Тенденции развития информационных систем управления. Общие тенденции развития информационных систем

Современные тенденции развития экономических информационных систем

2. Современные информационные экономические системы. Тенденции развития

Наметившийся в России переход к рыночной экономике требует новых подходов к управлению: на первый план выходят экономические, рыночные критерии эффективности, повышаются требования к гибкости. Научно-технический прогресс и динамика внешней среды заставляют современные предприятия превращаться во все более сложные системы, для которых необходимы новые методы обеспечения управляемости.

Новым направлением в управлении стало появление контроллинга как функционально обособленного направления экономической работы на предприятии, связанного с реализацией финансово-экономической функции в менеджменте для принятия оперативных и стратегических управленческих решений. Контроллинг - (англ. to control - контролировать, управлять) - это управление управлением. Функции контроллинга:

Координация управленческой деятельности по достижению целей предприятия;

Информационная и консультационная поддержка принятия управленческих решений;

Создание условий для функционирования общей информационной системы управления предприятием;

Обеспечение рациональности управленческого процесса.

Контроллинг является своеобразным механизмом саморегулирования организации и осуществляет обратную связь в контуре управления. Занимая особое место в системе управления, контроллинг способствует информационному обеспечению принятия решений в целях оптимального использования имеющихся возможностей, объективного оценивания сильных и слабых сторон предприятия, а также во избежание банкротства и кризисных ситуаций.

Эффективная деятельность современного предприятия возможна только при наличии единой комплексной объединяющей: управление финансами, управление персоналом, управление снабжением, управление сбытом, контроллинг и управление производством. Комплексные системы (корпоративные информационные системы, КИС) становятся средством достижения основных целей бизнеса: улучшения качества выпускаемой продукции, увеличения объема производства, занятия устойчивых позиций на рынке и победы в конкурентной борьбе.

Для того чтобы обеспечить поддержку большинства потребностей компании, КИС должна создаваться с учетом новейших информационных технологий, включая методику создания распределенных систем - от простых «клиент-сервер» приложений до сложных географически распределенных систем. Создаваемая комплексная система должна быть гибкой и легко модифицируемой, позволяющей отслеживать непрерывные изменения в бизнесе.

Практика создания информационных систем по модели компании «как есть» показала, что автоматизация без реинжиниринга бизнес-процессов и модернизации существующей системы управления не приносит желаемых результатов и неэффективна, так как использование программных приложений - это уже переход на новые формы ведения документооборота, учета и отчетности. Проект по реинжинирингу бизнеса включает следующие четыре этапа.

1. Разработка образа будущей компании - спецификация основных целей компании исходя из ее стратегии, потребности клиентов, общего уровня бизнеса в отрасли (определяется на основе анализа смежной отрасли другой ведущей компании) и текущего состояния компании.

2. Создание модели существующей компании - разработка детального описания существующей компании, идентификация и документирование основных бизнес процессов, оценка их эффективности.

3. Разработка нового бизнеса (прямой инжиниринг):

Перепроектирование бизнес-процессов, создание более эффективных рабочих процедур (элементарных заданий, из которых строятся бизнес процессы), определение способов использования информационных технологий, идентификация необходимых изменений в работе персонала;

Разработка бизнес-процессов компании на уровне трудовых ресурсов: проектирование перечня выполняемых работ, подготовка системы мотивации, организация команды по выполнению работ и группы поддержки качества, создание программы подготовки специалистов и т.д.;

Разработка поддерживающих информационных систем: определение имеющихся ресурсов (оборудования, программного обеспечения) и создание специализированной информационной системы при активном участии будущих пользователей системы.

4. Внедрение перепороектированных процессов - интеграция и тестирование разработанных процессов и поддерживающей информационной системы, обучение сотрудников, установка информационной системы.

При реинжиниринге бизнес-процессов в первую очередь формулируются основные проблемы и потребности бизнеса и строятся модели бизнес-процессов, включающие в себя все события и последовательности выполнения операций, которые должна поддерживать информационная система. Параллельно проводятся технический аудит существующей информационной системы и разработка технической архитектуры: определяются базовые принципы технического построения системы, определяется стратегия по безопасности данных и контролю доступа, интерфейсов пользователей, копированию и восстановлению данных.

Затем формируются рекомендации по изменениям организационной структуры предприятия и структуре бизнес-процессов. Во время реализации проекта сотрудники отделов вместе с разработчиками должны работать с информацией и моделями, участвовать в выборе технологических решений. Только при внедрении КИС сверху вниз и активном содействии руководства можно изначально правильно оценить и провести весь комплекс работ без незапланированных издержек. Для реализации проекта внедрения КИС, включающего реорганизацию системы управления предприятием и реинжиниринг бизнес-процессов необходимо привлечение квалифицированных специалистов, поэтому обычно привлекаются консалтинговые компании.

В начале 21-го века появились стандарты и модели организации управления непрерывно развивающимся предприятием - стандарты менеджмента качества. Большинство современных информационных систем управления полностью реализуют принципы, отраженные в данных стандартах (серии ИСО9000:2000), которые, фактически являются стандартами эффективной организации деятельности.

В настоящее время наряду с системами, реализующими модели ресурсного управления MRPI, MRPII, ERP, CRM, и SCM широко используются следующие системы:

Управление Проектами (Project Management System) - система поддерживает создание, изменение, запуск и выполнение проектов компании с возможностью автоматического расчета и оптимизации сроков выполнения и финансовых затрат по проекту;

Управление Процессами (Business Process Management) - система поддерживает запуск и выполнение бизнес-процессов;

Управление Персональными Задачами (Personal Information System) - система, поддерживающая исполнение персоналом поступивших задач, создание собственных задач руководителей, создание задач подчиненных.

В настоящее время наибольшее распространение получили информационные системы, основанные на алгоритмах обработки данных. Алгоритмы зафиксированы в программном коде систем. Для изменения свойств системы требуется изменить состав или параметры алгоритмов и провести тестирование модулей автономно или в составе новой версии системы. Алгоритмы отличаются количеством и структурой функциональных модулей. Различают три типа алгоритмических систем.

1.Монолитные системы. Создаются годами программирования. Для поддержки актуального состояния требуется содержать группу специалистов, иначе системы могут применяться как накопители и поставщики данных в прикладные системы, способные динамично и недорого локально изменять свойства.

2.Модульные системы. Системы, построенные на комплексе специализированных программных модулей, интегрированных по данным. Создание систем стало началом эволюции систем управления ресурсами и привело к существенному сокращению срока и цены.

3.Компонентные системы. Системы основаны на открытых стандартах информационного обмена компонент независимых разработчиков и развитой способности интеграции компонент. Свойства компонентов развиваются его автором. Модернизация системы сводится к замене отдельных компонент или их версий и новой их интеграции. Построение систем из компонент существенно снизило срок, цену и риски и создало благоприятные условия для объединения услуг независимых интеграторов и консультантов.

Развитие алгоритмической системы ограничено составом модулей системы. Функциональность системы развивается в значительной степени автономно от развития предприятия и целей бизнеса. В период смены версий системы имеется риск потери устойчивости управления. Развитие системы может осуществлять разработчик и интегратор. Пределы изменения свойств систем заранее предопределены разработчиком. Предполагается, что при дальнейшем росте требований к гибкости и адаптивности алгоритмические системы либо отомрут, либо займут нишу локальных систем.

Главная тенденция развития информационных систем заключается в переходе от алгоритмических систем к интеллектуальным системам, способным принимать и объединять знания. Интеллектуальные системы отличаются наличием редактора компонент бизнеса и интерпретатора бизнес-правил. Такие системы не имеют встроенных в программный код алгоритмов, управляются на основе накопленных в системе правил обработки данных и потому способны принимать и обрабатывать знания.

Пределы изменения свойств интеллектуальных систем заранее не устанавливаются, так как их свойства полностью определяются моделью организации. Замена модели приводит к изменению свойств системы. В связи с тем, что изменение описания ресурса бизнеса или правила операций приводит к смене модели, то свойства интеллектуальных систем изменяются с каждым вводом новой информации или данных. Ввод системы в действие представляет собой обучение системы. Функциональность системы развивается вместе с развитием предприятия и целей бизнеса. Возможно одновременное управление предприятием и изменение модели организации.

В ближайшем будущем будут приняты стандарты на представление данных, информации и знаний, что значительно снизит транзакционные издержки и создаст условия для ускоренного создания новых знаний и их обмена. Уровень интеграции знаний уже превосходит масштабы одной страны. Информационные системы, как и сами предприятия, становятся виртуальными глобально распределенными организационно-техническими системами, компоненты которых интегрированы на основе стандартов в инфраструктуру информационного общества, поддерживающую деятельность, управление деятельностью и развитие деятельности организации.

Автоматизированные системы управления производством в сервисных предприятиях

В связи с указанными выше недостатками постепенно стало формироваться современное поколение ИС. Техническая платформа - мощные ЭВМ 4-5 поколения, использование разных платформ в одной ИС (большие ЭВМ, мощные стационарные ПК, мобильные ПК)...

Информационные системы

Термин информация используется во многих науках и во многих сферах человеческой деятельности. Он происходит от латинского слова "informatio", что означает "сведения, разъяснения, изложение". Несмотря на привычность этого термина...

Основные процессы преобразования информации. Электронная почта

Мультимедиа - это множественные информационные среды - интерфейсы, обеспечивающие ввод/вывод информации различных типов в компьютер, компьютерное создание...

Практическое применение мультимедийных технологий

Мультимедиа (multimedia) - это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию(мультипликацию).Мультимедиа-это сумма технологий...

Принципы построения и функционирования сетей передачи данных в распределенных корпоративных сетях

Хотя переход на новые высокоскоростные технологии, такие как Fast Ethernet и 100VG-AnyLAN, начался не так давно, уже находятся в разработке два новых проекта - технология Gigabit Ethernet и Gigabit VG, предложенные соответственно Gigabit Ethernet Alliance и комитетом IEEE 802.12...

Принципы разработки web-сайтов (на примере ЗАО "Кондитерская фабрика "Саратовская")

Проектирование информационной системы планирования работы фирмы "UniSoft"

Разработка автоматизированной информационной системы учета договоров подряда в строительной фирме

Эволюция мировой индустрии ИТ включает четыре этапа. Начальный этап соответствует использованию разнотипных и плохо совместимых друг с другом мини-ЭВМ и мейнфреймов в интересах ограниченных производственных коллективов...

Разработка бизнес- плана для агентства недвижимости "Астрея"

Под системой понимают любой объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность разнородных элементов...

Разработка программного модуля выбора рационального варианта мер и средств защиты информации от несанкционированного доступа на типовых объектах информатизации

В области научной методологии происходит философское переосмысление роли информации и информационных процессов в развитии природы и общества. Информационный подход становится фундаментальным методом научного познания...

Электронные библиотеки как информационные ресурсы

Существующие в настоящее время и разрабатываемые новые системы электронных библиотек характеризуются большим разнообразием поддерживаемых в них информационных ресурсов, способов организации их коллекций...

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «БУРЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«БОХАНСКИЙ ФИЛИАЛ»


На тему: «Тенденции развития земельных информационных систем»

Дисциплина «Геодезия и картография»


Выполнил: Студент гр.60212

Барлуков Александр

Проверила: Габеева Д.А.


Бохан, 2014



Введение

Общая характеристика

Пример работы

. "Разработка земельно-информационной системы на территорию субъекта Российской Федерации"


Введение


Информационная система - это совокупность процессов манипулирования исходными данными в целях получения информации, необходимой для принятия решений. Земельно- информационная система (ЗИС) - это информационная система, ориентированная на данные о земельных ресурсах. Определение Международной Федерации геодезистов (FIG): Земельно- информационная система - это орудие для принятия решений юридических, административных и экономических, а также обеспечения помощи в планировании и разработке перспективных решений, состоящая, с одной стороны, из базы данных по определенной территории, содержащей пространственные данные, относящиеся к земле и прочно связанной с ней недвижимости, и, с другой стороны, из процедур и технических приемов по систематическому сбору, обновлению, обработке и распределению данных.

Относящаяся к земле информация становится необычайно важной для упорядоченного, благоприятного и разумного использования земли. В прошлом подобная информация собиралась, хранилась, обновлялась и распределялась на бумажных носителях в регистрах, книгах, планах и картах. С появлением современной технологии эти виды работ в настоящее время компьютеризируются и автоматизируются по всему миру. Разнообразие ЗИС велико и включает финансовые системы, юридические системы регистрации земли, системы демографических и социальных данных. Главное значение в создании эффективных, важных и гибких ЗИС имеют:

наличие общественно доступных рамок системы;

конструктивные действия правительства по координации существующих функций, относящихся к земле;

стандартизация процедур и терминологии.

Наиболее важной, полной и значимой земельно-информационной системой является автоматизированная информационная система государственного земельного кадастра. АИС ГЗК предназначена для учета, регистрации и оценки земель, направлена на регулирование земельных отношений и включает в себя сведения о правовом, хозяйственном и природном состоянии земель Российской Федерации. АИС ГЗК подробно описана выше и содержит основные сведения о земельно-информационных системах, поэтому в данном подпункте ограничимся общими представлениями о ЗИС.


1. Общая характеристика


Анализ состояния земельно-информационных систем субъектов РФ показал, что в настоящее время для решения сложных задач территориального управления уже недостаточно использовать только картографические данные (топографические карты, планы, схемы, тематические и кадастровые карты). Необходимо наличие баз данных разнородной информации (геопространственной и семантической). Такое комплексное хранение информации возможно лишь при использовании геоинформационных технологий и информационных систем поддержки принятия решений по управлению территориями.

Пространственный, или географический фактор является одним из доминирующих при решении задач территориального управления, а также для решения производственных задач различными службами и организациями. Очевидно, что базы пространственных данных, сформированные для использования в земельно-информационных системах, весьма востребованы при решении широкого спектра задач территориального управления.

На данный момент активно развивается программа по созданию территориальной информационной системы. Это обусловлено, в первую очередь, современной экономической политикой развития региона. Основной задачей первого этапа работ является подготовка научно-технического обоснования принципов создания и функционирования земельно-информационной системы с использованием пространственных данных о территории, исследование сфер ее применения и, что немаловажно, комплексного использования результатов ее работы.

Разработанная земельно-информационная система позволит сформировать в рамках единого геоинформационного пространства, сведения о территории, регламентах ее использования, объектах недвижимости, транспортной и инженерной инфраструктуре, централизовать и упорядочить хранение и обновление информации об объектах, обеспечить доступ населения к открытым информационным ресурсам субъекта РФ.

Таким образом, решение задач, связанных с созданием земельно-информационной системы, а также основного ее компонента, разработки структуры и содержания базы разнородных пространственных данных, является актуальной.

Степень разработанности проблемы. В основу исследования положены принципы формирования современных информационных и геоинформационных систем, современные методы сбора кадастровых данных, геодезические методы создания топографических и кадастровых карт, методы земельно-картографического моделирования, методы кадастрового зонирования и мониторинга территории.

Разработана структура и содержание земельно-информационной системы, выполнена практическая реализация земельно-информационной базы данных по территориальным объектам, внедрена геоинформационная составляющая земельно-информационной системы.

Теоретическая значимость заключается в разработке принципов сбора, обработки, хранения и обновления пространственных данных для функционирования земельно-информационной системы на территорию субъекта РФ и организации информационной основы ведения мониторинга территории.

земельных информационный кадастровый

2. Пример работы


Для оперативного управления территориями, органами государственной власти любого уровня, требуется привлечение в сжатые сроки разнородной (кадастровой, топографической, статистической, геологической, экологической, экономической и т. п.) информации, в том числе координатно-привязанной. Эта информация должна представляться в удобной для анализа форме и обеспечивать принятие наиболее оптимальных управленческих решений. Земельно-информационные системы позволяют интегрировать разнородную информацию, обрабатывать ее различными методами и представлять в виде, удобном для анализа.

Создание земельно-информационных систем для территориального управления является весьма актуальной задачей по ряду причин:

земельно-информационная система позволяет максимально эффективно управлять городом, районом, территорией, четко планировать предполагаемые виды работ и их стоимость;

появляется возможность быстрого реагирования и диспетчеризации принятия оперативных управленческих решений для служб ГО и ЧС и правоохранительных органов;

повышается эффективность работы территориальных органов Росреестра при осуществлении региональной стратегии развития;

появляется возможность максимального и полного использования кадастровой информации как единого источника сведений об объектах недвижимости и границах различных территориальных образований.

Основным компонентом данной системы является актуальная кадастровая и картографическая база данных по территории. Поэтому проблема разработки структуры интегрированных кадастровых и картографических баз данных на территорию субъекта РФ является одной из первоочередных на пути построения земельно-информационной системы и единой геоинформационной системы по принятию оперативных решений.

Для выработки стратегии автоматизации процессов территориального управления целесообразно все задачи, решаемые органами местного самоуправления, разделить на группы по уровню требуемых информационных ресурсов. Необходимый уровень информационных ресурсов определяется в соответствии со следующими группами:

а) задачи, решение которых требует наличия на территорию пространственной информации;

б) задачи, решение которых требует наличие на территорию пространственной и описательной информации;

в) задачи, для решения которых возможно использовать только семантическую информацию;

г) задачи, для решения которых необходимо использовать автоматизированную систему управления и анализа разнородных данных;

д) задачи, которые возможно решить без использования пространственной и семантической информации.

Следовательно, разработанная земельно-информационная система представляет собой программный комплекс, обеспечивающий хранение, поиск, визуализацию и редактирование информации по территории субъекта РФ, а также ее преобразование для решения задач кадастра, градостроительства, проектирования, анализа, планирования и учета, проведения промежуточных и итоговых расчетов, формирования отчетной документации на основе базы данных по муниципальным образованиям, районам и субъекту РФ.

Если данная система правильно организована, то сбор и обработку данных можно распределить между различными властями и организациями, что устранит дублирование, а информацию сможет использовать не только отдельный орган власти, но и широкий круг пользователей.

Земельно-информационная система, ориентированная на задачи управления территориями субъекта РФ, должна обладать следующими функциональными возможностями, позволяющими обеспечивать:

внесение и отображение текущих изменений в данные о состоянии территории и объектов недвижимости, находящихся на ней, вызванных хозяйственной деятельностью и стихийными факторами, в атрибутивные и картографические базы данных;

быстрый поиск информации в соответствии с различными условиями запроса;

проектирование различных ситуаций на электронной карте;

работу с современным навигационным оборудованием;

оперативный обмен атрибутивной и картографической информацией о выполненных мероприятиях между различными уровнями управления;

накопление и анализ информации о выполняемых хозяйственных мероприятиях;

формирование отчетной документации.

Земельно-информационная система должна обеспечивать выполнение требований, определяющих набор информативных показателей для базового уровня управления:

каждый физический объект, изображенный на карте, должен идентифицироваться системой как один объект (а не как набор точек) с соответствующим ему списком семантических характеристик;

дежурные кадастровые карты территориального планирования и градостроительного зонирования (зоны) должны быть связаны с документами, определяющими функциональное назначение и регламент зон согласно документации территориального планирования и правилам землепользования и застройки;

система должна позволять создавать пространственные запросы с целью определения основных показателей объектов земельных участков и территориальных, и функциональных зон;

При учете пространственных запросов по любому объекту должен проводиться <#"justify">Список использованных источников


1. Федеральный закон от 20.02.95 № 24-ФЗ "Об информации, информатизации и защите информации":

Временное положение по организации редактирования цифровой картографической продукции Текст. / Разработано Госгисцентром. М.: ЦНИИГАиК, 2000.

Карты цифровые топографические. Система классификации и кодирования цифровой картографической информации Текст. / ГОСТ Р 516062000 М.: ГОССТАНДАРТ России, 2000.

Карты цифровые топографические. Правила цифрового описания картографической информации. Общие требования Текст. / ГОСТ Р 51607-2000 М ГОССТАНДАРТ России, 2000.

Федеральный закон №221-ФЗ от 24.07.2007 «О государственном кадастре недвижимости».

Федеральный закон N 122-ФЗ от 21.07.1997 «О государственной регистрации прав на недвижимое имущество и сделок с ним».

Постановление Правительства РФ от 10 марта 1999 г. N 266 «О порядке ведения единого государственного реестра налогоплательщиков» в Приложении к Правилам ведения единого государственного реестра налогоплательщиков.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

1. Тенденции развития автоматизированных систем бухгалтерского учета.

2. Перспективы развития автоматизированных систем бухгалтерского учета.

3. Режимы взаимодействия пользователя и ЭВМ в бухгалтерских информационных системах.

Тенденции развития автоматизированных систем бухгалтерского учета

Новые требования к программам бухгалтерского учета

За последние годы бухгалтерский учет стал сложнее на всех участках. В систему учета и отчетности введены новые объек­ты и понятия, изменились методы и формы учетной работы и, как результат, изменился подход к выбору программ автома­тизации бухгалтерского учета. В настоящее время уже недо­статочно, когда бухгалтерская программа обеспечивает только ведение бухгалтерского учета. Это должны быть программы с большим функциональным наполнением, способные решать задачи анализа хозяйственной деятельности, налогового учета и многие другие. В программу могут быть заложены различные принципы работы. Если, например, в программе принят принцип работы «От документа», то в базе данных вся вводимая информация будет храниться только в привязке к первичным документам, а все получаемые отчеты и справки будут рассчитываться на ос­новании их данных. Принцип предполагает постоянное и ин­тенсивное обращение системы к документам, любой факт совер­шаемой хозяйственной деятельности отражается в информаци­онной базе с помощью электронных форм стандартных первич­ных документов. На их основе автоматически создаются бухгалтерские проводки. Электронные формы документов максимально приближены к типовым унифицированным формам, с которыми привык работать бухгалтер. С любым документом в процессе его подготовки можно работать, многократно сохраняя промежуточную информацию. Реквизиты большинства докумен­тов программа способна ввести автоматически на основании форм, ранее внесенных в информационную базу.

Если в программе принят принцип ведения бухгалтерского учета «От проводки», то сначала в базе данных регистрируется «открытая», ни с чем не связанная проводка, а затем вводятся все недостающие по ней данные. Учет может вестись как на уровне отдельных проводок, так и на уровне типовых опера­ций. Такой подход обеспечивает дополнительную гибкость ведения учета, но не обладает наглядностью, как при работе «От Документа». Современные программные средства обеспечивают возможность перехода от одного метода к другому.

Внедрение западных систем автоматизации

Эффективность системы управления может быть повы­шена за счет внедрения западных систем автоматизации. Российские программные продукты ориентированы в основном на решение задач учета. Зарубежные включают широкий набор управленческих функций: гибкие механизмы ценооб­разования, возможность формирования бюджетов компаний с последующим контролем их исполнения, прогнозирование потребностей в денежных и товаро-материальных ре­сурсах и другие. Внедрение западных разработок связано с проблемами, вызванными спецификой отечественного бух­галтерского учета. Главная сложность объясняется различ­ными методологиями ведения учета.

В отечественном учете принята однострочная запись прово­док: «дебет - кредит - сумма». В западной бухгалтерии ис­пользуется многострочная запись: «счет - сумма - тип оборо­та: дебетовый или кредитовый». При этом одна проводка со­стоит из нескольких записей по дебету и кредиту счетов. В одной проводке в западной бухгалтерии может одновременно дебетоваться и кредитоваться сразу несколько счетов, что не позволяет определить суммарный оборот между двумя коррес­пондирующими счетами. Для расчета ряда показателей рос­сийской отчетности такие данные необходимы. В западном бухгалтерском учете не используются такие понятия, как «крас­ное сторно», «развернутое двухстороннее сальдо», применяе­мые в российской бухгалтерии. Преодолеть имеющиеся разли­чия можно лишь с помощью ряда искусственных приемов, которые существенно повышают трудоемкость ведения учета.

Тенденции развития программ бухгалтерского учета

Совершенствование пользовательского интерфейса

Имеет целью сделать работу пользователя с программой ком­фортной и осуществляемой в соответствующей программно-тех­нической среде. Пользовательский интерфейс определяет вид, размер, и местоположение основного экрана, функции обра­ботки, доступные через систему меню, панели инструментов и т.д. Программные продукты должны гарантировать надежную и безопасную работу как для компьютера, так и для информа­ционной системы пользователя, обеспечивая сохранность уст­ройств компьютера, программного обеспечения и данных.

Создание условий для автоматизации деятельности спе­ циалистов

Означает, что создаваемые автоматизированные рабочие места полностью поддерживают профессиональную деятельность конечного пользователя. Многие АРМы наряду с основными функциями обработки обеспечивают выполнение и вспо­могательных, сервисных функций, таких как копирование, восстановление, экспорт-импорт данных и другие.

Создание инструментальных средств конечного пользо­ вателя обеспечивает совершенствование функций обработки, создание новых приложений силами конечного пользователя. Для программ бухгалтерского учета такими инструменталь­ными средствами являются:

  • генератор экранных форм - позволяет создавать новые и отменять существующие экранные формы (располо­жение на экране реквизитов, соответствующих полям базы данных, использование текста подсказок, цвето­вое оформление и др.);
  • язык запросов - обеспечивает поиск и фильтрацию за­писей базы данных, выборку машинных документов, вычисления над данными базы данных;
  • макропрограммирование включает клавишные и язы­ковые макрокоманды (макросы), предназначенные для автоматизации рутинных операций обработки;
  • генератор отчетов - обеспечивает вывод запросной инфор­мации, формирование различного уровня итогов и другого;
  • интегрированные пакеты - наборы нескольких про­граммных продуктов, функционально дополняющих друг друга и поддерживающих единые информацион­ные технологии. Среда интегрированного пакета - это в определенном смысле автоматизированное рабочее место, обеспечивающее работу пользователя мощными и гибкими средствами.

Расширение функциональных возможностей программ обес­печивает расширение сфер их действия.

Одни разработчики программного обеспечения за­нимаются расширением возможностей программ за счет со­вершенствования средств организации аналитического уче­та и их настройки, пытаются выйти за пределы задач учета, расширив сферу их применения. В результате в рамках чис­то бухгалтерской модели обработки пользователь получает возможность решать задачи оперативного учета и анализа. Другие ориентируются на разработку не отдельных компо­нентов автоматизации, а на создание комплексных инфор­мационных систем масштаба предприятия или корпорации и не ограничиваются только решением задач бухгалтерского и оперативного учета.

Перспективы развития автоматизированных систем бухгалтерского учета.

Тенденции развития программ автоматизации

В настоящее время определились две тенденции развития. Первая характеризует переход от эпохи алгоритма к эпо­хе модели. Алгоритм постепенно утрачивает свою значимость, на практике пользователь не использует алгоритмическую форму представления информации, не обеспечивающую ему необходимого удобства во взаимоотношениях с ЭВМ. Модель определяет, «что надо вычислить», а алгоритм - «как надо вычислить», и хотя без обеих названных составляющих не обойтись, модели оттесняют алгоритм, превращаясь из пас­сивных элементов в активные.

Вторая предполагает отказ от закрытости систем и пере­ход к открытым системам. Чтобы программный продукт был конкурентоспособным, он должен обладать:

· способностью к переносимости прикладных программ на различные платформы ЭВМ;

· способностью к унифицированному обмену данными между различными платформами ЭВМ;

· возможностью замены одного компьютера на другой без каких-либо затруднений.

Перспективы развития программ автоматизации:

· применение новейших информационных технологий;

· реализация новых возможностей по адаптации программ к потребностям конечного пользователя;

· развитие механизмов взаимодействия с другими про­граммами;

· развитие систем управления документооборотом;

· взаимодействие с западными системами бухгалтерско­го учета;

· обеспечение соответствия систем бухгалтерского учета и систем налогообложения требованиям законодатель­ства и соответствующих нормативных документов;

· создание новых версий программ, включающих допол­нительные возможности ведения как финансового, так и управленческого учета;

· формирование показателей отчетности предприятия в автоматическом режиме;

· обеспечение открытости систем.

Аспекты открытости систем выражаются в стандартизации:

· интерфейсов прикладных программ с операционным ок­ружением;

· межпрограммного интерфейса, включая языки програм­мирования;

· сетевого взаимодействия;

· пользовательского интерфейса;

· средств защиты информации.

Перспективы развития в области языков программиро­ вания

В связи с необходимостью отражения в языках програм­мирования новых возможностей ЭВМ сформировались три под­хода к их развитию:

· расширение существующих языков;

· создание новых языков для конкретных типов машин;

· создание новых языков, не ориентированных на конк­ретную вычислительную систему.

Представителем последнего подхода является язык JAVA - простой, объектно-ориентированный, распределенный, перено­симый, многопоточный и динамичный язык.

‘Перспективы развития в области систем управления ба­ зами данных

Совершенствование систем управления базами данных оп­ределяется всеобщей ориентацией на объектное программи­рование. Реляционные СУБД представляют собой значитель­ный прогресс в технологии управления данными, однако они оказались неудобными из-за необходимости приведения дан­ных к нормальной форме, в результате чего теряется смысл данных. С развитием объектно-ориентированного подхода по­явилась возможность описывать не только сложные структу­ры данных, но и поведение объектов реального мира. В ближайшем будущем ставится задача перевода реляционных баз данных в объектно-ориентированные.

Режимы взаимодействия пользователя с ЭВМ

При проектировании автоматизированной системы управ­ления важным является вопрос о выработке форм взаимодей­ствия пользователя и ЭВМ, способов обмена информацией. Поскольку ЭВМ не в состоянии непосредственно воспринимать информацию, содержащуюся в документах, а также речевые команды, возникает вопрос о способе ввода информации.

Пакетная обработка - решаемые задачи собираются в пакет и пропускаются по одной в порядке установленной оче­реди. В машину вводятся исходные данные и программа ре­шения задачи, а она выдает оформленные результаты (отче­та!), имеющие самостоятельное значение и пригодные для не­посредственного использования в работе. Обработанная ин­формация может выдаваться в виде таблиц, ведомостей, гра­фиков. При таком способе работники экономических служб осуществляют сбор, контроль и комплектование информации, передачу ее в центр обработки, а после получения результа­тов решения - их использование в работе. Пакетный режим не обеспечивает оперативной, непосредственной связи пользователя с ЭВМ. Между тем потребность в такой связи возникает во многих случаях, когда требуется оперативное получения разного рода сведений, участие заинтересованных пользователей в производимых машиной расчетах, оперативное из­менение хранящихся данных.

Интерактивное взаимодействие пользователя с ЭВМ ха­рактеризуется тем, что компьютер реагирует на воздействие пользователя настолько быстро, что это позволяет влиять на ход решения задачи. Данный режим обеспечивает:

· непосредственный контакт пользователя с системой;

· оперативный поиск необходимых пользователю данных;

· возможность практически одновременно обслуживать не­скольких пользователей в условиях, когда потребность в обслуживании непредсказуема.

В интерактивных системах типа «запрос-ответ» взаимодей­ствие с пользователем осуществляется в нескольких вариан­тах: на языке, близком к естественному, путем заполнения пользователем форматов, предъявляемых машиной, путем вы­бора из меню необходимого варианта решения задачи. Одним из типов интерактивных систем являются ди­алоговые системы.

Требования к диалоговым системам

Такие системы должны быть:

· доступными любому пользователю независимо от уров­ня его подготовки в области информационных систем и языков программирования;

· нечувствительными к ошибкам пользователя. Если смысл неправильно введенного сообщения можно оп­ределить из контекста, система должна откорректиро­вать неправильный ответ, для чего в формулировке зап­росов пользователей должна допускаться некоторая из­быточность сообщений;

· способными выдавать пользователю информацию о даль­нейших действиях при возникновении затруднений в процессе диалога. Система обеспечивает возможность корректировки ранее введенных сообщений на любой стадии диалога, осуществляет выдачу сообщений об ошибках, позволяющих их обнаруживать и исправлять.

Задачи, решаемые в диалоговом режиме:

Если система информационная, то в диалоговом режиме решаются следующие задачи:

· ввод информации в ЭВМ в системе диалога, при этом часть работы по проверке правильности ввода информации выполняет человек, если ее невозможно или нецелесообразно по каким-либо причинам передавать машине;

· поиск информации и получение ответов на запросы;

· редактирование текстовой информации;

· инструктирование, программное обучение.

Если система человеко-машинная, то в диалоговом режи­ме осуществляются:

  • диалоговое программирование, имеющее целью написа­ние, проверку, корректировку, переработку программ и изменение условий работы как отдельных подпрог­рамм, так и всей программы в целом. Результатом яв­ляется готовая и отлаженная программа;
  • конструирование, имеющее целью рассмотрение и оцен­ку с разных точек зрения возможных вариантов конст­рукторских решений;
  • принятие решений, включающее в себя как сложные ин­формационные системы, способные к дедуктивному и ин­дуктивному обобщению, так и комплекс моделей системы управления, в которой необходимо принимать решения.

Аннотация: В лекции рассматриваются основные этапы развития ИТ, даются первоначальные сведения о процессном подходе в управлении бизнесом, архитектуре предприятия, ИТ-архитектуре.

Введение

Эффективное управление в настоящее время является ключевым требованием, предъявляемым к организациям со стороны рынка. Постоянные перемены (прежде всего в экономической среде) ведут к непрерывному поиску и совершенствованию стратегии и тактики ведения бизнеса.

С другой стороны, в современных условиях невозможно достичь эффективности ведения бизнеса без использования ИТ, в свою очередь , бурно и интенсивно развивающихся именно под воздействием стоящих перед бизнесом стратегических и тактических задач.

Фактически, одновременно произошли две взаимно повлиявшие друг на друга революции – в бизнесе и в ИТ, следствием которых стало резкое повышение востребованности услуг в области стратегического управления информационными системами.

Стратегическое управление информационными системами представляет собой комплекс теоретических основ и методов, которые обеспечивают целостный, процессно-ориентированный подход к принятию управленческих решений, направленных на повышение эффективности владения и развития информационных систем для достижения бизнес-целей организаций и создания новых конкурентных преимуществ. Изучение этих методов позволяет:

  1. анализировать и формировать показатели эффективности использования информационных технологий для организации стратегического и оперативного управления их развитием;
  2. разрабатывать стратегии развития информационных систем;
  3. организовывать ИТ-службу и управлять ее деятельностью;
  4. эффективно управлять портфелем ИТ-проектов;
  5. рационально организовывать взаимодействие с вендорами и партнерами;
  6. руководить проектами в области ИТ-консалтинга;
  7. организовывать переход к аутсорсингу и контролировать его выполнение.

Необходимость подготовки специалистов такого профиля обусловлена объективными потребностями бизнеса и сферы госуправления. Современный бизнес требует наличия стратегии управления развитием информационных систем, которая бы обеспечивала поддержку реализации стратегии развития самого бизнеса, и руководителей, способных разрабатывать и осуществлять соответствующие планы.

Заметим, что в настоящее время отмечается качественное расширение понятия и термина "система", происходящее в международных комитетах и профессиональных сообществах, ориентированных на ИТ. На современном этапе под системой понимается "комплекс, состоящий из процессов, технических и программных средств, устройств и персонала, обладающий возможностью удовлетворять установленным потребностям или целям". Отметим, что это определение достаточно близко к определению понятия " автоматизированная система ", приведенного в ГОСТ 34.003-90.

Информационная технология. Комплекс стандартов и руководящих документов на автоматизированные системы. Термины и определения – "в процессе функционирования автоматизированная система представляет собой совокупность комплекса средств автоматизации, организационно-методических и технологических документов и специалистов, использующих их в процессе своей профессиональной деятельности".

Информационная система представляет собой систему, предназначенную "для сбора, передачи, обработки, хранения и выдачи информации потребителям и состоящая из следующих основных компонентов:

  1. программное обеспечение;
  2. информационное обеспечение;
  3. технические средства;
  4. обслуживающий персонал.

В стандартах присутствует и четкое определение понятия "ИТ-система", так в ГОСТ Р ИСО/МЭК ТО 10000-1-99 информационно-технологическая система определяется как "набор информационно-технологических ресурсов, обеспечивающий услуги по одному или нескольким интерфейсам".

1.1. Революция в бизнесе – переход к процессному подходу

Современное состояние экономики характеризуется переходом от традиционной функциональной индустриальной модели Адама Смита к модели процессной.

Функциональная модель строится на предпосылке, что работники обладают невысокой квалификацией, поэтому предлагаемые им задачи должны быть очень простыми. Более того, Адам Смит доказывал, что люди работают наиболее эффективно тогда, когда им предлагается для выполнения всего одна хорошо понятная им работа. Таким образом, функциональная модель предполагает разбиение на простейшие задания, исполняемые по конвейерной схеме с четко регламентированными маршрутами, как правило, в рамках структурных подразделений организации. Отсюда и следуют основные правила игры: иерархические организационные структуры, конвейерные технологии, управление по структурным элементам (подразделениям), взаимодействие через структурные элементы более высокого уровня и т.п.

Главными недостатками функционального подхода являются следующие:

  • сложность увязывания простейших задач в технологию, производящую реальный товар или услугу;
  • отсутствие целостного описания такой технологии;
  • отсутствие ответственного за конечный результат;
  • высокие затраты на бесполезную работу: согласование, взаимодействие, контроль и т.п.;
  • отсутствие ориентации на клиента.

Процессный подход декларирует смещение акцентов от управления отдельными структурными элементами на управление сквозными бизнес-процессами, связывающими воедино деятельность этих структурных элементов, пронизывает организационно-штатную структуру по горизонтали и предполагает различные версии (и сложные маршруты исполнения) процессов. При этом под бизнес-процессом понимается совокупность действий, продуцирующую результат ( товар или услугу), имеющий ценность для клиента. Отметим, что в качестве клиента может выступать как внешний заказчик, так и другое подразделение организации.

Пример бизнес-процесса - получение товара по заказу. Такая деятельность включает получение заявки, проверку наличия товара, выписку счета, контроль платежа и доставку товара. Все эти компоненты безусловно важны и необходимы, однако для клиента сами по себе они не имеют значения (какими бы эффективными они не были), его интересует лишь целостный результат - получение товара высокого качества и как можно быстрее.

Именно бизнес-процессы реализуют стратегию бизнеса, отвечая при этом на вопросы: кто, что, когда, зачем, где и как осуществляет. Именно бизнес-процессы обеспечивают интегрированность организации, а также являются основой ее анализа в самых различных разрезах (экономических, организационных, качественных, количественных и т.д.) для совершенствования деятельности по принятию решений, контролю, координации и мониторингу различных его частей.

Существует достаточно много определений понятия бизнес-процесса, приведем некоторые из них.

  • Устойчивая, целенаправленная совокупность взаимосвязанных видов деятельности, которая по определенной технологии преобразует входы в выходы, представляющие ценность для потребителя (стандарт ISO 9000 : 2000).
  • Совокупность различных видов деятельности, в рамках которой "на входе" используются один или более видов ресурсов, и в результате на выходе создается продукт, представляющий ценность для потребителя (Хаммер, Чампи).
  • Структурированное конечное множество действий, спроектированных для производства специфической услуги (продукта) для конкретного потребителя или рынка (Давенпорт).
  • Множество внутренних шагов (видов) деятельности, начинающихся с одного и более входов и заканчивающихся созданием продукции, необходимой клиенту (просто клиент или процесс, протекающий во внешнем окружении компании) и удовлетворяющей его по стоимости, долговечности, сервису и качеству (Ойхман, Попов).
  • Логические серии взаимозависимых действий, которые используют ресурсы предприятия для создания или получения в обозримом или измеримо предсказуемом будущем полезного для заказчика выхода, такого как продукт или услуга (Зиндер).
  • Горизонтальная иерархия внутренних и зависимых между собой функциональных действий, конечной целью которых является выпуск продукции или отдельных ее компонентов (Верников).
  • Процессы, которые осуществляются на предприятии и могут быть идентифицированы на протяжении всей цепочки создания ценностей, они направлены непосредственно на достижение успеха на рынке и характеризуются измеримой информацией на входе, созданием ценности и измеримой информацией на выходе (Гирхаке).
  • Связанная совокупность функций, в ходе выполнения которой потребляются определенные ресурсы, и создается продукт (вещественный или нематериальный результат человеческого труда: предмет, услуга, научное открытие, идея), представляющий ценность для потребителя (Калашян, Калянов).

Все эти определения подчеркивают отличия процессного подхода от функционального. Новизна в бизнес-процессе заключается в следующем:

  • Функции были четко закреплены за конкретным подразделением, а бизнес-процессы пронизывают все подразделения.
  • Вводится категория "клиент-производитель". При этом отношения "клиент-производитель"распространяются как на внешних, так и на внутренних клиентов/производителей. Каждое подразделение организации, как правило, находится в отношениях "клиент-производитель" и "производитель-клиент" с несколькими другими подразделениями. Цель работы каждого подразделения заключается в достижении максимальной удовлетворенности клиента. Следствием является непосредственная направленность всей деятельности на достижение успеха на рынке.
  • Каждая созданная ценность поддается измерению, обеспечивающему прозрачность процесса. Критериями могут быть доход от выхода с вычетом издержек по входу, стоимость процесса, степень удовлетворенности клиента.

1.2 Эволюция индустрии ИТ и основные тенденции ее развития

В истории развития ИТ можно четко выделить три основных этапа. Первый этап, начавшийся в нашей стране с середины 50-х годов, связан с возникновением первых ЭВМ. Они использовались в полном соответствии со своим названием – исключительно как высокопроизводительные инструменты сложных вычислений, для решения вычислительных задач с помощью всевозможных математических методов. Понятия стандартного программного обеспечения еще не было, и все программы, реализующие методы вычислений, создавались первыми программистами в машинных кодах. Эти программы использовались в проектно-конструкторской деятельности, в моделировании сложных стохастических процессов, во многих областях, требующих применения математических методов. Коротко, можно сказать, что ЭВМ обрабатывали числа. Понятно, что к основной деятельности организаций ЭВМ никакого отношения не имели.

Второй этап развития ИТ, охвативший значительный период времени – около 30 лет с середины 60-х и до начала 90-х, можно охарактеризовать как период возникновения и развития АСУ . Во многом, началу этого этапа способствовала активность ряда выдающихся ученых и настойчивость академика В. Глушкова, который сумел убедить членов политбюро в том, кибернетику надо вызволить из положения лженауки. Основным аргументом, пусть не без лукавства (а что было делать?), был лозунг построения общегосударственной автоматизированной системы для эффективного управления народным хозяйством и ускорения, тем самым, построения коммунистического общества.

В стране стали создаваться проектные институты, главные вычислительные центры министерств, крупных предприятий. Задачи разработки и внедрения АСУ входят в народно-хозяйственные планы, по некоторым из систем выпускаются постановления партии и правительства. Три министерства: Минрадиопром, Минприбор и Министерство электронной промышленности заняты созданием и производством вычислительной техники и АСУ . Системы реально используются во всех отраслях для обработки данных и формирования отчетности, в том числе, государственной. Но, несмотря на свое название – автоматизированные системы управления – они никогда и ни чем не управляли, если оставить за скобками АСУ технологическими процессами. Вычислительные центры рассматривались руководителями как некие обслуживающие подразделения , наполненные специфическим инженерно-техническим персоналом. Эти центры были полностью отделены от основной деятельности организаций, сотрудники которых занимались своей работой, к поддержке которой АСУ , за редкими исключениями, никакого отношения не имели, и экономический эффект от их работы отсутствовал, хотя всегда рассчитывался. Экономика должна была быть эффективной. Известен факт, что совокупный годовой экономический эффект от внедрения АСУ в стране превышал объем ВВП.

И только с середины 90-х начался и продолжается до сих пор третий этап развития индустрии ИТ, который можно назвать революционным. ИТ стали вторгаться в основную деятельность организаций – они пришли на рабочие места руководителей и сотрудников. Их роль изменилась радикально: из обслуживающей она превратилась в стратегическую. ИТ стали источниками новых конкурентных преимуществ и средствами их сохранения. ИТ стали также источниками возникновения принципиально новых видов бизнеса и новых взглядов на методы корпоративного управления, на организацию компаний, действующих на глобальных рынках в условиях глобальной конкуренции.

Примерами новых видов бизнеса могут служить электронная коммерция и возникновение виртуальных компаний, постепенное исчезновение фильтров в виде каналов продвижения продуктов и услуг между производителями и потребителями. Так, например, 90% продукции компании Cisco Systems продается через корпоративный Интернет – портал. Компании стремятся сохранить за собой только стратегически важные функции и интеллектуальный капитал, передавая в аутсорсинг производственные, сбытовые, логистические, маркетинговые и др. функции различным партнерам, специализирующимся в соответствующих областях. Так, например, один из лидеров мирового ИТ – рынка компания IBM прекратила производство средств вычислительной техники, передав его компаниям – партнерам в Юго-Восточной Азии и оставив за собой только проектирование и создание новой техники, т.е. интеллект . Плюс, в результате приобретения консалтингового подразделения компании Price Waterhouse, была создана компания IBM Global Solutions, ставшая крупнейшим системным интегратором , предоставляющим комплексные интеллектуальные услуги в области управленческого консалтинга и системной интеграции, наряду с двумя другими лидерами этого рынка компаниями EDS (Electronic Data Systems ) и Accenture. Аналогичные тенденции просматриваются и в России. Вообще, надо сказать, что на российском ИТ – рынке еще ничего не произошло из того, чего бы уже не произошло в мире. В этом уникальная особенность данного сегмента экономики и это хорошая новость, поскольку российский ИТ – рынок развивается рекордными темпами 20-25% в год и эти темпы продолжают сохраняться. Для сравнения укажем, что по данным IDC темпы роста в США снизились до 6%, в Западной Европе до 2%, и только в Центральной и Восточной Европе они выросли до 16% (Чехия, Венгрия).

Основными целями использования ИТ, по мнению консалтинговой компании A.T. Kearney, являются:

  • трансформирование организации;
  • проникновение на новые рынки;
  • внедрение новых продуктов и услуг
  • ускорение реакции на изменения рынка;
  • сокращение затрат;
  • совершенствование внутренних операций;
  • улучшение качества обслуживания.

Несмотря на ИТ – революцию, руководителей не удовлетворяет положение дел с использованием ИТ:

  • организация ИТ слишком сложна;
  • развитие важных для бизнеса функций часто задерживается;
  • затраты на ИТ увеличиваются даже тогда, когда падает прибыль.

Вот основные проблемы, с которыми сегодня сталкиваются организации во всем мире:

  • фрагментированные ИТ-приложения и данные;
  • многоярусные и построенные на разных платформах системы;
  • отсутствие интеграции ИТ с бизнесом;
  • слабость управленческих ИТ-процессов.

Компания McKinsey, признанный лидер рынка стратегического консалтинга, провела анализ результатов выполнения 500 крупных ИТ–проектов во всем мире.

Выяснилось, что успешными можно признать только 16%. А что такое успешный проект? Это проект, который был выполнен в запланированные сроки, не вышел за пределы выделенного бюджета, и были получены именно те результаты, которые ожидались, а не те, которые получились по ходу выполнения. Большинство проектов в два раза превышали сроки и на 80% превышали запланированный бюджет. В России эти параметры существенно выше.

Данных и т.п.) необходим при определении оптимальной архитектуры корпоративной информационной системы, т.е., отвечает на вопрос "Как делать?".

  • Стратегический ИТ-консалтинг, в первую очередь, отвечает на вопрос "Что делать?" и, тем самым, занимает особое место в жизненном цикле консалтинговых услуг.
  • Детально многочисленные виды ИТ-консалтинга рассмотрены в главе 6.

    В идеале, первыми в организацию должны прийти стратегические ИТ – консультанты, которые помогут сформулировать роль ИТ в ее жизни, в развитии бизнеса и определить направления развития, определив тем самым видение будущего состояния ИТ и организации управления переходным периодом. Это значит найти ответ на вопрос, в каком доме мы хотим жить?

    Затем должны прийти архитекторы информационных систем, которые создадут проект будущего дома и ответить на вопрос как именно он должен быть устроен, из каких блоков и компонент , как и какими средствами они должны быть интегрированы в единую систему. И только потом понадобятся собственно строители, которые внедрят выбранные ИТ – решения.

    В реальной практике, как правило, все происходит в обратной последовательности. Сначала внедряют отдельные ИТ – решения, потом возникает потребность в их интеграции, а потом выясняется, что то, что получилось, не отвечает потребностям бизнеса или основной деятельности, т.е., инвестиции в ИТ не дали требуемого эффекта. Прямым следствием этого является разочарование высшего руководства и дискредитация роли ИТ в развитии бизнеса.

    Информационная система — взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

    Современное понимание информационной системы предполагает использование в качестве основного технического средства переработки информации персонального компьютера. В крупных организациях наряду с персональным компьютером в состав технической базы информационной системы может входить мэйнфрейм или суперЭВМ. Кроме того, техническое воплощение информационной системы само по себе ничего не будет значить, если не учтена роль человека, для которого предназначена производимая информация и без которого невозможно ее получение и представление.

    Необходимо понимать разницу между компьютерами и информационными системами. Компьютеры, оснащенные специализированными программными средствами, являются технической базой и инструментом для информационных систем. Информационная система немыслима без персонала, взаимодействующего с компьютерами и телекоммуникациями.

    Развитие информационных систем можно рассматривать:

    1. С позиций развития самой техники, появления новой технической базы, порождающей новые информационные потребности.

    2. С точки зрения совершенствования самих автоматизированных информационных систем (АИС).

    Первый аспект предполагает два этапа: один - до появления ЭВМ, связанный с именами изобретателей первых вычислительных устройств, таких как Б. Паскаль, П.Л. Чебышев, Ч. Беббидж и др.; второй - с развитием ЭВМ.

    Первое поколение ЭВМ (1950-е гг.) было построено на базе электронных ламп и представлено моделями: ЭНИАК, «МЭСМ», «БЭСМ-1», «М-20», «Урал-1», «Минск-1». Все эти машины имели большие размеры, потребляли большое количество электроэнергии, имели малое быстродействие, малый объем памяти и невысокую надежность. В экономических расчетах они не использовались.

    Второе поколение ЭВМ (1960-е гг.) было на основе полупроводников и транзисторов: «БЭСМ-6», «Урал-14», «Минск-32». Использование транзисторных элементов в качестве элементной базы позволило сократить потребление электроэнергии, уменьшить размеры отдельных элементов ЭВМ и всей машины, вырос объем памяти, появились первые дисплеи и др. Эти ЭВМ уже использовались для решения экономических задач.

    Третье поколение ЭВМ (1970-е гг.) было на малых интегральных схемах. Его представители - IBM 360 (США), ряд ЭВМ единой системы (ЕС ЭВМ), машины семейства малых с СМ I по СМ IV. С помощью интегральных схем удалось уменьшить размеры ЭВМ, повысить их надежность и быстродействие.
    Четвертое поколение ЭВМ (1980-е гг.) было на больших интегральных схемах (БИС) и было представлено IBM 370 (США), ЕС-1045, ЕС-1065 и пр. Они представляли собой ряд программно-совместимых машин на единой элементной базе, единой конструкторско-технической основе, с единой структурой, единой системой программного обеспечения, единым унифицированным набором универсальных устройств. Широкое распространение получили персональные (ПЭВМ), которые начали появляться с 1976 г. в США (An Apple). Они не требовали специальных помещений, установки систем программирования, использовали языки высокого уровня и общались с пользователем в диалоговом режиме.

    В настоящее время, в период информатизации, строятся ЭВМ на основе сверхбольших интегральных схем (СБИС). Они обладают огромными вычислительными мощностями и имеют относительно низкую стоимость. Их можно представить не как одну машину, а как вычислительную систему, связывающую ядро системы, которое представлено в виде супер-ЭВМ, и ПЭВМ на периферии.

    Это позволяет существенно сократить затраты человеческого труда и эффективно использовать труд машины. Главной тенденцией развития АИС является постоянное стремление к улучшению. Оно достигается благодаря совершенствованию технических и программных средств, что порождает новые информационные потребности и ведет к совершенствованию информационных систем.

    Охарактеризуем поколения информационных систем.

      Первое поколение АИС (1960-1970 гг.) строилось на базе вычислительных центров по принципу «одно предприятие - один центр обработки».

      Второе поколение АИС (1970-1980 гг.) характеризуется переходом к децентрализации ИС. Информационные технологии проникают в отделы, службы предприятия. Появились пакеты и децентрализованные базы данных, стали внедряться двух, трехуровневые модели организации систем обработки данных.

      Третье поколение АИС (1980-нач.1990 гг.): характерен массовый переход к распределенной сетевой обработке на базе персональных компьютеров с объединением разрозненных рабочих мест в единую ИС.

      Четвертое поколение АИС характеризуется сочетанием централизованной обработки на верхнем уровне с распределенной обработкой на нижнем. Наблюдается тенденция к возврату на крупных и средних предприятиях к использованию в ИС мощных ЭВМ в качестве центрального узла системы и дешевых сетевых терминалов (рабочих станций).

      Современные информационные системы на предприятиях создаются на основе локальных и распределенных сетей ЭВМ, новых технологий принятия управленческих решений, новых методов решения профессиональных задач конечных пользователей и т.д.

      История развития информационных систем и цели их использования на разных периодах следующая (таблица 1).

      Таблица 1 – История развития информационных систем и цели их использования на разных периодах

      Период времени

      Концепция использования информации

      Вид информационных систем

      Цель использования

      1950 — 1960 гг.

      Бумажный поток расчетных документов

      Информационные системы обработки расчетных документов на электромеханических бухгалтерских машинах

      Повышение скорости обработки документов

      Упрощение процедуры обработки счетов и расчета зарплаты

      1960 — 1970 гг.

      Основная помощь в подготовке отчетов

      Управленческие информационные системы для производственной информации

      Ускорение процесса подготовки отчетности

      1970 — 1980 гг.

      Управленческий контроль реализации (продаж)

      Системы поддержки принятия решений

      Системы для высшего звена управления

      Выборка наиболее рационального решения

      1980 — 2000 гг.

      Информация — стратегический ресурс, обеспечивающий конкурентное преимущество

      Стратегические информационные системы

      Автоматизированные офисы

      Выживание и процветание фирмы

      Первые информационные системы появились в 50-х гг. В эти годы они были предназначены для обработки счетов и расчета зарплаты, а реализовывались на электромеханических бухгалтерских счетных машинах. Это приводило к некоторому сокращению затрат и времени на подготовку бумажных документов.

      60-е гг. знаменуются изменением отношения к информационным системам. Информация, полученная из них, стала применяться для периодической отчетности по многим параметрам. Дня этого организациям требовалось компьютерное оборудование широкого назначения, способное обслуживать множество функций, а не только обрабатывать счета и считать зарплату, как было ранее.

      В 70-х — начале 80-х гг. информационные системы начинают широко использоваться в качестве средства управленческого контроля, поддерживающего и ускоряющего процесс принятия решений.

      К концу 80-х гг. концепция использования информационных систем вновь изменяется. Они становятся стратегическим источником информации и используются на всех уровнях организации любого профиля. Информационные системы этого периода, предоставляя вовремя нужную информацию, помогают организации достичь успеха в своей деятельности, создавать новые товары и услуги, находить новые рынки сбыта, обеспечивать себе достойных партнеров, организовывать выпуск продукции по низкой цене и многое другое.

      Процессы, обеспечивающие работу информационной системы любого назначения, условно можно представить в виде схемы, состоящей из блоков:

      – ввод информации из внешних или внутренних источников;

      – обработка входной информации и представление ее в удобном виде;

      – вывод информации для представления потребителям или передачи в другую систему;

      – обратная связь — это информация, переработанная людьми данной организации для коррекции входной информации.

      Информационная система определяется следующими свойствами:

      – любая информационная система может быть подвергнута анализу, построена и управляема на основе общих принципов построения систем;

      – информационная система является динамичной и развивающейся;

      – при построении информационной системы необходимо использовать системный подход;

      – выходной продукцией информационной системы является информация, на основе которой принимаются решения;

      – информационную систему следует воспринимать как человеко-компьютерную систему обработки информации.

      В настоящее время сложилось мнение об информационной системе как о системе, реализованной с помощью компьютерной техники. Хотя в общем случае информационную систему можно понимать и в некомпьютерном варианте.

      Чтобы разобраться в работе информационной системы, необходимо понять суть проблем, которые она решает, а также организационные процессы, в которые она включена. Так, например, при определении возможности компьютерной информационной системы для поддержки принятия решений следует учитывать структурированность решаемых управленческих задач; уровень иерархии управления фирмой, на котором решение должно быть принято; принадлежность решаемой задачи к той или иной функциональной сфере бизнеса; вид используемой информационной технологии.


      Рисунок 1 – Структура информационной системы

      Технология работы в компьютерной информационной системе доступна для понимания специалистом некомпьютерной области и может быть успешно использована для контроля процессов профессиональной деятельности и управления ими.

      Внедрение информационных систем может способствовать:

      получению более рациональных вариантов решения управленческих задач за счет внедрения математических методов и интеллектуальных систем и т.д.;

      освобождению работников от рутинной работы за счет ее автоматизации;

      обеспечению достоверности информации;

      замене бумажных носителей данных на магнитные диски или ленты, что приводит к более рациональной организации переработки информации на компьютере и снижению объемов документов на бумаге;

      совершенствованию структуры потоков информации и системы документооборота в фирме;

      уменьшению затрат на производство продуктов и услуг;

      предоставлению потребителям уникальных услуг;

      отысканию новых рыночных ниш;

      привязке к фирме покупателей и поставщиков за счет предоставления им разных скидок и услуг.

      Роль структуры управления в информационной системе

      Общие положения

      Создание и использование информационной системы для любой организации нацелены на решение следующих задач.

      1. Структура информационной системы, ее функциональное назначение должны соответствовать целям, стоящим перед организацией. Например, в коммерческой фирме — эффективный бизнес; в государственном предприятии — решение социальных и экономических задач.

      2. Информационная система должна контролироваться людьми, ими пониматься и использоваться в соответствии с основными социальными и этическими принципами.

      3. Производство достоверной, надежной, своевременной и систематизированной информации.

      Построение информационной системы можно сравнить с постройкой дома. Кирпичи, гвозди, цемент и прочие материалы, сложенные вместе, не дают дома. Нужны проект, землеустройство, строительство и др., чтобы появился дом.

      Аналогично для создания и использования информационной системы необходимо сначала понять структуру, функции и политику организации, цели управления и принимаемых решений, возможности компьютерной технологии. Информационная система является частью организации, а ключевые элементы любой организации — структура и органы управления, стандартные процедуры, персонал, субкультура.

      Построение информационной системы должно начинаться с анализа структуры управления организацией.

      2 Технология создания экспертных систем. Идентификация проблемной области

      При разработке экспертных систем часто используется концепция быстрого прототипа. Суть её в следующем: поначалу создается не экспертная система, а её прототип, который обязан решать узкий круг задач и требовать на свою разработку незначительное время. Прототип должен продемонстрировать пригодность будущей экспертной системы для данной предметной области, проверить правильность кодировки фактов, связей и стратегий рассуждения эксперта. Он также дает возможность инженеру по знаниям привлечь эксперта к активной роли в разработке экспертной системы. Размер прототипа – несколько десятков правил.

      На сегодняшний день сложилась определенная технология разработки экспертных систем, включающая 6 этапов.

      Этап 1. Идентификация. Определяются задачи, которые подлежат решению. Планируется ход разработки прототипа экспертной системы, определяются: нужные ресурсы (время, люди, ЭВМ и т.д.), источники знаний (книги, дополнительные специалисты, методики), имеющиеся аналогичные экспертные системы, цели (распространение опыта, автоматизация рутинных действий и др.), классы решаемых задач и т.д. Этап идентификации – это знакомство и обучение коллектива разработчиков. Средняя длительность 1-2 недели.

      На этом же этапе разработки экспертных систем проходит извлечение знаний. Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы экспертной системы, с использованием различных способов: анализ текстов, диалоги, экспертные игры, лекции, дискуссии, интервью, наблюдение и другие. Извлечение знаний – это получение инженером по знаниям более полного представления о предметной области и методах принятия решения в ней. Средняя длительность 1-3 месяца.

      Этап 2. Концептуализация. Выявляется структура полученных знаний о предметной области. Определяются: терминология, перечень главных понятий и их атрибутов, структура входной и выходной информации, стратегия принятия решений и т.д. Концептуализация – это разработка неформального описания знаний о предметной области в виде графа, таблицы, диаграммы либо текста, которое отражает главные концепции и взаимосвязи между понятиями предметной области. Средняя длительность этапа 2-4 недели.

      Этап 3. Формализация. На этапе формализации все ключевые понятия и отношения, выявленные на этапе концептуализации, выражаются на некотором формальном языке, предложенном (выбранном) инженером по знаниям. Здесь он определяет, подходят ли имеющиеся инструментальные средства для решения рассматриваемой проблемы или необходим выбор другого инструментария, или требуются оригинальные разработки. Средняя длительность 1-2 месяца.

      Этап 4. Реализация. Создается прототип экспертной системы, включающий базу знаний и другие подсистемы. На данном этапе применяются следующие инструментальные средства: программирование на обычных языках (Паскаль, Си и др.), программирование на специализированных языках, применяемых в задачах искусственного интеллекта (LISP, FRL, SmallTalk и др.) и др. Четвертый этап разработки экспертных систем в какой-то степени является ключевым, так как здесь происходит создание программного комплекса, демонстрирующего жизнеспособность подхода в целом. Средняя длительность 1-2 месяца.

      Этап 5. Тестирование. Прототип проверяется на удобство и адекватность интерфейсов ввода-вывода, эффективность стратегии управления, качество проверочных примеров, корректность базы знаний. Тестирование – это выявление ошибок в выбранном подходе, выявление ошибок в реализации прототипа, а также выработка рекомендаций по доводке системы до промышленного варианта.

      Этап 6. Опытная эксплуатация. Проверяется пригодность экспертной системы для конечных пользователей. По результатам этого этапа может потребоваться существенная модификация экспертной системы.

      Процесс разработки экспертной системы не сводится к строгой последовательности перечисленных выше этапов. В ходе работ приходится неоднократно возвращаться на более ранние этапы и пересматривать принятые там решения.

      Этап идентификации проблемной области — определение требований к разрабатываемой ЭС, контуров рассматриваемой проблемной области (объектов, целей, подцелей, факторов), выделение ресурсов на разработку ЭС.

      Этап идентификации проблемной области включает определение назначения и сферы применения экспертной системы, подбор экспертов и группы инженеров по знаниям, выделение ресурсов, постановку и параметризацию решаемых задач.

      Начало работ по созданию экспертной системы инициируют руководители компаний. Обычно необходимость разработки экспертной системы связана с затруднениями лиц, принимающих решение, что сказывается на эффективности функционирования проблемной области. Как правило, назначение экспертной системы связано с одной из следующих областей:

      — обучение и консультация неопытных пользователей;

      — распространение и использование уникального опыта экспертов;

      — автоматизация работы экспертов по принятию решений;

      — оптимизация решения проблем, выдвижение и проверка гипотез.

      После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами осуществляют более детальную постановку проблем и параметризацию системы. К основным параметрам проблемной области относятся следующие:

      — класс решаемых задач (интерпретация, диагностика, коррекция, прогнозирование, планирование, проектирование, мониторинг, управление);

      — критерии эффективности результатов решения задач (минимизация использования ресурсов, повышение качества продукции и обслуживания, ускорение оборачиваемости капитала и т.д.);

      — критерии эффективности процесса решения задач (повышение точности принимаемых решений, учет большего числа факторов, просчет большего числа альтернативных вариантов, адаптивность к изменениям проблемной области и информационных потребностей пользователей, сокращение сроков принятия решений);

      — цели решаемых задач (выбор из альтернатив, например, выбор поставщика или синтез значения, например, распределение бюджета по статьям);