Память кэш - это что? Что такое кэш браузера? Кэш-память процессора. Уровни и принципы функционирования

Основная память компьютера – это устройство с очень низкой скоростью обмена данных. И если процессору необходимы какие-то данные для работы, то он посылает запрос через шину памяти, и производится поиск этих нужных данных.

Только потом они отправляются непосредственно в процессор. Все это занимает очень много времени по компьютерным меркам. А вот, что если бы данные хранились где-то рядом с процессором?

Как раз кэш-память работает на основе этой идеи. И для того чтобы понять концепцию, для наглядности возьмем пример работы обычной библиотеки.

Назначение кеш памяти

Что же такое кэш-память или кэш (по англ. cache memory, cache):

В широком смысле, подразумевается любая память с быстрым доступом , где хранится часть данных с другого носителя с более медленным доступом;

В узком смысле - это сверхоперативный вид памяти, который используется для повышения скорости доступа микропроцессора к оперативной памяти.

Предположим, что в библиотеке работает один библиотекарь. Если человек приходит и просит первый том Пушкина, то библиотекарь идет к далекой книжной полке, находит книгу и приносит ее посетителю.

Когда этот человек прочитал книгу, то она обратно возвращается на полку. И если уже любой другой человек приходит и просит эту же самую книгу, цикл повторяется снова.

Вот пример того, как библиотека, то есть система работает без кэш-памяти .

Зачем нужна кэш-память?

А теперь представьте, что тот же самый библиотекарь использует ящик стола как кэш-память. Процедура выдачи книги остается той же, когда книгу спрашивают первый раз.

Но, когда книга вернулась, библиотекарь не возвращает ее на полку, а кладет в ящик стола (этакая местная оперативная кэш-память ).

Теперь, когда следующий человек приходит и просит эту книгу, библиотекарю уже нужно просто открыть данный ящик. Аналогичным образом кэш-память хранит элементы данных, к которым часто обращается процессор.

Таким образом, каждый раз, запрашиваются эти данные, и процессор получает их из кэша, минуя долгий путь в основную медленную память.

Хранит ли кэш только часто используемые данные? Как функционирует и работает кэш оперативной памяти ?

Кэш – это такая очень умная часть памяти, которая автоматически осуществляет поиск любых данных, которые могут понадобиться в ближайшем будущем. Опять же, вернемся за примером к нашей библиотеке.

Когда человек просит первый томик Пушкина, то библиотекарь приносит также второй том:-) И когда человек прочитает первую книгу, аероятнее всего, что он может попросить второй томик. А когда он это сделает, ходит далеко не надо... тот уже будет лежать в ящике.

Аналогичным образом, когда кэш-память извлекает запрошенные данные из памяти, она также извлекает данные, которые находятся по адресам, близким к запрошенным.

Эти смежные блоки данных, которые и передаются в кэш, называются кэш-линиями. Подробнее о понятии кэш-памяти можно посмотреть в этом видео:

Уровни кэш памяти

Большинство жестких дисков используют один уровень кэш-памяти . Но кэш имеет два уровня, где уровень L1 меньше и быстрее, а уровень L2, несколько медленнее (но все равно быстрее, чем основная внутренняя память ).

Лучшая бесплатная программа HDDScan для проверки жестких дисков

И снова возвратимся за примером к нашей библиотеке, на примере ее работы становится понятна как работает внешняя память компьютера .

Рассмотрим ящик библиотекаря в качестве кэша L1. Когда спрос на книги высок, и в ящике уже довольно много книг (нет места складывать) и вероятность того, что там найдется нужная, снижается.

Память L2 кэш

Здесь и появляется неодходимость L2. Представим L2 как книжный шкаф возле стола библиотекаря. Когда маленький ящик стола заполнен, библиотекарь начинает ставить книги в этот шкаф. И теперь, если книга не найдена в ящике сразу, надо взять ее из шкафа, не отходя далеко.

Аналогичным образом, когда кэш L1 заполнен, данные сохраняются в L2. Процессор в первую очередь ищет данные в L1, если они не будут найдены, то он обратится уже к L2. Если там тоже данные не найдены в L2, то идет обращение к основной памяти.

Двухуровневый кэш процессора

Кэш двух уровней у процессора – хорошая идея? Безусловно, да.

Возвращаясь к нашей упомянутой библиотеке. Если человек просит дать ему книгу, которая не хранится ни в ящике, ни в книжном шкафу, то библиотекарь тратит много времени впустую, осуществляя поиск сначала в ящике, потом в шкафу и только потом получает книгу с полки.

Когда же данные не найдены ни в первом, ни во втором уровне кэша, только тогда посылается запрос в основную память. На это тратится много процессорного времени.

Но если кэш-память работает так быстро, почему бы не выполнять его достаточно большой, чтобы хранить все данные оперативной памяти в нем?

Причина в том, что высокая скорость обходится очень дорого. Поэтому необходимо рациональное использование ресурсов кэш-памяти.

Хотя в последнее время, размеры кэш-памяти все увеличиваются, а цены растут не сильно, поэтому компьютеры работают все быстрее и быстрее.

То есть, наш библиотекарь обзаводится ящиком стола все большего размера, а шкафчик, стоящий рядом становится более вместительным! Еще в тему - двухядерные процессоры - правильно конфигурируем Windows.

Кэширование жесткого диска

Дисковая кэш-память (disk cache ), или кэш-память жестского диска - принцип построения кэш-памяти на основе динамического оперативного запоминающего устройства (типа DRAM), которое хранит наиболее часто используемые данные и команды, доступ к которым производится из внешней памяти.

Поэтому принцип кэширования жесткого диска во многом схож на принцип кэширования, используемый для оперативной динамической памяти, хоть способы доступа к диску и памяти значительно разнятся.

Так, время доступа к любой из ячеек оперативной памяти имеет примерно одинаковое для данного компьютера значение, а вот время доступа к различным блокам информации на жестком диске в общем случае будет различным.

1. Нужно затратить определенное время, чтобы магнитная головка записи-чтения подошла к искомой дорожке.

2. Поскольку при движении головка вибрирует, то необходимо немного времени, чтобы она успокоилась.

3. Наконец, требуется время, чтобы головка нашла искомый сектор.

Методы кэширования, используемые для оперативной памяти, применяются и для кэширования информации, хранимой на жестких дисках.

Кэш-память диска заполняется не только требуемым сектором, но и секторами, непосредственно следующими за ним, так как известно, что в большинстве случаев взаимосвязанные данные хранятся в соседних секторах.

Этот метод известен также как метод опережающего чтения (Read Ahead). При работе с многозадачными системами желательно иметь жесткий дик (винчестер) с мультисегментной кэш-памятью, которая для каждой из задач отводит свою часть кэша.

Кстати, если у вас недостаточно знаний о том, как лучше просканировать и протестировать жесткий диск , то обязательно посмотрите
подробный и бесплатный виде-оурок на эту тему:
как проверить винчестер на работоспособность

Кэш-память процессора

Кэш-памятью сейсас комплектуется большинство современных центральных процессоров. А первоначально кэш-память располагалась не на самом процессоре, а на материнской плате.

Кэш-память процессора на компьютере выполняет функции буфера между процессором и оперативной памятью.

Если кэш-память располагается между самим процессором и оперативной памятью, то при непосредственном обращении процессора к памяти сначала производится поиск необходимых данных в кэш-памяти .

Кэш-памяти процессора делятся на несколько видов:

Cache L1 - это «кэш-память первого уровня». Является промежуточной сверхоперативной памятью, находится на самом кристалле процессора, в ней размещаются наиболее часто используемые данные.

Работает эта память на частоте процессора. Время доступа к ней существенно меньше, чем к данным в основной оперативной памяти. Этим достигается ускорение работы процессора.

Cache L2 - «кэш-память второго уровня». Это промежуточная сверхоперативная память, которая имеет быстродействие ниже памяти первого уровня, но выше основной оперативной памяти. Ее размер обычно составляет от нескольких сотен килобайт до нескольких мегабайт.

Cache L3 - «кэш-память третьего уровня». Тоже промежуточная сверхоперативная память, имеющая быстродействие ниже памяти второго уровня, но выше основной оперативной памяти. Ее размер обычно составляет от одного до нескольких мегабайт.


Секреты и тонкости работы на компьютере

Кэш[или кеш (англ. cache, от фр.
Размещено на реф.рф
cacher - прятать; произносится - кэш) - промежуточный буфер с быстрым доступом, содержащий информацию, которая с наибольшей вероятностью должна быть запрошена быстродействующей памятью, к примеру оперативной. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из медленной памяти (внешней) или их перевычисление, за счёт чего уменьшается среднее время доступа.

Впервые слово ʼʼкэшʼʼ в компьютерном контексте было использовано в 1967 году во время подготовки статьи для публикации в журнале ʼʼIBM Systems Journalʼʼ. Статья касалась усовершенствования памяти в разрабатываемой модели 85 из серии IBM System/360. Редактор журнала Лайл Джонсон попросил придумать более описательный термин, нежели ʼʼвысокоскоростной буферʼʼ, но из-за отсутствия идей сам предложил слово ʼʼкэшʼʼ. Статья была опубликована в начале 1968 года, авторы были премированы IBM, их работа получила распространение и впоследствии была улучшена, а слово ʼʼкэшʼʼ вскоре стало использоваться в компьютерной литературе как общепринятый термин.

Функционирование

Диаграмма кэша памяти ЦПУ

Кэш - это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее ʼʼосновная памятьʼʼ). Кэширование применяется ЦПУ, жёсткими дисками, браузерами и веб-серверами.

Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор, определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.

Когда клиент кэша (ЦПУ, веб-браузер, операционная система) обращается к данным, прежде всœего исследуется кэш. В случае если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай принято называть попаданием кэша. В случае если в кэше не найдено записей, содержащих затребованный элемент данных, то он читается из основной памяти в кэш, и становятся доступным для последующих обращений. Такой случай принято называть промахом кэша. Процент обращений к кэшу, когда в нём найден результат, принято называть уровнем попаданий или коэффициентом попаданий в кэш.

К примеру, веб-браузер проверяет локальный кэш на диске на наличие локальной копии веб-страницы, соответствующей запрошенному URL. В этом примере URL - это идентификатор, а содержимое веб-страницы - это элементы данных.

В случае если кэш ограничен в объёме, то при промахе должна быть принято решение отбросить некоторую запись для освобождения пространства. Для выбора отбрасываемой записи используются разные алгоритмы вытеснения.

При модификации элементов данных в кэше выполняется их обновление в основной памяти. Задержка во времени между модификацией данных в кэше и обновлением основной памяти управляется так называемой политикой записи.

В кэше с немедленной записью каждое изменение вызывает синхронное обновление данных в основной памяти.

В кэше с отложенной записью (или обратной записью) обновление происходит в случае вытеснения элемента данных, периодически или по запросу клиента. Для отслеживания модифицированных элементов данных записи кэша хранят признак модификации (изменённый или ʼʼгрязныйʼʼ). Промах в кэше с отложенной записью может потребовать два обращения к основной памяти: первое для записи заменяемых данных из кэша, второе для чтения крайне важно го элемента данных.

В случае, в случае если данные в основной памяти бывают изменены независимо от кэша, то запись кэша может стать неактуальной. Протоколы взаимодействия между кэшами, которые сохраняют согласованность данных, называют протоколами когерентности кэша.

[править]

Кэш центрального процессора

Ряд моделœей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры. Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.

См. также: Translation lookaside buffer.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости обращения и передаче данных, чем кэш-память уровня N.

Самой быстрой памятью является кэш первого уровня - L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. На других его можно отключить, но тогда значительно падает производительность процессора. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт (зачастую является возможным выполнять даже несколько чтений/записей одновременно). Латентность доступа обычно равна 2−4 тактам ядра. Объём обычно невелик - не более 128 Кбайт.

Вторым по быстродействию является L2-cache - кэш второго уровня. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, к примеру, в процессорном картридже (только в слотовых процессорах). В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1−12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В отличие от L1 кэша, его отключение может не повлиять на производительность системы. При этом, в задачах, связанных с многочисленными обращениями к ограниченной области памяти, к примеру, СУБД, производительность может упасть в десятки раз.

Кэш третьего уровня наименее быстродействующий и обычно расположен отдельно от ядра ЦП, но он должна быть очень внушительного размера - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании.

Кэш второго и третьего уровней наиболее полезен в математических задачах, к примеру, при обсчёте полигонов, когда объём данных меньше размера кэша. В этом случае, можно сразу записать всœе данные в кэш, а затем производить их обработку.

Ассоциативность кэша

Одна из фундаментальных характеристик кэш-памяти - уровень ассоциативности - отображает её логическую сегментацию. Дело в том, что последовательный перебор всœех строк кэша в поисках необходимых данных потребовал бы десятков тактов и свёл бы на нет весь выигрыш от использования встроенной в ЦП памяти. По этой причине ячейки ОЗУ жёстко привязываются к строкам кэш-памяти (в каждой строке бывают данные из фиксированного набора адресов), что значительно сокращает время поиска. С каждой ячейкой ОЗУ должна быть связано более одной строки кэш-памяти: к примеру, n-канальная ассоциативность (англ. n-way set associative) обозначает, что информация по некоторому адресу оперативной памяти может храниться в n местах кэш-памяти.

При одинаковом объёме кэша схема с большей ассоциативностью будет наименее быстрой, но наиболее эффективной.

Кэширование внешних накопителœей

Многие периферийные устройства хранения данных используют кэш для ускорения работы, в частности, жёсткие диски используют кэш-память от 1 до 64 Мбайт (модели с поддержкой NCQ/TCQ используют её для хранения и обработки запросов), устройства чтения CD/DVD/BD-дисков также кэшируют прочитанную информацию для ускорения повторного обращения. Операционная система также использует часть оперативной памяти в качестве кэша дисковых операций (в том числе для внешних устройств, не обладающих собственной кэш-памятью, в т.ч. жёстких дисков, flash-памяти и гибких дисков).

Применение кэширования внешних накопителœей обусловлено следующими факторами:

скорость доступа процессора к оперативной памяти во много раз больше, чем к памяти внешних накопителœей;

некоторые блоки памяти внешних накопителœей используются несколькими процессами одновременно и имеет смысл прочитать блок один раз, затем хранить одну копию блока в оперативной памяти для всœех процессов;

доступ к некоторым блокам оперативной памяти происходит гораздо чаще, чем к другим, в связи с этим использование кэширования для таких блоков в целом увеличивает производительность системы;

для некоторых блоков памяти внешних накопителœей не требуется непосредственной записи после модификации, и использование кэша для таких блоков оптимизирует использование ввода-вывода.

Кэширование, выполняемое операционной системой

Кэш оперативной памяти состоит из следующих элементов:

набор страниц оперативной памяти, разделённых на буферы, равные по длинœе блоку данных соответствующего устройства внешней памяти;

набор заголовков буферов, описывающих состояние соответствующего буфера;

хеш-таблицы, содержащей соответствие номера блока заголовку;

списки свободных буферов.

Алгоритм работы кэша с отложенной записью

Изначально всœе заголовки буферов помещаются в список свободных буферов. В случае если процесс намеревается прочитать или модифицировать блок, то он выполняет следующий алгоритм:

пытается найти в хеш-таблице заголовок буфера с заданным номером;

в случае, в случае если полученный буфер занят, ждёт его освобождения;

в случае, в случае если буфер не найден в хеш-таблице, берёт первый буфер из хвоста списка свободных;

в случае, в случае если список свободных буферов пуст, то выполняется алгоритм вытеснения (см. ниже);

в случае, в случае если полученный буфер помечен как ʼʼгрязныйʼʼ, выполняет асинхронную запись содержимого буфера во внешнюю память.

удаляет буфер из хеш-таблицы, в случае если он был помещён в неё;

помещает буфер в хеш-таблицу с новым номером.

Процесс читает данные в полученный буфер и освобождает его. В случае модификации процесс перед освобождением помечает буфер как ʼʼгрязныйʼʼ. При освобождении буфер помещается в голову списка свободных буферов.

Таким образом:

если процесс прочитал некоторый блок в буфер, то велика вероятность, что другой процесс при чтении этого блока найдёт буфер в оперативной памяти;

запись данных во внешнюю память выполняется только тогда, когда не хватает ʼʼчистыхʼʼ буферов, либо по запросу.

Алгоритм вытеснения

В случае если список свободных буферов пуст, то выполняется алгоритм вытеснения буфера. Алгоритм вытеснения существенно влияет на производительность кэша. Существуют следующие алгоритмы:

LRU (Least Recently Used) - вытесняется буфер, неиспользованный дольше всœех;

MRU (Most Recently Used) - вытесняется последний использованный буфер;

LFU (Least Frequently Used) - вытесняется буфер, использованный реже всœех;

ARC (англ.) (Adaptive Replacement Cache) - алгоритм вытеснения, комбинирующий LRU и LFU, запатентованный IBM.

Применение того или иного алгоритма зависит от стратегии кэширования данных. LRU наиболее эффективен, в случае если данные гарантированно будут повторно использованы в ближайшее время. MRU наиболее эффективен, в случае если данные гарантированно не будут повторно использованы в ближайшее время. В случае, в случае если приложение явно указывает стратегию кэширования для некоторого набора данных, то кэш будет функционировать наиболее эффективно.

Программное кэширование

Политика записи при кэшировании

При чтении данных кэш-память даёт однозначный выигрыш в производительности. При записи данных выигрыш можно получить только ценой снижения надёжности. По этой причине в различных приложениях должна быть выбрана та или иная политика записи кэш-памяти..

Существуют две основные политики записи кэш-памяти - сквозная запись (write-through) и отложенная запись (write-back).

сквозная запись подразумевает, что при изменении содержимого ячейки памяти, запись происходит синхронно и в кэш и в основную память.

отложенная запись подразумевает, что можно отложить момент записи данных в основную память, а записать их только в кэш. При этом данные будут выгружены в оперативную память только в случае обращения к ним какого либо другого устройства (другой ЦП, контроллер DMA) либо нехватки места в кэше для размещения других данных. Производительность, по сравнению со сквозной записью, повышается, но это может поставить под угрозу целостность данных в основной памяти, поскольку программный или аппаратный сбой может привести к тому, что данные так и не будут переписаны из кэша в основную память. Вместе с тем, в случае кэширования оперативной памяти, когда используются два и более процессоров, нужно обеспечивать согласованность данных в разных кэшах.

Кэширование интернет-страниц

В процессе передачи информации по сети может использоваться кэширование интернет-страниц - процесс сохранения часто запрашиваемых документов на (промежуточных) прокси-серверах или машинœе пользователя, с целью предотвращения их постоянной загрузки с сервера-источника и уменьшения трафика. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, информация перемещается ближе к пользователю. Управление кэшированием осуществляется при помощи HTTP-заголовков.

Как вариант, кэширование веб-страниц может осуществляться с помощью CMS конкретного сайта для снижения нагрузки на сервер при большой посœещаемости. Кэширование может производится как в память, так и в файловый кэш (кэш на файлах).

Кэширование результатов работы

Многие программы записывают куда-либо промежуточные или вспомогательные результаты работы, чтобы не вычислять их каждый раз, когда они понужнобятся. Это ускоряет работу, но требует дополнительной памяти (оперативной или дисковой). Примером такого кэширования является индексирование баз данных.

Кэш память (Cache) — массив сверхбыстрой оперативной памяти, являющейся буфером между контроллером системной памяти и . В этом буфере сохраняются блоки данных, с которыми работает в данный момент, тем самым значительно уменьшается количество обращений процессора к медленной системной памяти. Тем самым заметно увеличивается общая производительность процессора.

Различают кэш память 1-, 2- и 3-го уровней (маркируются L1, L2 и L3 ).

Кэш память первого уровня (L1) — самый быстрый, но по объему меньший, чем у остальных. С ним напрямую работает ядро процессора. Кэш память 1-го уровня имеет наименьшую латентность (время доступа).
Кэш память второго уровня (L2) – объем этой памяти значительно больше, чем кэш память первого уровня.
Кэш память третьего уровня (L3) – кэш память с большим объемом и более медленный чем L2.

В классическом варианте существовало 2 уровня кэш-памяти – 1-ий и второй уровень. 3-ий уровень по организации отличается от кэш памяти 2-ого уровня. Если данные не обрабатывались или процессор должен обработать срочные данные, то для освобождения кэш память 2-ого уровня данные перемещаются в кэш память 3-го уровня. Кэш память L3 больше по размеру, однако, и медленнее, чем L2 (шина между L2 и L3 более узкая, чем шина между L1 и L2), но все же его скорость, намного выше скорость системной памяти.

В кэш память 2-ого уровня изначально передаются все данные, для обработки центральным процессором, данные частично декодируются и переходят дальше в ядро.

В кэш память 2-ого уровня из данных строятся цепочка инструкций, а в кэше 1-ого уровня «зеркально» строятся внутренние команды процессора, которые учитывают особенности процессора, регистры и т.д. Число внутренних команд центрального процессора не слишком много поэтому величина кэша 1-ого уровня не имеет большого значения (в современных процессорах кэш память 1-ого уровня L1 может быть с 64 Кб, 128Кб на каждое из ядер). В отличии от кэш памяти 1-ого уровня, кэш память 2-ого уровня для процессора имеет огромное значение, именно поэтому процессоры с наибольшим объемом кэша 2-ого уровня показывают высокую производительность.

В организации структуры Кэш памяти для процессоров существуют отличия. К примеру, AMD процессоры четко разделёны между ядрами кэш памяти, и маркируются соответственно — 512х2 (Athlon 5200 и ниже) или 1024х2 (у Athlon 5200 и выше). А у процессоров Intel Core2Duo кэш строго не поделён, а значит для каждого из ядер можно использовать необходимое количество памяти общего кэша, это хорошо подходит для систем, не поддерживающих многоядерность. Если использовать все ядра, кэш память разделяется на каждое из ядер динамически, в зависимости от нагрузки каждого из ядер.

Кэш — память (кеш , cash , буфер — eng.) — применяется в цифровых устройствах, как высокоскоростной буфер обмена. Кэш память можно встретить на таких устройствах компьютера как , процессоры, сетевые карты, приводы компакт дисков и многих других.

Принцип работы и архитектура кэша могут сильно отличаться.

К примеру, кэш может служить как обычный буфер обмена . Устройство обрабатывает данные и передаёт их в высокоскоростной буфер, где контроллёр передаёт данные на интерфейс. Предназначен такой кэш для предотвращения ошибок, аппаратной проверки данных на целостность, либо для кодировки сигнала от устройства в понятный сигнал для интерфейса, без задержек. Такая система применяется например в CD/DVD приводах компакт дисков.

В другом случае, кэш может служить для хранения часто используемого кода и тем самым ускорения обработки данных. То есть, устройству не нужно снова вычислять или искать данные, что заняло бы гораздо больше времени, чем чтение их из кэш-а. В данном случае очень большую роль играет размер и скорость кэш-а.

Такая архитектура чаще всего встречается на жёстких дисках, и центральных процессорах (CPU ).

При работе устройств, в кэш могут загружаться специальные прошивки или программы диспетчеры, которые работали бы медленней с ПЗУ (постоянное запоминающее устройство).

Большинство современных устройство, используют смешанный тип кэша , который может служить как буфером обмена, как и для хранения часто используемого кода.

Существует несколько очень важных функций, реализуемых для кэша процессоров и видео чипов.

Объединение исполнительных блоков . В центральных процессорах и видео процессорах часто используется быстрый общий кэш между ядрами. Соответственно, если одно ядро обработало информацию и она находится в кэше, а поступает команда на такую же операцию, либо на работу с этими данными, то данные не будут снова обрабатываться процессором, а будут взяты из кэша для дальнейшей обработки. Ядро будет разгружено для обработки других данных. Это значительно увеличивает производительность в однотипных, но сложных вычислениях, особенно если кэш имеет большой объём и скорость.

Общий кэш , также позволяет ядрам работать с ним напрямую, минуя медленную .

Кэш для инструкций. Существует либо общий очень быстрый кэш первого уровня для инструкций и других операций, либо специально выделенный под них. Чем больше в процессоре заложенных инструкций, тем больший кэш для инструкций ему требуется. Это уменьшает задержки памяти и позволяет блоку инструкций функционировать практически независимо.При его заполнении, блок инструкций начинает периодически простаивать, что замедляет скорость вычисления.

Другие функции и особенности .

Примечательно, что в CPU (центральных процессорах), применяется аппаратная коррекция ошибок (ECC ), потому как небольшая ошибочка в кэше, может привести к одной сплошной ошибке при дальнейшей обработке этих данных.

В CPU и GPU существует иерархия кэш памяти , которая позволяет разделять данные для отдельных ядер и общие. Хотя почти все данные из кэша второго уровня, всё равно копируются в третий, общий уровень, но не всегда. Первый уровень кеша — самый быстрый, а каждый последующий всё медленней, но больше по размеру.

Для процессоров, нормальным считается три и менее уровней кэша. Это позволяет добиться сбалансированности между скоростью, размером кэша и тепловыделением. В видеопроцессорах сложно встретить более двух уровней кэша.

Размер кэша, влияние на производительность и другие характеристики .

Естественно, чем больше кэш , тем больше данных он может хранить и обрабатывать, но тут есть серьёзная проблема.

Большой кеш — это большой бюджет . В серверных процессорах (CPU ), кэш может использовать до 80% транзисторного бюджета. Во первых, это сказывается на конечной стоимости, а во вторых увеличивается энергопотребление и тепловыделение, которое не сопоставимо с увеличенной на несколько процентов производительностью.

Что значит очистить кэш: зачем его очищать + 3 способа очистить компьютер + очистка кэша 4 видов браузеров + 2 способа очистить память на Android + 3 способа почистить iPhone.

Компьютеры, планшеты, телефоны нуждаются в грамотной эксплуатации и технической поддержке, если вы хотите, чтобы их работа была правильной, быстрой и бесперебойной.

К одной из важнейших манипуляций для поддержания ПК «в форме» относится решение очистить кэш.

Давайте рассмотрим, что значит очистить кэш , и как это сделать на разных браузерах и операционных системах.

Что такое кэш?

Кэш – это сверхоперативная память (буфер) для временных данных с высокой скоростью доступа и ограниченным объемом.

Он нужен для ускорения обращения к данным, которыми используют часто. Кэширование используется центральным процессором ПК, жесткими дисками, браузерами.

Кэш браузера – хранилище временных данных, загруженных из сетевых ресурсов. Интернет-обозреватель сохраняет временные документы на винчестере ПК.

Когда в браузере просматриваются страницы из интернета, он автоматически сохраняет некоторые части страницы на память компьютера для того, чтобы при повторном просмотре страницы взять данные не с сервера сайта, а из памяти системы, что в разы увеличивает скорость открытия страницы.

Работу процесса кэширования легко проверить.
Откройте любой новый для браузера сайт, затем закройте его.
При повторном открытии сайт загрузится значительно быстрее, чем в первый раз.

Интернет-обозреватель кэширует не все файлы и данные. Это зависит от настроек каждого сайта, которые выставляет веб-мастер.

Что значит очистить кэш?

Процесс очистки подразумевает удаление временных файлов, сохраненных при работе с данными, сайтами. Что значит «очистить кэш»? Стереть все графические и текстовые файлы.

В следующей сессии работы браузера он снова будет брать информацию с сервера сайта, и снова будет сохранять полученные данные в память системы.

Зачем чистить кэш?

Так как временные документы сохраняются на винчестере компьютера, со временем они занимают лишнее место, что влияет на скорость работы операционной системы.

Это отражается как на работе самого компьютера, так и на работе браузера.

Если используются несколько браузеров, каждый из них сохраняет данные в память системы, то таким образом, информация дублируется.
Соответственно, занимает больше места.

Есть еще одна причиной, по которой необходимо чистить память: вытягивая данные с жесткого диска, а не с сервера, интернет-обозреватель может не показывать обновления, произошедшие на сайте.

Как очистить кэш на компьютере?

Чистку ненужных файлов компьютера нельзя назвать простой процедурой, в отличие от аналогичной чистки браузера.

Но если ваш ПК стал подвисать, с большой вероятностью можно сказать, что такая чистка поможет вернуть ему быстродействие.

Рассмотрим процесс удаления временных документов для самой популярной операционной системы – Windows.

При чистке можно использовать встроенные инструменты или специальные программы. Стандартная чистка инструментами Windows считается более эффективной, но требует больше времени и навыков.

Стандартная очистка Windows состоит из 3 пунктов:

  • очистить кэшированную память DNS (система для получения информации о доменах);
  • удаление кэшированных файлов из thumbnails (папка с эскизами просмотренных изображений);
  • очистить кэш-память.

а) Очистить DNS кэш

Чистка DNS кэша производится с помощью командной строки. Зайдите в «Пуск», выберите «Все программы», после «Стандартные», из выпавшего меню откройте «Командная строка».

В появившуюся программу впишите команду «ipconfig /flushdns» без скобок.

В итоге компьютер сам очищает DNS от ненужных данных.

b) Чистка thumbnails кэша


Чистка thumbnails кэша делается с помощью стандартной программы.

Для ее запуска пройдите такой путь:

  1. Зайдите в меню «Пуск ».
  2. Найдите в нем «Все программы ».
  3. Затем «Стандартные программы ».
  4. Потом «Служебные ».
  5. И наконец «Очистка диска ».

Вы увидите окошко «Выбор диска ». Выбираете жесткий диск, на котором находится ОС Windows (как правило, на диске С).

Теперь ваш thumbnails кэш пуст.

c) Очистить кэш-памяти


Еще один способ удалить ненужные временные документы с компьютера

показан в видеоролике:

И не забывайте чистить «Корзину», данные в ней тоже могут занимать много места.

d) Специальные программы для очистки кэша

Для очистки ненужных данных в «оперативке» компьютера удобно пользоваться специальными программами.

Разработано таких сервисов много, но наиболее популярной является Ccleaner.

Эта программа бесплатная. Найти ее в интернете и загрузить на компьютер не составит труда.

Официальный сайт разработчиков, с которого тоже можно скачать бесплатную версию программы: http://www.piriform.com/CCLEANER

Также можно воспользоваться онлайн-версией без установки на ПК.

Чтобы почистить ПК средствами Ccleaner, откройте программу на вкладке «Очистка».

На вкладке «Windows» можно выбрать данные, которые необходимо удалить. Обычно автоматическая настройка достаточно точно определяет такие документы.

Программа удалит ненужные файлы с компьютера, включая те, что сохранены интернет-обозревателями, и из прочего программного обеспечения.

Кликните на кнопку «Анализ» и дождитесь его окончания. После этого нажимайте «Очистка».

Как очистить кэш браузера?

Если необходимости удалить все временные документы с компьютера нет, то можно просто почистить память интернет-обозревателей. Для разных интернет-обозревателей методы очистки немного отличаются.

1) Как очистить память в Internet Explorer?

На панели задач или в основном меню найдите «Сервис» и далее «Свойства обозревателя».

В появившемся окне вам нужна вкладка «Общее», где есть область «История просмотра». В ней кнопочка «Удалить…». Кликнув на эту кнопку, вы увидите появившееся окно со списком документов для утилизации.

Необходимые файлы уже выбраны автоматически, но вы можете самостоятельно отметить, какие данные следует удалить. После нажатия на кнопку «Удалить» временные документы будут стерты.

2) Очистка памяти в Firefox

На основном экране откройте «Настройки». В появившемся окошке найдите «Дополнительные» и зайдите в «Сеть».

В этой вкладке есть область «Кэшированное веб-содержимое» с кнопочкой «Очистить сейчас». Жмете на нее, и Firefox запустит анализ и сотрет ненужное.

3) Чистка памяти в Google Chrome

В Google Chrome найдите «Инструменты», потом «Показать дополнительные настройки».

В некоторых версиях интернет-обозревателя путь такой: «Дополнительные инструменты» — «Удаление данных о просмотренных страницах».

Выбрав этот пункт, вы увидите окошко «Очистить историю».

Выставьте период утилизации «За все время» и выберите «Файлы куки и другие данные с сайтов» и «Изображения, сохраненные в кэше». В конце вам нужно нажать «Очистить историю».

4) Очистка памяти в Опере

Зайдите в раздел «Настройки». В появившемся окошке откройте вкладку «Безопасность». Здесь есть область «Конфиденциальность» с кнопочкой «Очистить историю посещений», жмите на нее.

В появившемся окне следует выбрать период «С самого начала» и отметить, какие данные необходимо утилизировать. Нажимайте на «Очистить историю посещений». Готово.

Как очистить кэш в телефоне?

Современные телефоны, точнее, смартфоны и планшеты нуждаются в таком же обслуживании, как и персональные компьютеры.

В них тоже нужно утилизировать ненужные документы. И делать это следует чаще, чем на ПК, так как объемы «оперативки» меньше и система быстро начинает подтормаживать.

1) Очистка памяти на Android

В операционной системе Android есть 3 вида кэшированной памяти:

  • dalvik-Cache – здесь хранятся оптимизированные файлы приложений;
  • системный кэш – на него записываются файлы системных программ;
  • кэш приложений – тут сохраняются файлы таких приложений, как интернет-обозреватели, игры и прочее.

Чтобы их почистить, можно использовать несколько методов: вручную с помощью стандартной встроенной утилиты или используя дополнительное программное обеспечение.

Способы очистки памяти на Android:

Для примера рассмотрим программу Clean Master:


Как удалить временную «оперативку» с помощью программы CCleaner

смотрите в видеоролике:

2) Очистка кэша на iPhone


Не забывайте периодически очищать ваш компьютер и телефон от временных файлов, ведь теперь вы знаете, что значит очистить кэш – освободить место и облегчить работу системе, повысив тем самым ее производительность и скорость.