§3.2 Аппроксимация характеристик нелинейных элементов. Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях Методы аппроксимации характеристик нелинейных элементов

Характеристики реальных нелинейных элементов, которые определяют обычно с помощью экспериментальных исследований, имеют сложный вид и представляются в виде таблиц или графиков. В то же время для анализа и расчета цепей необходимо аналитическое представление характеристик, т.е. представление в виде достаточно простых функций. Процесс составления аналитического выражения для характеристик, представленных графически или таблично, называется аппроксимацией.

При аппроксимации решаются следующие проблемы:

1. Определение области аппроксимации, которая зависит от диапазона изменения входных сигналов.

2. Определение точности аппроксимации. Понятно, что аппроксимация дает приблизительное представление характеристики в виде какого-либо аналитического выражения. Поэтому необходимо количественно оценить степень приближения аппроксимирующей функции к экспериментально определенной характеристике. Чаще всего используются:

показатель равномерного приближения – аппроксимирующая функция не должна отличаться от заданной функции более чем на некоторое число , т.е.

показатель среднего квадратического приближения – аппроксимирующая функция не должна отличаться от заданной функции в среднем квадратическом приближении более чем на некоторое число , т.е.

узловое приближение (интерполяционное) – аппроксимирующая функция должна совпадать с заданной функцией в некоторых выбранных точках.

Существуют различные способы аппроксимации. Наиболее часто для аппроксимации ВАХ применяют аппроксимацию степенным полиномом и кусочно-линейную аппроксимацию, реже – аппроксимацию с использованием показательных, тригонометрических или специальных функций (Бесселя, Эрмита и др.).

7.2.1. Аппроксимация степенным полиномом

Нелинейную вольт-амперную характеристику в окрестности рабочей точки представляют конечным числом слагаемых ряда Тейлора:

Количество членов ряда определяется требуемой точностью аппроксимации. Чем больше членов ряда, тем точнее аппроксимация. На практике необходимой точности добиваются, используя аппроксимацию полиномами второй и третьей степени. Коэффициенты – это числа, которые достаточно просто определяются из графика ВАХ, что иллюстрируется примером.

Пример.

Аппроксимировать представленную на рис. 7.1,а ВАХ в окрестности рабочей точки степенным полиномом второй степени, т.е. полиномом вида

Выберем область аппроксимации от 0,2 В до 0,6 В. Для решения задачи необходимо определить три коэффициента . Поэтому ограничимся тремя узловыми точками (в середине и на границах выбранного диапазона), для которых составляем систему трех уравнений:


Рис. 7.1. Аппроксимация ВАХ транзистора

Решая систему уравнений, определяем , , . Следовательно, аналитическое выражение, описывающее график ВАХ, имеет вид

Заметим, что аппроксимация степенным полиномом используется в основном для описания отдельных фрагментов характеристик. При значительных отклонениях входного сигнала от рабочей точки точность аппроксимации может значительно ухудшиться.

Если ВАХ задана не графически, а какой-либо аналитической функцией и возникла необходимость представить ее степенным полиномом, то коэффициенты вычисляются по известной формуле

Нетрудно заметить, что представляет собой крутизну ВАХ в рабочей точке. Значение крутизны существенно зависит от положения рабочей точки.

В некоторых случаях удобнее характеристику представлять рядом Маклорена

7.2.2. Кусочно-линейная аппроксимация

Если входной сигнал изменяется по величине в больших пределах, то ВАХ можно аппроксимировать ломаной линией, состоящей из нескольких отрезков прямых. На рис. 7.1,б показана ВАХ транзистора, аппроксимированная тремя отрезками прямых.

Математическая формула аппроксимированной ВАХ

Данный вид аппроксимации связан с двумя важными параметрами нелинейного элемента: напряжением начала характеристики и ее крутизной . Для увеличения точности аппроксимации увеличивают количество отрезков линий. Однако это усложняет математическую формулу ВАХ.

Для анализа прохождения сигналов через цепи, содержащие нелинейный элемент, необходимо задать его вольт-амперную характеристику (ВАХ) в аналитической форме. Для двухполюсного нелинейного элемента ВАХ характеризует зависимость его тока от приложенного напряжения i (u ); многополюсные НЭ описываются проходной характеристикой . Наиболее широко распространены способы представления нелинейных ВАХ в виде полиномов или линейно-ломаных отрезков. Полиноминальная аппроксимация используется обычно при достаточно малых изменениях входного напряжения в окрестности рабочей точки, а линейно-ломаная - при больших.

Рассмотрим аппроксимацию в виде степенного полинома на примере биполярного транзистора, включенного по схеме с общим эмиттером. Его проходная ВАХ описывается зависимостью . Степень полинома, которой можно ограничить аппроксимирующую функцию, зависит от положения рабочей точки и величины входного напряжения. На рис.23 показан график функции , где Е отс - напряжение база-эмиттер, соответствующее отсечке тока.

В общем случае аппроксимирующий полином имеет вид

где - ток коллектора в рабочей точке при - постоянное смещение перехода база-эмиттер(рабочая точка), - коэффициенты полинома, причем

Коэффициент представляет собой крутизну (производную) характеристики в рабочей точке, - первую производную от крутизны (с коэффициентом 1/2) и т.д. Ясно, что коэффициенты зависят от положения рабочей точки нелинейного элемента, т.е. от его режима по постоянному току.

Рассмотрим частные случаи.

1.Рабочая точка находится на линейном участке характеристики, а изменения входного напряжения таковы, что мгновенное значение тока не выходит за пределы линейного участка.

В этом случае при аппроксимации можно ограничиться полиномом первой степени:

Часто коэффициент называют крутизной и обозначают буквой S .

Данный вид аппроксимации используется при анализе усилителей слабого сигнала, а рабочая точка обычно выбирается на середине самого крутого линейного участка (точка на рис.23).

2.Рабочая точка расположена на нижнем нелинейном участке ВАХ (точка на рис.23), имеющем вид квадратичной параболы. При этом предполагается, что мгновенное значение входного напряжения не заходит за точку , где - напряжение отсечки нелинейного элемента (начало характеристики). В этом случае аппроксимирующий полином можно ограничить второй степенью:

где .

Если - крутизна ВАХ в рабочей точке, то величину можно определить из условия: , . В этом случае ,

3.Рабочая точка является точкой перегиба характеристики, а изменения входного сигнала достаточно велики (см. рис.24).

В точке перегиба все производные четного порядка равны нулю. Поэтому

Если , можно ограничиться полиномом третьей степени без квадратичного члена (пунктир на рис.24):

Напряжение иногда называют напряжением насыщения. Задавая это напряжение и зная величину , однозначно определяется величина :

,

Аппроксимация в виде кубичного полинома допустима при .

Во всех иных случаях положения рабочей точки и изменениях входного напряжения полиноминальная аппроксимация требует более высокой степени.При этом анализ усложняется и применение степенного полинома для практических расчетов оказывается неэффективным.

При очень больших изменениях сигнала более целесообразной оказывается кусочно-линейная аппроксимация . При этом для построения характеристики транзистора с ОЭ в режиме большого сигнала можно использовать следующие идеализации:

а) статические входные ВАХ можно считать независимыми от ; нижний нелинейный участок спрямляется до пересечения с осью абсцисс; эта точка определяет напряжение ; в этом случае предполагается однозначная зависимость напряжения от , т.е. выходные характеристики не зависят от того, при каком параметре они сняты (см. рис.25.);

Как указывалось ранее, удобными характеристиками нелинейных элементов являются не уравнения связи, а вольтамперная характеристика активного сопротивления
или
, или зависимость
- для нелинейной индуктивности (ампервеберная характеристика), или зависимостьq(u) – для нелинейной емкости (вольткулонная характеристика) (рис.3.8).

Рис.3.8. Виды характеристик нелинейных элементов

Однако, графическая форма характеристик нелинейных элементов (рис.3.8.) не позволяет использовать зависимости (3.1-3.15), для составления уравнений работы схем с нелинейными элементами. Поэтому одной из важнейших задач, которая возникает при анализе колебаний в схемах, содержащих нелинейные элементы, состоит в аппроксимации нелинейных характеристик. Наибольшее распространение аппроксимаций нелинейных характеристик получили полиномиальная и кусочно-линейная, а также аппроксимация с помощью различных видов трансцендентных функций.

При анализе нелинейных схем возможность получить правильный результат существенно зависит как от правильности выбора метода аппроксимации, так и от выражения аппроксимирующей функции нелинейного элемента. Возникает определенное противоречие – чем точнее аппроксимация нелинейного элемента, тем сложнее получить нужное аналитическое выражение характеристики нелинейного элемента. Но кроме этого, сложнее построить и решение нелинейного уравнения, описываюшего колебания в такой нелинейной системе, с помощью выбранного выражения аппроксимирующей функции. Поэтому правильный выбор аппроксимации нелинейной характеристики позволяет существенно упростить построение решения нелинейного уравнения. Кроме того необходимо отметить, что очень часто одну и ту же характеристику нелинейного элемента приходится по-разному аппроксимировать в зависимости от того, в каких условиях работает нелинейный элемент и какие вопросы должны быть исследованы. Поэтому, способы аппроксимации выбирают в каждом конкретном случае исследования колебаний в схемах с нелинейными элементами различными.

Рассмотрим способы аппроксимации различных функций нелинейных элементов. К наиболее распространенным способам аппроксимации нелинейных элементов относят следующие:

    полиномиальная аппроксимация ─ представление нелинейной характеристики с помощью степенного ряда,

    кусочно-линейная аппроксимация ─ представление аппроксимируемой функции отрезками прямых линий,

    аппроксимация с помощью различных видов трансцендентных функций.

Полиномиальная аппроксимация. Если любая из нелинейных характеристик задана аналитическим выражением, то в окрестности рабочей точки функция может быть представлена разложением в ряд Тейлора (
в окрестности точки х 0)

, (3.16)

где R – остаток в разложении в ряд Тейлора, которым пренебрегают при аппроксимации.

Если же характеристика задана графически (рис.3.9), то аппроксимацию можно осуществить укороченным степенным рядом (полином), ограничивая его второй - пятой степенью

Рис.3.9. Графическое представление нелинейной характеристики

Для определения коэффициентов а k требуем, чтобы при значениях переменной x k в левой части полинома (3.17) получались значения функции y k .

Составляем систему уравнений:

, где
. (3.18)

В этой системе уравнений y n , у 0 , x n , x 0 – известные величины, поэтому эту систему можно решить по методу Крамера, относительно коэффициентов a k .

Если x=x 0 +S (х 0 постоянное смещение, а S малый сигнал), то

где α – дифференциальный параметр нелинейного элемента. Таким образом, можно отметить, что первый коэффициент a 1 полиномиальной аппроксимации нелинейной характеристики (3.17) совпадает с дифференциальным параметром нелинейного элемента. Кроме того отметим, что если х=0 лежит внутри интервала (х 5 -х 1) аппроксимации нелинейной характеристики полиномом, то коэффициент а 0 определяет значение функции в начале координат (т.е. если мы рассматриваем в качестве нелинейной характеристики i=φ(u), то коэффициент а 0 =i(0) определяется как значение тока при u=0.

Кусочно-линейная аппроксимация. Кусочно-линейная аппроксимация основана на замене реальной характеристики нелинейного элемента отдельными участками, которые заменяются отрезками прямых линий (рис.3.10).

Рис.3.10. Кусочно-линейная аппроксимация нелинейного элемента

Точность кусочно-линейного приближения зависит от количества интервалов, заменяемых отрезками прямых в заданном интервале использования кусочно-линейной аппроксимации. Чем на большее количество отрезков прямых разбит интервал, для которого мы применяем кусочно-линейное приближение, тем выше точность совпадения с реальной нелинейной характеристикой, но при этом сушественно усложняется анализ колебаний в такой системе. Для упрощения расчетов желательно ограничиваться минимальным количеством отрезков прямых, замещающих нелинейную характеристику. Например, динамическую проходную характеристику триода (рис.3.10) можно аппроксимировать с достаточной степенью точности всего лишь тремя отрезками прямых линий:

. (3.20)

Замена нелинейных участков характеристик нелинейных элементов отрезками прямых, прозволяет считать и сами характеристики линейными, а это значит, что применимы теперь все методы линейной теории цепей. На протяжении линейных участков нелинейные элементы заменяются на линейные, с характеристиками равными их дифференциальным величинам.

Аппроксимация нелинейных характеристик с помощью трансцендентных функций. Иногда характеристики нелинейных элементов аппроксимируют трансцендентными функциями рис.3.11. В качестве аппроксимирующих трансцендентных функций применяются экспоненты и их суммы, тригонометрические, обратные тригонометрические, гиперболические и другие функции. Например,

или
. (3.21)

Рис.3.11. Примеры аппроксимации нелинейных характеристик

трансцендентными функциями

Как правило, ВАХ нелинейных элементовi = F(u) получают экспериментально, поэтому чаще всего они заданы в виде таблиц или графиков . Чтобы иметь дело с аналитическими выражениями , приходится прибегать к аппроксимации.

Обозначимзаданную таблично или графически ВАХ нелинейного элементаi = F V (u), а аналитическую функцию , аппроксимирующую заданную характеристику, i = F(u, a 0 , a 1 , a 2 , … , a N ). где a 0 , a 1 , … , a N коэффициенты этой функции, которые нужно найти в результате аппроксимации.

А) В методе Чебышева коэффициенты a 0 , a 1 , … , a N функции F(u) находятся из условия:

т. е. они определяются в процессе минимизации максимального уклонения аналитической функции от заданной. Здесь u k , k = 1, 2, ..., G – выбранные значения напряжения u.

При среднеквадратичном приближении коэффициенты a 0 , a 1 , …, a N должны быть такими, чтобы минимизировать величину:

, (2.6)

Б) Приближение функции по Тейлору основано на представлении функции i = F(u)рядом Тейлора в окрестности точкиu = U 0:

и определении коэффициентов этого разложения. Если ограничиться первыми двумя членами разложения в ряд Тейлора, то речь пойдет о замене сложной нелинейной зависимости F(u) более простой линейной зависимостью . Такая замена называемся линеаризацией характеристик.

Первый член разложения F(U 0) = I 0 представляет собой постоянный ток в рабочей точке при u = U 0 , а второй ч лен

дифференциальную крутизну вольт-амперной характеристики в рабочей точке , т. е. при u = U 0 .

В) Наиболее распространенным способом приближения заданной функции является интерполяция (метод выбранных точек), при которой коэффициенты a 0 , a 1 , …, a N аппроксимирующей функции F(u) находятся из равенства этой функции и заданной F x (u)в выбранных точках (узлах интерполяции) u k = 1, 2, ... , N+1.

Д) Степенная (полиномиальная ) аппроксимация. Такое название получила аппроксимация ВАХ степенными полиномами:

Иногда бывает удобно решать задачу аппроксимации заданной характеристики в окрестности точкиU 0 , называемой рабочей . Тогда используют степенной полином



Степенная аппроксимация широко используется при анализе работы нелинейных устройств, на которые подаются относительно малые внешние воздействия , поэтому требуется достаточно точное воспроизведение нелинейности характеристики в окрестности рабочей точки.

Е) Кусочно-линейная аппроксимация. В тех случаях, когда на нелинейный элемент воздействуют напряжения с большими амплитудами, можно допустить более приближенную замену характеристики нелинейного элемента и использовать более простые аппроксимирующие функции . Наиболее часто при анализе работы нелинейного элемента в таком режиме реальная характеристика заменяется отрезками прямых линий с различными наклонами .

С математической точки зрения это означает, что на каждом заменяемом участке характеристики используются степенные полиномы первой степени (N = 1 ) с различными значениями коэффициентов a 0 , a 1 , … , a N .

Таким образом, задача аппроксимации ВАХ нелинейных элементов заключается в выборе вида аппроксимирующей функции и определении ее коэффициентов одним из указанных выше методов.

Как правило, ВАХ нелинейных элементов получают экспериментально; реже удается найти их из теоретического анализа. Для исследования необходимо подобрать функцию аппроксимации такую, которая, будучи довольно простой, отражала бы все возможные особенности экспериментальной снятой характеристики с достаточной степенью точности. Чаще всего используют следующие способы аппроксимации вольт-амперных характеристик двухполюсников: кусочно-линейная, степенная, показательная аппроксимация.

Кусочно-линейная аппроксимация

Такую аппроксимацию обычно применяют при рассчете процессов в нелинейных уравнениях в случае больших амплитуд внешних воздействий. Данный способ основан на апроксимации характеристик нелинейных элементов, т.е. на приближенной замене реальной характеристики отрезками прямых линий с различными наклонами. На рисунке показана входная характеристика реального транзистора, аппроксимированная двумя отрезками прямых.

Аппроксимация определяется двумя параметрами – напряжением начала характеристики Uн и крутизной S. Математическая форма аппроксимированной ВАХ такова:

Напряжение начала входных характеристик биполярных транзисторов имеет порядок 0,2-0,8 В: крутизна характеристики тока базы iб(Uбэ) около 10мА/В. Крутизна характеристики iк(Uбэ) тока коллектора в зависимости от напряжения база-эмиттер, то величина 10мА/В должна быть умножена на h21э – коэффициент усиления тока базы. Поскольку h21э = 100-200, указанная крутизна имеет порядок нескольких ампер на вольт.

Степенная аппроксимация

Степенную аппроксимацию широко используют при анализе работы нелинейных устройств, на которые подаются относительно малые внешние воздействия. Этот способ основан на разложении нелинейной вольт-амперной характеристики i(u) в ряд Тейлора, сходящийся в окрестности рабочей точки U0.

количество членов разложения зависит от заданной точности. Рассмотрим пример:

Входная характеристика транзистора. Рабочая точка U0=0,7В. Выбираем в качестве узлов аппроксимации точки 0,5; 0,7 и 0,9 В.

Необходимо решить систему уравнений:


Спектральный состав тока в нелинейном элементе при внешнем гармоническом воздействии

Рассмотрим цепь, состоящую из последовательного соединения источника гармонического сигнала Uс(t) = coswt, источника постоянного напряжения смещения U0 и безинерционного нелинейного элемента. Для этого рассмотрим рисунок.

Ток в цепи имеет синусоидальную форму.

Форма тока и напряжения оказываются различными.

Причина искажения кривой тока проста: одинаковым приращениям напряжения отвечают неодинаковые приращения тока, т.к. , а дифференциальная крутизна ВАХ на разных участках различна.

Рассмотрим задачу аналитически.

Пусть нам известна нелинейная функция i(u)=i(Uc,U0). На нелинейный элемент действует напряжение сигнала Uc(t)=Umcos(wt+j).

Безразмерная величина x=wt+j, тогда I(x)=I(Umcosx, U0) – переодическая функция относительно аргумента x с периодом 2T. Представим ее рядом Фурье с коэффициентами .

Функция i(x) четная, поэтому ряд Фурье будет содержать только косинусные составляющие: .

Амплитудные коэффициенты гармонии

Две последние формулы дают общее решение задачи о спектре тока в нелинейном элементе при гармоническом внешнем воздействии:

т.е. ток, кроме постоянной составляющей I0, содержит бесконечную последовательность гармонии с амплитудами In. Амплитуды гармонии зависят от параметров Um и U0, а также от вида аппроксимирующей функции.

Рассмотрим каким образом зависит от вида аппроксимирующей функции.

Кусочно-линейная

i(U)=

Подано напряжение u(t)=U0+Umcoswt.

График тока имеет вид косинусоидальных импульсов с отсечкой. Угол отсечки импульсов тока определяется из равенства:

U0+Umcosq=Uн Þ .

Степенная аппроксимация.

Пусть в окрестности рабочей точки U0 ВАХ нелинейного элемента