Каналы в Фотошопе. Цвет, свет и RGB

Знаете ли вы, что Photoshop дальтоник?
Когда я говорю «дальтоник», я не имею в виду небольшие проблемы с восприятием оттенков зеленого и пурпурного. Я имею в виду, что он совершенно не различает цвета. Все, что видит Photoshop –это черные и белые цвета. Черный, белый и множество промежуточных оттенков серого. Самый мощный графический редактор в мире, промышленный стандарт среди фотографов, дизайнеров и практически всех творческих профессионалов, способный производить миллионы и даже миллиарды цветов, не имеет представления, что такое цвет.

Вы можете разглядывать свое фото кристально голубой воды океана, которое сделали во время последнего отдыха, но Photoshop видит его как серый океан. Удавалось ли вам заснять радугу, пересекающую небо после вечернего летнего урагана? Photoshop видит ее, как красивый набор оттенков серого цвета. А что же по поводу знаменитого горшка с золотом? Для Photoshop это всего лишь большой горшок чего-то серого.
Не сочувствуйте Photoshop’у. Он абсолютно счастлив в своем бесцветном мире.

Фактически, единственная причина, по которой Photoshop показывает нам изображение в цвете, заключается в том, что сами люди ожидают увидеть их в цвете. Мы не знали бы, что и думать, если бы все отображалось в черно-белых тонах. Но только не Photoshop. Для него нет ничего дороже, чем черный, белый и серые цвета.

Итак, Photoshop не имеет представления о том, что за цвет перед ним, и все, что он знает и видит – это черный, белый и серый цвета, как же он показывает нам изображения в цвете? Я имею в виду вот это изображение, которое открыто в Photoshop:

Фото, открытое в окне документа Photoshop.

Очевидно, что этот мальчик (или девочка) цветной. Ну, действительно, я не думаю, что есть более красочные птицы, чем эта. Но здесь не только птица. Листья на фоне цветные. Кусочек дерева, на котором сидит птица тоже в цвете. Все, что на изображении – цветное! И это изображение открыто в Photoshop, так как же такое может быть, если Photoshop не различает цвета? И если он действительно не видит цвета, как Photoshop проделывает такую большую работу, показывая нам что-то, что он не видит?

Для ответа на этот вопрос нам необходимо рассмотреть две вещи. Первая – цветовые режимы (color mode ) и вторая – цветовые каналы (channels ). Обе очень взаимосвязаны между собой, если вы понимаете цветовые режимы (color mode ), то цветовые каналы (color channels ) станут для вас также понятнее.

Мы знаем, или, по крайней мере, согласились с тем фактом, что Photoshop не видит цвета. Все, что он видит – черный, белый и серый. Так как же он берет эти черные, белые и серые цвета, превращая их в цветные, которые мы видим на нашем экране? Ответ – зависимость. Зависимость от чего, спросите вы? Это зависимость от цветового режима (color mode ), который использует Photoshop.

Существует совсем немного цветовых режимов в Photoshop, но два основных – это RGB и CMYK. Пару других, вы могли слышать в процессе работы с Photoshop, это Grayscale (Градации серого) и Lab (произносится, как «эл – эй –би», но не «Лэб»). Это все примеры цветовых режимов, и они определяют, как Photoshop переводит свою черно-белую информацию в цвет, за исключением цветового режима Grayscale (Градации серого ), который не использует цвета. Это строго черно-белый режим, и довольно часто он используется для быстрой конвертации цветного изображения в черно-белое.

Из всех четырех режимов, которые я назвал, единственный, который мы рассмотрим – RGB. Режим CMYK подходит для печати и публикаций, мы вернемся к нему как-нибудь в другой раз. Режим Grayscale (Градации серого), как я уже сказал, используется строго для черно-белых изображений, а режим Lab не понятен для большинства людей, живущих на этой планете, равно как и живущих на других планетах, хотя он часто используется при профессиональном редактировании изображений, но даже те люди, которые его используют, не имеют полного представления о том, как он работает. Что оставляет нам только RGB.

Безусловно, наиболее широко используемый в мире цветовой режим компьютеров и технологий – это цветовой режим RGB. Photoshop использует его, другие программы на вашем компьютере также его используют, ваш монитор, цифровая камера и сканер, ваш телевизор, и даже маленький экран вашего мобильного или iPod’a используют данный режим, равно как и портативные игровые системы вроде PSP Sony или Nintendo DS. Если это девайс, который как-то отображает или создает изображения, или программное обеспечение для редактирования изображений, подобное Photoshop, оно использует цветовой режим RGB. Звучит достаточно громко, не так ли? И, конечно же, это так. Для всего он имеет довольно широкое значение и важность, RGB является аббревиатурой трех цветов – красного (red), зеленого (green) и синего (blue).

RGB и цветовые каналы: цветной мир красного, зеленого и синего.
Что же такого необычного в этих трех цветах – красном, зеленом и синем? Да, в общем-то, только то, что они являются основными цветами. Что это значит? Это значит, что каждый цвет, который мы с вами можем видеть, создается из некоторых комбинаций красного, зеленого и синего. Как мы получаем желтый? Путем смешивания красного и зеленого. Как мы получаем фиолетовый? Путем смешивания красного и синего. А как насчет оранжевого? 100% красного и 50% зеленого. И это только простые примеры. Каждый отдельный цвет, который мы видим, создается с помощью комбинации этих трех цветов. Знаю, это звучит практически нереально, но это действительно так.
Когда вы смешаете самые яркие варианты этих цветов между собой, то получите чисто белый цвет. Когда вы полностью удалите все эти три цвета, то получите чисто черный. А когда вы смешаете равное количество в процентном соотношении от 0 до 100%, вы получите оттенки серого.
Давайте снова посмотрим на наше изображение с птицей:

В самом деле, очень красочное изображение, но откуда появляются все эти цвета? Объясню для начинающих, давайте посмотрим на информацию, которая сообщается нам в верхней части окна документа Photoshop:

Информация в верхней части окна документа.

Тем, что я отметил красным кружком, Photoshop объясняет нам, что изображение используется в цветовом режиме RGB, который означает, что каждый цвет, который мы видим на фото, создан из некоторых комбинаций красного, зеленого и синего. Если вы хотите убедиться в этом, все, что нужно – навести курсор мыши на любую часть изображения и посмотреть на Панель информации (Info ) в Photoshop.
Я наведу курсор мыши на кончик клюва в районе ярко-красного участка.

Наведение курсора мыши на кончик клюва птицы.

Давайте обратимся к панели Информации (Info) в Photoshop, чтобы посмотреть, что он нам говорит об этой точке в изображении:

Панель Информации (Info) Photoshop.

Часть, которая нас интересует в панели Информации (Info) Photoshop, расположена вверху слева, она показывает нам значения RGB. Единственное, что вы должны понимать, так это то, что Photoshop не отображает цвета RGB в процентном соотношении, то есть мы не увидим значения типа «10% красного (red), 40% зеленого (green) и 50% синего (blue)». Вместо этого RGB имеет значения от 0 до 255, где 0 означает полное отсутствие указанного цвета в изображении, а 255 указывает на то, что используется полноценный цвет.

Таким образом, если мы посмотрим на участок, который я выделил, мы увидим, что точка содержит значения 216 для красного (red) (очень большое значение), 59 зеленого (green) (довольно маленькое значение) и 1 синего (blue) (мог бы быть и 0), что означает, что в данной точке практически отсутствует синий цвет, и очень маленькое количество зеленого. Подавляющее большинство цвета идет от красного, что, в общем-то, естественно, поскольку клюв птицы определенно имеет красный цвет.
Посмотрим на другую точку. Я навожу курсор мыши на участок в районе спины птицы:

Наведение курсора мыши на точку в области спины птицы.

Этот участок выглядит для меня достаточно зеленым, и если мы посмотрим, что говорит нам панель Информации (Info):

Панель Информации (Info) Photoshop, показывающая нам значения RGB для участка изображения.

То мы убедимся, что зеленый (green) – доминирующий цвет, имеющий значение 180. Красный (red) имеет значение всего 20, что является очень маленьким значением, а синий (blue) даже меньше 16.
Давайте проделаем это еще раз. Я наведу курсор мыши где-нибудь в районе головы птицы:

Наведение курсора мыши на точку в районе головы птицы.

На этот раз синий должен иметь более высокое значение в панели Информации (Info):

Панель Информации (Info) Photoshop, показывающая информацию RGB для точки, выбранной на голове птицы .

И снова убедились, что на этот раз синий (blue) цвет имеет преобладающее значение 208 и является доминирующим цветом. Конечно, голова птицы не чисто синяя. Она больше пурпурно-синяя, что объясняет, почему зеленый (green) имеет большое значение 100, и даже красный (red) имеет достаточно большое значение 90. Все три цвета смешались между собой на экране, чтобы образовать пурпурно-синий цвет, который мы видим.

Я мог бы продолжать наводить курсор мыши на любую точку на фото (я не хочу, но мог бы), и мы могли бы наблюдать, как изменяются значения красного (red), зеленого (green) и синего (blue) в панели Информации (Info), поскольку каждый отдельно взятый цвет на изображении состоит из определенной комбинации этих трех цветов.
Вот так работает режим RGB. Повторим, RGB, означает не что иное, как Красный (R ed), Зеленый (G reen) и Синий (B lue), и поскольку это изображение находится в режиме RGB, Photoshop представляет каждый цвет с помощью комбинаций красного, зеленого и синего.
Следующее, что мы рассмотрим во второй части изображения – цветовые каналы (color channel).

На данный момент мы выяснили, что Photoshop не видит цвета. Все в мире Photoshop создано из черного, белого и некоторых оттенков серого. Мы также узнали, что Photoshop использует цветовой режим RGB для отображения цветов на экране путем смешивания различных комбинаций красного (red), зеленого (green) и синего (blue). Но как Photoshop узнает, сколько красного, зеленого и синего нужно смешать, чтобы получить отдельный цвет на экране, когда он не знает, какой именно цвет должен быть? Я имею ввиду, что здорово, что Photoshop может отображать чисто желтый путем смешивания полноцветного красного (red) со значением 255, а также зеленого (green) с таким же значением, но как он узнает, что отображать нужно именно желтый?
Ответ – никак. Как, никак?

А вот так. Photoshop не знает, что вы ожидаете увидеть желтый цвет в определенной части изображения. Он знает только, что он отображается при красном (red) со значением 255 и зеленом (green) со значением 255, и исключает при этом синий (blue). Если это сочетание создаст точно такой цвет, который вы и я называем «желтым», то это здорово, но Photoshop при этом не остается в стороне. Все, что он знает – «отображать красный (red) со значением 255, зеленый (green) – 255 и синий (blue) 0 в определенном пикселе». Во время добавления различных цветов к изображениям, Photoshop является художником, «раскрашивающим цифрами».

Итак, поскольку Photoshop добавляет определенное количество красного (red), зеленого (green) и синего (blue). Откуда он знает, сколько каждого цвета нужно добавить, когда все, что он понимает это черный, белый и серый? Два слова… Цветовые каналы (Color Channels).
Давайте снова посмотрим на изображение с птицей:

Так мы видим с вами это изображение. Вот так его видит Photoshop:

Но, погодите. Также он видит его так:

Но как он видит его в двух различных черно-белых вариантах? Хороший вопрос. Ответ – никак. Он видит его в трех различных черно-белых вариантах. Вот еще третий:

Все, что мы видим в одном цветном изображении, Photoshop видит в трех отдельных черно-белых изображениях. Каждое из этих изображений представляет цветовой канал. Первый представляет красный канал, второй – зеленый, а третий – синий. Три отдельных канала для трех различных цветов, совмещенные вместе создадут полноцветное изображение.

Рассматривайте цветовые каналы, как цветовые фильтры. В то время как Photoshop отображает цветное изображение на экране, он знает, какие цвета отображать благодаря яркости света, проходящего через фильтры. Сначала он подсвечивает через красный фильтр (красный канал). Если свет не проходит через фильтр, Photoshop знает, что отображать красный необходимо со значением 0. Если весь свет проходит через фильтр, то Photoshop в полной мере отображает красный цвет со значением 255. Если количество света, проходящего через фильтры немного меньше, Photoshop отображает красный цвет со значением между 0 и 255, в зависимости от того, как много света проходит через фильтр. Затем он то же самое проделывает с зеленым фильтром (зеленым каналом), устанавливая для него значение 0, если свет не проходит через фильтр, и 255 если свет полностью проходит через фильтр, и некоторое значение между 0 и 255, если проходит немного света. Затем он то же самое проделывает с синим фильтром (синим каналом). После этого он знает, с какое значение устанавливать для красного, зеленого и синего, и комбинирует их, создавая цвет, который мы видим. Он проделывает все это для каждого пикселя вашего изображения, так, если ваше изображение содержит миллионы пикселей, как большинство фотографий, сделанных с помощью цифровой камеры в наши дни, Photoshop проделывает эту операцию миллион раз и только для того, чтобы отобразить изображение, которое вы видите на экране. Видите, как сильно вас любит Photoshop? Итак, секунду назад я сказал, что Photoshop не остается в стороне. Двигаемся дальше.
«Фильтры» Photoshop используют те три отдельных черно-белых изображения, которые мы видели. Красный:

Так как же Photoshop использует это черно-белое изображение в качестве красного фильтра? Помните, как я сказал, что Photoshop приписывает значения красного от 0-255, базируясь на том, какое количество света проходит через фильтр? Итак, сколько света проходит через фильтр зависит от того, насколько яркий участок черного и белого на изображении. Любой участок чисто черного цвета не позволит проникнуть какому-либо свету, это означает, что в этих участках изображения значение красного будет равно 0. Любые участки чисто белого цвета, позволяют свету проникать полностью, в этих участках значение красного будет равно 255. А в участках с различными оттенками серого, которых большинство в изображении, проходит некоторое количество света, зависящее от того, насколько светлый или темный участок серого представлен.

На изображении выше мы можем увидеть, что самые яркие участки изображения приходятся на клюв и грудь птицы, что подтверждает то, о чем я сейчас говорил: эти участки содержат большее количество красного цвета в полноцветном изображении. Равно как участки спины, крыльев и живота очень темные, поэтому в этих участках не должно быть много красного или он полностью отсутствует.
Давайте снова обратимся к полноцветному варианту изображения:

Мы сказали, что клюв и грудь должны содержать много красного цвета, и, как вы видите, это так! Мы также сказали, что спина, крылья и живот не должны содержать много красного, или он вообще должен отсутствовать, и я действительно не вижу на них красного.
Давайте снова обратимся к черно-белому изображению, которое Photoshop использует для зеленого канала:

Это черно-белое изображение содержит много ярких участков, которые означают, что на фото должно присутствовать много зеленого. Странно еще то, что один из самых ярких участков в изображении находится рядом с грудью птицы, но я не помню, чтобы там был зеленый цвет. Давайте это проверим, взглянув снова на полноцветное изображение:

На изображении, конечно, много зеленого, что объясняет множество ярких оттенков серого на черно-белом изображении. Если я посмотрю на ту сторону груди птицы, которая имела самый яркий участок в черно-белом изображении, то она не будет зеленой. В действительности она очень желтая! Как это возможно? Просто. Красный и зеленый в комбинации дают желтый, поэтому для отображения желтого цвета Photoshop смешал вместе красный и зеленый.
Посмотрим на еще одно черно-белое изображение, которое Photoshop использует в качестве синего канала:

На этом изображении множество очень темных участков, особенно на самой птице, за исключением головы, которая очень светлая. Это должно означать, что только одна часть птицы будет отображаться синим цветом – ее голова. Хотя ее животик тоже должен иметь заметное количество синего, так же ноги и кусок дерева, на котором она сидит. Давайте посмотрим:

Мы убедились, что голова птицы очень синяя, мы также увидели, что ее животик, так же как и ножки и кусок дерева тоже синие. Остальная часть птицы не имеет заметных синих участков, поэтому и появились в этих местах темные участки на черно-белом изображении.
Мы выяснили все о том, как работает цветовой режим RGB и цветовые каналы в Photoshop, все, кроме одной вещи. Мы до сих пор не видели, где вы можете получить доступ к этим цветовым каналам. Вы найдете их в соответствующе названной панели Каналы (Channels), которые сгруппированы вместе с палитрой слоев (Layers).

Панель Каналов (Channels) Photoshop.

Палитра Каналов (Channels) выглядит примерно так же, как и палитра слоев (Layers), только она показывает информацию о цветовых каналах (color channels) вместо слоев. Здесь вы видите один Красный (Red), один Зеленый (Green) и один Синий (Blue) канал, и каждый из них содержит свой собственный вариант черно-белого изображения, точно такие, как я показывал в этом уроке. Самый верхний канал «RGB» в действительности не является каналом. Это просто совокупность трех каналов, дающая нам полноцветное фото. Вы можете кликнуть отдельно по каждому каналу в палитре Каналов (Channels) для отображения его черно-белого изображения в окне документа.
Вот и все. Мы теперь знаем, что Photoshop видит все через призму черного, белого и серого цветов. Мы знаем, что использование режима RGB (в любом случае, установлен по умолчанию) смешивает разное количество красного, зеленого и синего для получения полноцветного изображения, которое мы видим на своих экранах. И мы также знаем, что в зависимости от того, как много красного, зеленого и синего цвета, черно-белый вариант изображения у каждого из трех каналов будет свой, что все эти операции проделываются для каждого отдельно взятого пикселя в изображении. И, таким образом, вы и я можем видеть полноцветную версию изображения, в то время как Photoshop довольствуется черно-белым.
Теперь мы знаем, как Photoshop любит нас. На этом мы закончим этот урок.

RGB модель описывает излучаемые цвета. Она основана на трёх основных (базовых) цветах: красный (Red), зелёный (Green) и синий (Blue). RGB-модель можно назвать "родной" для дисплея. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными.

Из рисунка видно, что сочетание зелёного и красного дают жёлтый цвет, сочетание зелёного и синего - голубой, а сочетание всех трёх цветов - белый. Из этого можно сделать вывод о том, что цвета в RGB складываются субтрактивно.

Основные цвета взяты из биологии человека. То есть, эти цвета основаны на физиологической реакции человеческого глаза на свет. Человеческий глаз имеет фоторецептор клеток, реагирующих на наиболее зеленый (М), желто-зеленый (L) и сине-фиолетовый (S) света (максимальная длин волн от 534 нм, 564 нм и 420 нм соответственно). Человеческий мозг может легко отличить широкий спектр различных цветов на основе различий в сигналах, полученных от трех волн.

Наиболее широко RGB цветовая модель используется в ЖК или плазменных дисплеях, таких как телевизор или монитор компьютера. Каждый пиксель на дисплее может быть представлен в интерфейсе аппаратных средств (например, графические карты) в качестве значений красного, зеленого и синего. RGB значения изменяются в интенсивности, которые используются для наглядности. Камеры и сканеры также работают в том же порядке, они захватывают цвет с датчиками, которые регистрируют различную интенсивность RGB на каждый пиксель.

В режиме 16 бит на пиксель, также известном как Highcolor, есть либо 5 бит на цвет (часто упоминается как 555 режим) или с дополнительным битом для зеленого цвета (известен как 565 режим). Дополнен зеленый цвет из-за того, что человеческий глаз имеет способность выявлять больше оттенков зеленого, чем любого другого цвета.

RGB значения, представленные в режиме 24 бит на пиксель (bpp), известном также под именем Truecolor, обычно выделяется три целых значения между 0 и 255. Каждое из этих трех чисел представляет собой интенсивность красного, зеленого и синего соответственно.

В RGB - три канала: красный, синий и зелёный, т.е. RGB - трёхканальная цветовая модель. Каждый канал может принимать значения от 0 до 255 в десятичной или, что ближе к реальности, от 0 до FF в шестнадцатеричной системах счисления. Это объясняется тем, что байт, которым кодируется канал, да и вообще любой байт состоит из восьми битов, а бит может принимать 2 значения 0 или 1, итого 28=256. В RGB, например, красный цвет может принимать 256 градаций: от чисто красного (FF) до чёрного (00). Таким образом несложно подсчитать, что в модели RGB содержится всего 2563 или 16777216 цветов.

В RGB три канала, и каждый кодируется 8-ю битами. Максимальное, FF (или 255) значение даёт чистый цвет. Белый цвет получается путём сочетания всех цветов, точнее, их предельных градаций. Код белого цвета = FF(красный) + FF(зелёный) + FF(синий). Соответственно код чёрного = 000000. Код жёлтого = FFFF00, пурпурного = FF00FF, голубого = 00FFFF.

Также есть еще 32 и 48 битные режимы отображения цветов.

RGB не используется для печати на бумаге, вместо нее существует CMYK-цветовое пространство.

CMYK - это цветовая модель используемая в цветной печати. Цветовая модель является математической моделью для описания цветов целыми числами. CMYK модель построена на голубом, пурпурном, желтом и черном цветах.

Цветовая информация в Photoshop хранится в так называемых каналах. Канал – это изображение, в котором точки для каждого составного цвета цветовой модели определяют яркость (количество) этого цвета. Сразу это понять непросто. Попробуем объяснить доступнее.

В зависимости от цветовой модели изображение может иметь три цветовых канала (для RGB) или четыре (для CMYK). Каждому цвету модели выделен отдельный канал, в каждом канале представлена серая копия изображения. В каналах уровень серого может иметь 256 градаций. Яркость серой точки показывает количество соответствующего каналу цвета в композитном изображении. Чем светлее точка, тем большее количество цвета данного канала используется в результирующей точке.

1. Загрузите любое цветное изображение. Если загруженное изображение создано в цветовой модели CMYK, преобразуйте его в RGB.

2. Откройте палитру Каналы . Вы видите четыре пункта: RGB , Красный , Зеленый и Синий . Красный , Зеленый и Синий – это и есть каналы вашего изображения.

3. Снимите флажки в виде глаза для каналов RGB , Красный и Зеленый . У вас останется включенным только канал Синий (рис. 7.1).

Рис. 7.1. Отображен канал Синий


МУЛЬТИМЕДИЙНЫЙ КУРС

В главе «Цветовые каналы» прилагаемого к книге компакт-диска содержатся несколько видеолекций, посвященных работе с цветовыми каналами.

Обратите внимание, что изображение в окне документа стало серым. Причем оно мало напоминает обычное черно-белое изображение. Некоторые участки, которые вроде бы должны быть светлыми, темные, и наоборот. Дело все в том, что градации серого показывают, сколько синего цвета участвует в формировании каждой цветной точки. Чем светлее точка, тем больше синего цвета на нее приходится. Если есть полностью черные точки, значит, в результирующем цвете этих точек синего нет совсем или его ничтожно мало. Посмотрите таким же образом Красный и Зеленый каналы. Вы увидите, что яркости отдельных участков изображения не соответствуют действительности. Еще раз подчеркнем, что в данном случае яркость точки определяет не яркость результирующей точки, а яркость цвета данного канала в этой точке.

Каналы RGB

Проведем простой эксперимент.

1. Создайте новое изображение с белым фоном.

2. Выберите инструмент Карандаш . Настройте кисть таким образом, чтобы линия карандаша получилась достаточно жирной, например 50 пикселов.

3. Выберите чисто красный цвет. Для этого в диалоговом окне выбора цветов укажите значение R равным 255 , а значения G и B равными 0 . Это цвет, который состоит только из красных субпикселов. Синие и зеленые субпикселы в этом цвете совершенно не участвуют (значение их яркости равно нулю).

4. Проведите в окне созданного документа линию.

5. Откройте палитру Каналы , после чего посмотрите каждый канал в отдельности.

Теперь опишем, что вы должны увидеть.

Канал Красный . Вы видите полностью белое изображение без каких-либо линий. Белый фон изображения говорит о том, что белый цвет содержит максимальный уровень красного (255). Линию вы тоже не видите, так как нарисовали ее цветом, в котором количество красного также равно 255, то есть в этом канале интенсивность красных субпикселов максимальна на всей площади рисунка.

Каналы Зеленый и Синий . Фоны этих каналов белые, так как участие синего и зеленого цветов в белом цвете также максимально (напомним, что белый цвет получается, когда значение всех трех составляющих RGB равно 255). Проведенная вами линия в данных каналах имеет черный цвет. Когда вы выбирали цвет инструмента, вы указали нулевые значения для цветов G и B , то есть в выбранном вами цвете синий и зеленый цвета не участвуют совсем. Именно поэтому в данных каналах линия имеет черный цвет, это говорит о том, что уровень соответствующих цветов в этих каналах минимален.

Теперь отобразите одновременно Красный и Зеленый каналы. Фон изображения стал желтым, а точка красной. Это результат смешивания каналов, то есть сейчас мы наложили Красный канал на Зеленый и при этом исключили Синий канал. В результате мы сложили 255 градаций красного цвета с таким же количеством зеленого цвета и тем самым получили желтый фон. Линия осталась красной, потому что к 255 градациям красного в канале Красный добавилось 0 градаций красного из канала Зеленый , то есть ничего не добавилось.

Если сложить каналы Зеленый и Синий , исключив канал Красный , мы получим бирюзовый фон (результат сложения 255 градаций зеленого и синего цвета) и черную линию. Ни синий, ни зеленый цвет не присутствуют в нарисованной нами линии (уровень данных цветов в соответствующих каналах нулевой), поэтому линия остается черной.

Каналы CMYK

Аналогичную картину мы увидим, создав изображение в цветовой модели CMYK. Только каналы CMYK, в отличие от RGB, инверсные, то есть черный и белый цвета в этих каналах поменяны местами. Белый цвет означает полное отсутствие красителя, а черный – максимальное его количество (100). Например, если мы создадим изображение с белым фоном и пурпурной линией (C = 0, M = 100, Y = 0 и K = 0), то в каналах увидим следующее.

Каналы Голубой , Желтый и Черный будут полностью белого цвета. В формировании белого фона данные цвета не участвуют (бумага и так белая сама по себе).

Канал Пурпурный будет содержать черную линию на белом фоне. В формировании фона данный цвет также не участвует, а вот в цвете линии интенсивность пурпурного цвета максимальна.

Если мы нанесем на белый фон линию другого, например зеленого, цвета, то в каналах CMYK эта линия будет серой с различной яркостью. Зеленый цвет в модели CMYK не присутствует, поэтому получается путем смешивания основных цветов. Степень яркости в каждом канале будет зависеть от количества соответствующего цвета в результирующем зеленом. Чем больше определенного цвета участвует в формировании результирующего, тем темнее будет линия в соответствующем канале. В большей степени в зеленом цвете участвуют голубой и желтый. Доля пурпурного и черного цветов не очень высока, поэтому линии на этих каналах будут очень бледными. Конечно, все еще зависит и от оттенка зеленого цвета. Можно создать цвет, в котором доли черного и пурпурного будут нулевыми, и это будет чистый зеленый цвет.

Мы так долго говорили о каналах, но до сих пор так и не объяснили, зачем они нужны. Вы, возможно, на первоначальных этапах не будете их использовать и вообще смотреть на палитру Каналы . Многие годами работают с Photoshop и совершенно не знают, с какой целью каналы используются, а то и вообще не подозревают о существовании таковых. Согласимся, что для любителя это не так и важно. Однако, когда вы дорастете до профессионального использования программы Photoshop и особенно если будете работать в организациях, выпускающих полиграфическую продукцию, вы непременно столкнетесь с таким понятием, как цветоделение. Вот здесь как раз вам и понадобятся каналы.

С помощью каналов очень удобно корректировать цветовую гамму изображения. Например, работая с RGB-фотографией, вы замечаете, что на отдельном ее участке преобладает красный цвет. Обычными методами (уровнями) или иной цветовой коррекцией это исправить непросто. Да и не всегда удобно. Отключаете все каналы, кроме красного, и, например, инструментом Затемнитель затеняете данный участок изображения, то есть вы затеняете только красный цвет, тем самым уменьшая уровень красного в композитном цвете. Вы даже можете не отключать при этом остальные каналы: достаточно просто выделить канал Красный . Однако с отключенными каналами проще контролировать свою работу.

Другое применение каналов – это цветоделение. Для печати картинки на типографском оборудовании требуется четыре серых изображения. Это именно те каналы, о которых мы говорили: каналы модели CMYK. Как правило, одно изображение распечатывается на четырех прозрачных пленках и на каждую пленку наносится содержимое одного канала. Дальше на основании интенсивности (уровня) черного на каждой из пленок оборудование наносит соответствующее количество красителя на носитель, чаще всего бумагу (рис. 7.2).


Рис. 7.2. Так выглядит изображение в отдельных каналах CMYK


Мы не случайно используем термин «носитель», поскольку изображение можно распечатывать на ткани, пластике и различных полимерных материалах.

Каналы-маски

Вы можете добавить в изображение новый канал. Однако это будет не цветовой, а так называемый альфа-канал, или канал-маска. Для чего могут использоваться такие каналы? Применений множество. Самое простое – это использование масок для изображения или качественного ретуширования графики.

Попробуйте создать новый канал, нажав третью слева кнопку в нижней части палитры Каналы . Скорее всего, все ваше изображение будет как будто накрыто полупрозрачной цветной пленкой, а в списке каналов появится новый канал Альфа 1 .

1. Теперь, предварительно выделив канал Альфа 1 , попробуйте взять инструмент Ластик и стереть участок изображения. В месте, где «прошелся» Ластик , будет проступать изображение с исходными цветами. Иными словами, вы создали полупрозрачный альфа-канал и сделали отдельные его участки прозрачными (рис. 7.3).


Рис. 7.3. Часть канала-маски стерта ластиком


2. Нажмите сочетание клавиш Ctrl+A , при этом все изображение будет выделено, и нажмите клавишу Delete . Содержимое альфа-канала будет удалено, а изображение предстанет в оригинальных цветах.

3. Снимите выделение, нажав сочетание клавиш Ctrl+D .

4. Выберите инструмент Кисть и определите для данного инструмента синий цвет.

5. Убедитесь, что канал Альфа 1 по-прежнему выделен.

6. Сделайте кистью несколько мазков.

Обратите внимание, что в изображении появляются штрихи, отличные от выбранного вами цвета, скорее всего красные, то есть, «рисуя» синей кистью, вы можете получить красные оттенки штрихов. Это происходит потому, что цвет кисти на самом деле не синий, а определенной градации серого. Взгляните на образец цвета в нижней части панели инструментов, чтобы убедиться в этом. Добавляя серые линии на альфа-канал, вы увеличиваете уровень яркости участков основного цвета альфа-канала (по умолчанию – красного). В результате этого цвет канала суммируется с остальными каналами.

Теперь немного о настройках альфа-канала.

Чтобы вызывать диалоговое окно настроек альфа-канала (рис. 7.4), нужно дважды щелкнуть кнопкой мыши на миниатюре этого канала на палитре Каналы .

Рис. 7.4. Диалоговое окно Параметры канала


В глаза сразу бросается образец цвета. По умолчанию – красный. Это цвет альфа-канала. Вспомните, что, какой бы цвет кисти вы ни выбрали, при рисовании кистью на альфа-канале появляются красные линии различной яркости (яркость зависит от выбранного оттенка). Вы можете изменить этот цвет, и тогда линии, нарисованные на альфа-канале, будут иметь другой цвет (выбранный вами).

В области Показывать цветом по умолчанию переключатель установлен в положение Маскированные области . Как действует альфа-канал в данном режиме при рисовании или стирании, вы видели. Если выбрать положение Выделенные области , альфа-канал будет действовать на изображение обратным способом, то есть закрашенные области станут прозрачными, а незакрашенные, наоборот, непрозрачными или полупрозрачными.

В поле Непрозрачность указывают степень непрозрачности альфа-канала. По умолчанию степень непрозрачности равняется 50 % , именно поэтому вы хорошо видите изображение сквозь «цветную пленку».

Следует отметить, что вы можете создать множество альфа-каналов, настроить степень их непрозрачности и цвета, далее нанести в этих каналах какие-либо штрихи и изображения. Вы можете также копировать содержимое любого канала в альфа-канал, применять к нему различные коррекции и т. д. Все это позволяет вам очень тонко настраивать цветовые параметры изображения, создавать оригинальные рисунки и т. д. При большом желании вы даже можете превратить черно-белое изображение в цветное. Для этого нужно преобразовать черно-белое изображение в модель RGB или CMYK, создать необходимое количество альфа-каналов (по числу цветов модели), скопировать изображение в эти каналы и раскрасить отдельные фрагменты изображения так, чтобы при смешивании каналов получились нужные цвета. Это, конечно, непросто и потребует много времени, терпения и опыта, но это возможно! Действительно, из старой черно-белой фотографии можно сделать цветную. Кстати, если все цветовые каналы содержат абсолютно одинаковую информацию, значит, пропорции всех цветов в отдельных точках равны. А одинаковые пропорции цветов – это всегда серая точка (в разных градациях яркости: от белой до черной). Иными словами, если изображения во всех цветовых каналах не отличаются друг от друга, значит, картинка черно-белая.

Понимание того, что вы видите в каждом канале, предоставляет вам знания для создания сложных выделенных областей и тонкой настройки изображений. В этой статье вы заглянете внутрь различных цветовых каналов, начиная с наиболее распространенного режима изображения: RGB.

Сразу оговорюсь, что статья не охватывает . Они настолько важны, что будут описаны в отдельной статье.

Каналы RGB

Если вы готовите изображение, которое отправится на струйный принтер, вероятно, имеющийся у вас дома (а не в типографию), режим RGB - то, что вам нужно. В конце концов, ваш монитор - RGB, как и цифровой фотоаппарат со сканером. Фотошоп не отображает отдельные каналы красным, зеленым и синим цветом - они показаны в градациях серого , чтобы вы могли легко увидеть наиболее насыщенные цветом области. Поскольку цвета в этом режиме состоят из света, белый указывает области, где цвет проявляется в полную силу, черный указывает области, где он слабо заметен, а оттенки серого цвета представляют все участки между ними.

Как можно увидеть на рисунке выше, каждый канал содержит различную информацию:

Красный . Он, как правило, самый светлый из всех и демонстрирует наибольшую разницу цветовой гаммы. В приведенном примере он очень светлый, потому что на коже, волосах девушки много красного цвета. Он может быть очень важен при редактировании тона кожи.

Зеленый. Вы можете думать о нем как о «центре контраста», потому что он обычно наиболее контрастный (это логично, поскольку на цифровых фотоаппаратах зеленых датчиков установлено в два раза больше, чем красных или синих). Помните о нем, создавая слой-маску для усиления резкости изображения или работая с картами смещения.

Синий . Обычно самый темный из группы, он может быть полезен в случае, когда вам нужно создать сложную выделенную область, чтобы изолировать объект. Здесь же вы столкнетесь с такими проблемами, как шум и зерно.

Каналы CMYK

Хотя вы, вероятно, проводите большую часть времени, работая с изображениями RGB, вам также может потребоваться работать с изображениями в режиме CMYK . Его название, означает голубую, пурпурную, желтую и черную краски, применяемые коммерческими типографиями для печати газет, журналов, упаковок продуктов и так далее. В этом режиме также присутствует композитный канал.

Если вы планируете печатать изображение на обычном лазерном или струйном принтере, вам он не потребуется. Кроме того, этот режим лишает вас нескольких драгоценных фильтров и корректирующих слоев. Профессиональная типографская печать, с другой стороны, делит CMYK вашего изображения на отдельные цветоделения. Каждое деление - это идеальная копия цветового канала, который вы видите в фотошопе, напечатанная соответствующим цветом (голубой, пурпурный, желтый или черный). Когда печатная машина накладывает эти четыре цвета поверх друг друга, они образуют полноцветное изображение (этот метод известен как четырехкрасочная печать ).

Поскольку они представляют краски, а не свет, информация в градациях серого имеет противоположное значение, нежели в режиме RGB. В данном режиме черный цвет указывает на полную силу, а белый цвет указывает на самое слабое проявление цвета.

Плашечные каналы

В среде печати CMYK существует особый вид готовой краски, называемый плашечный цвет , для которого требуется особого рода канал. Если вы графический дизайнер, работающий в отделе пред-печатной подготовки (верстки), разработки дизайна продукта или в рекламном агентстве, вам необходимо знание приемов работы с плашечными цветами.

Каналы Lab

Режим Lab отделяет значения яркости (насколько яркое или темное изображение) от цветовой информации. Этот цветовой режим не используется для вывода изображения, как режимы RGB и CMYK, вместо этого он полезен, когда вы хотите изменить только значения яркости изображения (при усилении его резкости или яркости), без смещения цветов.

Подобным образом вы можете настроить только цветовую информацию (скажем, чтобы избавиться от оттенка), не меняя значение яркости. А если вы взглянете на палитру, вы увидите изображения, похожие на рентгеновские.

В режиме Lab присутствуют следующие каналы:

  • Яркость (Lightness) . Он содержит обесцвеченные детали изображения, оно выглядит как действительно хорошая черно-белая версия. Некоторые люди клянутся, что, отделив его в новый документ, а затем проведя небольшую правку, вы сможете создать черно-белое изображение достойное Энсела Адамса .
  • а . Он содержит половину цветовой информации: смесь пурпурного (понимайте как «красный») и зеленого.
  • b . другая половина: смесь желтого и синего.

Многоканальный режим

Этот режим вам не понадобится, если только вы не станете подготавливать изображения для печати в типографии. Однако вы можете оказаться в этом режиме случайно. При удалении одного из цветовых каналов документа в режиме RGB, CMYK или Lab, фотошоп переведет документ в данный режим без появления предупреждения. Если это произойдет, используйте палитру История для возврата на шаг назад или нажмите сочетание клавиш Ctrl+Z, чтобы отменить совершенное действие.

В данном режиме отсутствует композитный канал. Этот режим предназначен исключительно для выполнения заданий на двух-или трехцветную печать, поэтому, когда вы перейдете в него, программа преобразует любые существующие цветовые каналы в плашечные.

При преобразовании изображения в этот режим, фотошоп сразу совершает одну из следующих операций (в зависимости от того, где вы находились ранее):

  • преобразует RGB в голубой, пурпурный и желтый плашечные каналы;
  • преобразует CMYK в голубой, пурпурный, желтый и черный плашечные;
  • преобразует Lab в альфа-каналы под именами Альфа 1, Альфа 2 и Альфа 3;
  • преобразует Градации серого (Grayscale) в черный плашечный.

Такие изменения вызывают радикальные цветовые сдвиги, однако чтобы создать желаемое изображение, вы можете отредактировать их в отдельности, как содержимое, так и плашечный цвет.

Закончив редактирование, сохраните изображение как PSD или как файл DCS 2.0, если вам нужно передать его в программу предпечатной подготовки.

Одноканальные режимы

Остальные режимы изображения не очень интересны, поскольку у них только один канал. К таким режимам относятся Битовый формат (Bitmap), Градации серого (Grayscale), Дуплекс (Duotone) и Индексированные цвета (Indexed Color).

Заметили ошибку в тексте - выделите ее и нажмите Ctrl + Enter . Спасибо!

Как вы уже знаете, каждый пиксел изображения в градациях серого определяется 8 битами информации, и файл может содержать до 256 значений пикселов. Но эти значения (от 1 до 255) не обязательно должны представлять оттенки серого. Режим Indexed Color (Индексированные цвета) предлагает возможность создания 8-битовых изображений с 256 цветами. В таких изображениях используется таблица из 256 цветов, выбранных из всей 24-битовой цветовой палитры. Цвет того или иного пиксела определяется ссылкой к таблице: этот пиксел имеет цвет за номером 123, этот – за номером 81 и т. д.

Режим Indexed Color позволяет экономить дисковое пространство (лишь 8 бит на пиксел против 24 бит в режиме RGB – см. ниже), но дает всего 256 цветов. Это совсем не много по сравнению с 16,7 млн. цветов в режиме RGB. Тем не менее, поскольку многие мониторы работают только в режиме 8-битового отображения цвета, изображения с индексированными цветами идеально подходят для программ мультимедиа и экранных презентаций.

Есть и ряд серьезных ограничений. Прежде всего, в режиме Indexed Color невозможно пользоваться фильтрами и инструментами, выполняющими сглаживание (напр. "палец" или "осветлитель/затемнитель"), так как функция сглаживания здесь недоступна. Это значит, что редактировать изображение следует в RGB и лишь на заключительной стадии выполнять преобразование в Indexed Color.

Другая проблема с индексированными цветами связана с цветовыми таблицами. Если при переносе изображения из одной программы в другую эта таблица изменится, то изменится и цветовой состав изображения. Пиксел номер 123 может и сохранит значение 81, но после переноса в другую программу "цвет 81" может оказаться уже не красным, а синим.

Наконец, изображение с индексированными цветами невозможно разделить на цвета CMYK в программе QuarkXPress или Adobe PageMaker. Если вы собираетесь напечатать такое изображение, его стоит преобразовать в RGB или CMYK, не выходя из Photoshop. Правда, картинка после этого ничуть не улучшится – она по-прежнему будет состоять из 256 цветов.

Кстати, изображения Indexed Color можно более-менее успешно использовать при работе с плашечными цветами.

Изображения с индексированными цветами можно сохранять в форматах Photoshop, CompuServe GIF, PNG, PICT , Amiga IFF и BMP (см. "Другие форматы файла, которые могут вам пригодиться", "Хранение изображений").

Режим RGB

Компьютерные мониторы и телевизоры воспроизводят цвет в режиме RGB, где все разнообразие оттенков формируется сочетанием разного количества красного, зеленого и синего света. (Эти цвета называются первичными аддитивными – сложение красного, зеленого и синего света образует белый). Файлы, сохраненные в режиме RGB, состоят из трех 8-битовых файлов в градациях серого, поэтому принято говорить, что RGB-изображения являются 24-битовыми файлами.

Эти файлы могут включать до 16 млн. цветов – вполне достаточно для фотографического качества. Именно в этом режиме мы предпочитаем редактировать цветные изображения. Большинство сканеров сохраняет изображения в режиме RGB. Исключение составляют оснащенные "цветовыми компьютерами" барабанные сканеры высшего класса, которые автоматически преобразуют файлы в режим CMYK (см. далее).

Если вы занимаетесь созданием изображений для проектов мультимедиа или выводом файлов на устройства записи на пленку (напр. 35-мм слайды или диапозитивы 4 х 5 дюймов), изображения следует всегда сохранять в режиме RGB (см. "Методы вывода").

24-битовые RGB-файлы можно сохранять в форматах Photoshop, EPS, TIFF, PICT , Amiga IFF , BMP, JPEG, PCX, Pixar, Roaw, Scitex CT и Targa. Но если у вас нет веских причин поступать иначе, мы рекомендуем вам пользоваться только форматами Photoshop, TIFF или EPS.

Photoshop позволяет также работать и с 48-битовыми RGB-файлами, содержащими три 16-битовых канала вместо обычных 8-битовых. Несмотря на ограниченный выбор средств для обработки 48-битовых изображений, мы обращаемся к таким файлам все чаще и чаще, поскольку они допускают чрезвычайную гибкость в редактировании (см. "Работа с многобитовыми сканированными изображениями", "Цветокоррекция").

Разумеется, если вы занимаетесь подготовкой изображений для мультимедиа или Web, вы будете все время работать в RGB и переключаться на CMYK вам совершенно незачем.

Режим CMYK

Традиционные машины цветной печати работают только с четырьмя красками: голубой, пурпурной, желтой и черной. Все остальные цвета имитируются комбинацией этих красок. Когда вы открываете CMYK-файл в Photoshop, программа для отображения его на экране компьютера тут же преобразует значения CMYK в значения RGB. Важно помнить, что, просматривая CMYK-файл на экране, вы видите его RGB-версию.

Если вы покупаете сканированные изображения, полученные на сканере высшего класса, это почти наверняка будут CMYK-файлы. Во всех остальных случаях прежде, чем напечатать изображение на печатной машине или настольном принтере, вам нужно будет преобразовать его из RGB в CMYK. Средства, которые в Photoshop используются для такого преобразования, рассмотрены в "Параметры цвета" .

CMYK-файлы можно сохранять в форматах Photoshop, TIFF, EPS, JPEG, Scitex CT и Raw, хотя в большинстве случаев используются первые три.

Режим Lab

Основная проблема моделей RGB и CMYK состоит в том, что применяемые в них значения в действительности цвета не описывают. Скорее это набор инструкций, которыми пользуется выводное устройство для воспроизведения цвета. Но дело в том, что по одним и тем же спецификациям RGB или CMYK разные устройства воспроизводят разные цвета. Вы наверняка видели в магазинах полки с работающими телевизорами и понимаете, о чем речь: одно и то же изображение (с одними и теми же значениями RGB) на разных экранах выглядит по-разному.

А если вам доводилось иметь дело с печатной машиной, то вы знаете, что цвет на пятидесятом оттиске выглядит не так, как на пятитысячном или пятидесятитысячном. Хотя пиксел сканированного изображения имеет определенное значение CMYK или RGB, определить, как этот цвет будет выглядеть в действительности, невозможно. Следовательно, RGB и CMYK являются аппаратно-зависимыми цветовыми моделями.

Между тем существуют и аппаратно-независимые цветовые модели. Все они в той или иной степени основываются на цветовом пространстве, определенном в качестве стандарта в 1931 году организацией Commission Internationale de l’Eclairage (CIE). Модель Lab в Photoshop – одна из его производных.

В отличие от RGB и CMYK, модель Lab определяет цвет не по его компонентам, а дает описание того, как выглядит цвет. Аппаратно-независимые модели составляют ядро систем управления цветом, которые обеспечивают соответствие цветов при отображением их на экране, подачей файла на выводное устройство и получении конечных оттисков.

Файл, сохраненный в модели Lab, описывает, как выглядит цвет в строго определенных условиях. А то, какие значения RGB или CMYK нужны для воспроизведения этого цвета на конкретном выводном устройстве, зависит от вас (или от Photoshop, или от вашей системы управления цветом).

В ходе преобразования изображения из RGB в CMYK или наоборот Photoshop использует модель Lab в качестве эталона, принимая в расчет параметры из диалоговых окон RGB Setup и CMYK Setup (подробно этот процесс описан в "Параметры цвета"). Lab-изображения можно сохранять в форматах Photoshop, EPS, TIFF или Raw.

Хорошо, что работать в режиме Lab приходится довольно редко: управляться с этой моделью почти невозможно. Если RGB или CMYK более или менее понятны, то Lab совершенно непостижима (если вы вдруг почувствовали, что кое-что начинает проясняться, значит у вас нелады с рассудком). Тем не менее, иногда Lab оказывается очень полезной, например при подчистке изображений, полученных на цифровых камерах, или при тонкой настройке яркости).

Подсказка. L означает Luminosity (Светлота) . Преимущество Lab заключается в том, что информация о яркости (канал "L") здесь хранится отдельно от цветовой информации (каналы "a" и "b"). Этим можно воспользоваться для настройки тонов без воздействия на его цвета, а также для повышения резкости без заметного ущерба для качества изображения.

Режим Multichannel

Последним в списке цветовых режимов Photoshop числится Multi-channel – многоканальный. Так же, как RGB или CMYK, он имеет несколько 8-битовых каналов, но позволяет присваивать им любые цвета и имена.

Подобная гибкость может быть как благом, так и наказанием. Прежде, когда цветные сканеры были слишком дороги, мы делали цветные картинки на серых сканерах, сканируя изображение три раза через красную, зеленую и синюю пленки. Затем комбинировали три изображения, объединяя их в одном многоканальном документе, а потом уже выполняли преобразование в RGB. К счастью, теперь в этом нет необходимости.

Сегодня многие изображения, используемые в научных и астрономических целях, делаются с применением "инородного цвета" – в дополнение к различным цветам видимого спектра каналы могут представлять собой комбинацию радио-, инфракрасных и ультрафиолетовых волн. Некоторые из наших знакомых, помешанные на цифровой фотографии, комбинируют в многоканальном режиме обычные снимки с фотографиями, сделанными под воздействием инфракрасных лучей, создавая необыкновенные сюрреалистические композиции.

Мы же обращаемся к режиму Multichannel в основном на промежуточных этапах работы. В нем, например, можно хранить дополнительные каналы масок для прозрачности или выделений, использованных в других изображениях. Многоканальные изображения могут сохраняться только в форматах Photoshop и Raw.