной области, связь между которыми определяется с помощью преобразований Фурье и Лапласа (см. рис.2).

Преобразование Лапласа:

L -1: (8)

Преобразования Фурье:

F -1: (9)

Рис.2 Области представления сигналов

При этом могут быть использованы различные формы представления сигналов с виде функций, векторов, матриц, геометрическое и т.д.

При описании случайных процессов во временной области используется, так называемая, корреляционная теория случайных процессов, а при описании в частотной области - спектральная теория случайных процессов.

С учетом четности функций

и и в соответствии с формулами Эйлера: (10)

можно записать выражения для корреляционной функции R x (t) и энергетического спектра (спектральной плотности) случайного процесса S x (w), которые связанны преобразованием Фурье или формулами Винера - Хинчина

; (11) . (12)

5. Геометрическое представление сигналов и их характеристик

Любые n - чисел можно представить в виде точки (вектора) в n -мерном пространстве, удаленной от начала координат на расстоянии D ,

где . ( 13)

Сигнал длительностью T с и шириной спектра F с , в соответствии с теоремой Котельникова определяется N отсчетами, где N = 2F c T c .

Этот сигнал может быть представлен точкой в n - мерном пространстве или вектором, соединяющим эту точку с началом координат .

Длина этого вектора (норма) равна:

; (14)

где x i =x (n Dt) - значение сигнала в момент времени t = n. Dt.

Допустим: X - передаваемое сообщение, а Y - принимаемое. При этом они могут быть представлены векторами (рис.3).

X1 , Y1

0 a 1 a 2 x1 y1

Рис.3. Геометрическое представление сигналов

Определим связи между геометрическим и физическим представлением сигналов. Для угла между векторами X и Y можно записать

cos g = cos (a 1 - a 2) = cos a 1 cos a 2 + sin a 1 sin a 2 =

Министерство общего и профессионального образования Российской Федерации

УГТУ-УПИ имени С.М. Кирова

Теоретические основы радиотехники

АНАЛИЗ РАДИОСИГНАЛОВ И РАСЧЕТ ХАРАКТЕРИСТИК ОПТИМАЛЬНЫХ СОГЛАСОВАННЫХ ФИЛЬТРОВ

КУРСОВОй ПРОЕКТ

ЕКАТЕРИНБУРГ 2001 год

Введение

Расчёт акф заданного сигнала

Заключение

Перечень условных обозначений

Библиографический список

Реферат

Информация ценилась всегда, а с развитием человечества информации становится все больше и больше. Информационные потоки превратились в огромные реки.

В связи с этим возникло несколько проблем передачи информации.

Информацию всегда ценили за ее достоверность и полноту поэтому ведется борьба за передачу ее без потерь и искажения. С еще одной проблемой при выборе оптимального сигнала.

Все это переносится и на радиотехнику где разрабатываются приемные передающее и обрабатывающие эти сигналы. Скорость и сложность предаваемых сигналов постоянно усложняется оборудование.

Для получения и закрепления знаний по обработке простейших сигналов в учебном курсе есть практическое задание.

В данной курсовой работе рассматривается прямоугольная когерентная пачка, состоящая из N трапецеидальных (длительность вершины равна одной третьей длительности основания) радиоимпульсов, где:

а) несущая частота,1,11МГц

б) длительность импульса (длительность основания),15мкс

в) частота следования,11.2 кГц

г) число импульсов в пачке,9

Для заданного типа сигнала необходимо произвести (привести):

Расчёт АКФ

Расчет спектра амплитуд и энергетического спектра

Расчет импульсной характеристики, согласованного фильтра

Спектральная плотность - есть коэффициент пропорциональности между длиной малого интервала частот D f и отвечающей ему комплексной амплитудой гармонического сигнала D A с частотой f 0.

Спектральное представление сигналов открывает прямой путь к анализу прохождению сигналов через широкий класс радиотехнических цепей, устройств и систем.

Энергетический спектр полезен для получения различных инженерных оценок, устанавливающих реальную ширину спектра того или иного сигнала. Для количественного определения степени отличия сигнала U (t) и его смещенной во времени копии U (t- t) принято вводить АКФ.

Зафиксируем произвольный момент времени и постараемся так выбрать функцию , чтобы величина достигала максимально возможного значения. Если такая функция действительно существует, то отвечающий ей линейный фильтр называют согласованным фильтром.

Введение

Курсовая работа по заключительной части предмета "Теория радиотехнических сигналов и цепей" охватывает разделы курса, посвященного основам теории сигналов и их оптимальной линейной фильтрации.

Целями работы являются:

изучение временных и спектральных характеристик импульсных радиосигналов, применяемых в радиолокации, радионавигации, радио телеметрии и смежных областях;

приобретение навыков по расчету и анализу корреляционных и спектральных характеристик детерминированных сигналов (автокорреляционных функций, спектров амплитуд и энергетических спектров).

В курсовой работе для заданного типа сигнала необходимо произвести:

Расчет АКФ.

Расчет спектра амплитуд и энергетического спектра.

Импульсной характеристики согласованного фильтра.

В данной курсовой работе рассматривается прямоугольная когерентная пачка трапецеидальных радиоимпульсов.

Параметры сигнала:

несущая частота (частота радиозаполнения),1,11 МГц

длительность импульсов, (длительность основания) 15 мкс

частота следования,11,2 кГц

число импульсов в пачке,9

Автокорреляционная функция (АКФ) сигнала U (t) служит для количественного определения степени отличия сигнала U (t) и его смещённой во времени копии (0.1) и при t = 0 АКФ становится равной энергии сигнала. АКФ обладает простейшими свойствами:

свойство чётности:

Т.е. K U (t ) =K U (- t ).

при любом значении временного сдвига t модуль АКФ не превосходитэнергии сигнала: ½K U (t ) ½£K U (0 ), что вытекает из неравенства Коши - Буняковского.

Итак, АКФ представляется симметричной кривой с центральным максимумом, который всегда положителен, а в нашем случае АКФ имеет ещё и колебательный характер. Необходимо отметить, что АКФ имеет связь с энергетическим спектром сигнала: ; (0.2) где ½G (w ) ½ квадрат модуля спектральной плотности. Поэтому можно оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Чем шире полоса частот сигнала, тем уже основной лепесток автокорреляционной функции и тем совершеннее сигнал с точки зрения возможности точного измерения момента его начала.

Часто удобнее вначале получить автокорреляционую функцию, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Энергетический спектр - представляет собой зависимость ½G (w ) ½ от частоты.

Согласованные же с сигналом фильтры обладают следующими свойствами:

Сигнал на выходе согласованного фильтра и функция корреляции выходного шума имеют вид автокорреляционной функции полезного входного сигнала.

Среди всех линейных фильтров согласованный фильтр даёт на выходе максимальное отношение пикового значения сигнала к среднеквадратичному значению шума.

Расчёт акф заданного сигнала

Рис.1. Прямоугольная когерентная пачка трапецеидальных радиоимпульсов

В нашем случае сигнал представляет собой прямоугольную пачку трапецеидальных (длительность вершины равна одной третьей длительности основания) радиоимпульсов (см. рис 1) в которой число импульсов N=9, а длительность импульса T i =15 мкс.

Рис.2. Сдвиг копии огибающей сигнала

S3(t)
S2(t)
S1(t)
Период следования импульсов в пачке T ip » 89,286 мкс., поэтому скважность q = T ip /T i = 5,952. Для расчёта АКФ воспользуемся формулой (0.1) и графическим представлением смещённой по времени копии сигнала на примере одного трапецеидального импульса (огибающей). Для этого обратимся к рисунку 2. Для расчёта главного лепестка АКФ огибающей сигнала (трапеции) рассмотрим три промежутка:

Для величины сдвига T принадлежащего промежутку от нуля до одной третьей длительности импульса необходимо решить интеграл:

Решая этот интеграл, получаем выражение для главного лепестка АКФ данного сдвига копии огибающей сигнала:

Для T принадлежащего промежутку от одной третьей до двух третьих длительности импульса получаем следующий интеграл:

Решая его, получаем:

Для Т, принадлежащего промежутку от двух третьих длительности импульса до длительности импульса интеграл, имеет вид:

Поэтому в результате решения имеем:

С учётом свойства симметрии (чётности) АКФ (смотрите введение) и соотношения, связывающего АКФ радиосигнала и АКФ его комплексной огибающей: имеем функции для главного лепестка АКФ огибающей ko (T) радиоимпульса и АКФ радиоимпульса Ks (T):

в которых, входящие функции, имеют вид:

Таким образом, на рисунке 3 изображён главный лепесток АКФ радиоимпульса и его огибающей, т.е. когда в результате сдвига копии сигнала, когда участвуют все 9 импульсов пачки, т.е. N = 9.

Видно, что АКФ радиоимпульса имеет колебательный характер, но в центре обязательно максимум. При дальнейшем сдвиге число пересекающихся импульсов сигнала и его копии будет уменьшаться на единицу, а, следовательно, и амплитуда через каждый период следования T ip = 89,286 мкс.

Поэтому, окончательно АКФ будут иметь вид как на рисунке 4 ( 16 лепестков, отличающихся от главного только амплитудами) с учётом того, что на этом рисунке Т=T ip .:

Рис. 3. АКФ главного лепестка радиоимпульса и его огибающей

Рис. 4. АКФ Прямоугольной когерентной пачки трапецеидальных радиоимпульсов

Рис. 5. Огибающая пачки радиоимпульсов.

Расчёт спектральной плотности и энергетического спектра

Для расчёта спектральной плотности воспользуемся, как и при расчётах АКФ, функциями огибающей радиосигнала (смотрите рис.2), которые имеют вид:

и преобразованием Фурье для получения спектральных функций, которые с учётом пределов интегрирования для n-го импульса будут рассчитываться по формулам:

для огибающей радиоимпульса и:

для радиоимпульса соответственно.

График этой функции представлен на (рис.5).

на рисунке для наглядности рассмотрен разный частотный диапазон

Рис. 6. Спектральная плотность огибающей радиосигнала.

Как и ожидалось, главный максимум расположен в центре, т.е. при частоте w =0.

Энергетический же спектр равен квадрату спектральной плотности и поэтому график спектра имеет вид как на (рис 6) т.е. очень похож на график спектральной плотности:

Рис. 7. Энергетический спектр огибающей радиосигнала.

Вид спектральной плотности для радиосигнала будет иной, поскольку вместо одного максимума при w = 0 будет наблюдаться два максимума при w = ±wо, т.е. спектр видеоимпульса (огибающей радиосигнала) переносится в область высоких частот с уменьшением вдвое абсолютного значения максимумов (см. рис.7). Вид энергетического же спектра радиосигнала будет так же очень похож на вид спектральной плотности радиосигнала, т.е. тоже будет осуществлён перенос спектра в область высоких частот и так же будет наблюдаться два максимума (см. рис.8).

Рис. 8. Спектральная плотность пачки радиоимпульсов.

Расчёт импульсной реакции и рекомендации к построению согласованного фильтра

Как известно, наряду с полезным сигналом, зачастую присутствуют шумы и поэтому при слабом полезном сигнале иногда трудно определить есть полезный сигнал или нет.

Для приёма сигнала сдвинутого во времени на фоне белого гауссовского шума (белый гауссовский шум "БГС" имеет равномерную плотность распределения) n (t) т.е. y (t) = + n (t), отношение правдоподобия при приёме сигнала известной формы имеет вид:

где No - спектральная плотность шума.

Поэтому приходим к выводу, что оптимальная обработка принимаемых данных - суть корреляционный интеграл

Полученная функция представляет собой ту существенную операцию, которую следует выполнить над наблюдаемым сигналом с тем, чтобы оптимальным (с позиции критерия минимума среднего риска) образом принять решение о наличии или отсутствии полезного сигнала.

Не вызывает сомнений тот факт, что данная операция может быть реализована линейным фильтром.

Действительно, сигнал на выходе фильтра с импульсной характеристикой g (t) имеет вид:

Как видно, при выполнении условия g (r-x) = K ×S (r- t) эти выражения эквивалентны и тогда после замены t = r-x получаем:

где К - постоянная, а to - фиксированное время, при котором наблюдается выходной сигнал.

Фильтр с такой импульсной характеристикой g (t) ( смотрите выше) называется согласованным.

Для того чтобы определить импульсную характеристику необходимо сигнал S (t) сместить на влево, т.е. получим функцию S (tо + t), а функцию S (tо - t) получить путём зеркального отображения сигнала относительно оси координат, т.е. импульсная характеристика согласованного фильтра будет равна входному сигналу, и при этом получаем на выходе согласованного фильтра максимальное отношение "сигнал-шум".



При нашем входном сигнале для построения такого фильтра необходимо сначала создать звено формирования одного трапецеидального импульса схема, которого изображена на (рис.9).

Рис. 10. Звено формирования радиоимпульса с заданной огибающей.

На вход звена формирования радиоимпульса с заданной огибающей (см. рис.9), подаётся сигнал огибающей радиосигнала (в нашем случае трапеция).

В колебательном звене формируется гармонический сигнал с несущей частотой wо (в нашем случае 1,11МГц), поэтому на выходе этого звена имеем гармонический сигнал с частотой wо.

С выхода колебательного звена сигнал подаётся на сумматор и на звено линии задержки сигнала на Ti (в нашем случае Ti =15 мкс), а с выхода звена задержки сигнал подаётся на фазовращатель (он нужен для того чтобы после окончания импульса отсутствовал радиосигнал на выходе сумматора).

После фазовращателя сигнал тоже подаётся на сумматор. На выходе сумматора, наконец, имеем трапецеидальные радиоимпульсы с частотой радиозаполнения wо т.е. сигнал g (t).



Поскольку нам необходимо получить когерентную пачку из 9 трапецеидальных видеоимпульсов то необходимо сигнал g (t) подать на звено формирования такой пачки схема, которой имеет вид как на (рис 10):

Рис. 11. Звено формирования когерентной пачки.

На вход звена формирования когерентной пачки подаётся сигнал g (t), который представляет собой трапецеидальный радиоимпульс (или последовательность трапецеидальных радиоимпульсов).

Далее сигнал идёт на сумматор и на блок задержки, в котором реализуется задержка входного сигнала на период следования импульсов в пачке Tip умноженный на номер импульса минус единица, т.е. (N-1), а с выходабока задержки снова на сумматор.

Таким образом, на выходе звена формирования когерентной пачки (т.е. на выходе сумматора) имеем прямоугольную когерентную пачку трапецеидальных радиоимпульсов, что и требовалось реализовать.

Заключение

В ходе работы были проведены соответствующие расчеты и построены графики по ним можно судить о сложности обработки сигналов. Для упрощения математический расчет проводился пакетах MathCAD 7.0 и MathCAD 8.0. Данная работа является необходимой частью учебного курса, чтобы студенты имели представления об особенностях применении различных импульсных радиосигналов в радиолокации, радионавигации и радио телеметрии, а также могли спроектировать оптимальный фильтр тем самым, внеся свой скромный вклад в “борьбе" за информацию.

Перечень условных обозначений

- частота радиозаполнения;

w - частота

Т, ( t) - временной сдвиг;

Тi - длительность радиоимпульса;

Tip - период следования радиоимпульсов в пачке;

N - число радиоимпульсов в пачке;

t - время;

Библиографический список

1. Баскаков С.И. "Радиотехнические цепи и сигналы: Учебник для вузов по спец. "Радиотехника"". - 2-е изд., перераб. и доп. - М.: Высш. шк., 1988 - 448 с.: ил.

2. "АНАЛИЗ РАДИОСИГНАЛОВ И РАСЧЁТ ХАРАКТЕРИСТИК ОПТИМАЛЬНЫХ СОГЛАСОВАННЫХ ФИЛЬТРОВ: Методические указания к курсовой работе по курсу "Теория радиотехнических сигналов и цепей""/ Киберниченко В.Г., Дороинский Л.Г., Свердловск: УПИ 1992.40 с.

3. "Усилительные устройства": Учеб: пособие для вузов. - М.: Радио и связь, 1989. - 400 с.: ил.

4. Букингем М. "Шумы в электронных приборах и системах"/ Пер. с англ. - М.: Мир, 1986

2.1.1. Детерминированные и случайные сигналы

Детерминированный сигнал – это сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью равной единице.

Примером детерминированного сигнала (рис.10) могут быть: последовательности импульсов (форма, амплитуда и положение во времени которых известны), непрерывные сигналы с заданными амплитудно-фазовыми соотношениями.

Способы задания ММ сигнала: аналитическое выражение (формула), осциллограмма, спектральное представление.

Пример ММ детерминированного сигнала.

s(t)=S m ·Sin(w 0 t+j 0)

Случайный сигнал – сигнал, мгновенное значение которого в любой момент времени заранее неизвестно, а может быть предсказано с некоторой вероятностью, меньше единицы.

Примером случайного сигнала (рис. 11) может быть напряжение, соответствующее человеческой речи, музыке; последовательность радиоимпульсов на входе радиолокационного приемника; помехи, шумы.

2.1.2. Сигналы, применяемые в радиоэлектронике

Непрерывные по величине (уровню) и непрерывные по времени (непрерывные или аналоговые) сигналы – принимают любые значения s(t) и существуют в любой момент в заданном временном интервале (рис. 12).

Непрерывные по величине и дискретные по времени сигналы заданы при дискретных значениях времени (на счетном множестве точек), величина сигнала s(t) в этих точках принимает любое значение в определенном интервале по оси ординат.

Термин «дискретный» характеризует способ задания сигнала на оси времени (рис. 13).

Квантованные по величине и непрерывные по времени сигналы заданы на всей временной оси, но величина s(t) может принимать лишь дискретные (квантованные) значения (рис. 14).

Квантованные по величине и дискретные по времени (цифровые) сигналы – передаются значения уровней сигнала в цифровой форме (рис. 15).

2.1.3. Импульсные сигналы

Импульс – колебание, существующее лишь в пределах конечного отрезка времени. На рис. 16 и 17 представлены видеоимпульс и радиоимпульс.

Для трапециидального видеоимпульса вводят параметры:

А – амплитуда;

t и – длительность видеоимпульса;

t ф – длительность фронта;

t ср – длительность среза.

S р (t)=S в (t)Sin(w 0 t+j 0)

S в (t) – видеоимпульс – огибающая для радиоимпульса.

Sin(w 0 t+j 0) – заполнение радиоимпульса.

2.1.4. Специальные сигналы

Функция включения (единичная функция (рис. 18) или функция Хевисайда) описывает процесс перехода некоторого физического объекта из «нулевого» в «единичное» состояние, причем этот переход совершается мгновенно.

Дельта-функция (Функция Дирака) является импульсом, длительность которого стремится к нулю, при этом высота импульса неограниченно возрастает. Принято говорить, что функция сосредоточена в этой точке.

(2)
(3)