Генераторы на полевых транзисторах. LC-генераторы, RC-генераторы Структурная схема задающего генератора rc типа

R-C генераторы синусоидальных колебаний

Сглаживающие RC фильтры

В схемах выпрямления малой мощности дроссель фильтра может быть заменён резистором R Ф. Такие типы фильтров называют RC фильтрами

Расчёт сглаживающего RC фильтра должен вестись с учётом следующих условий

Коэффициент сглаживания фильтра

Сопротивление резистора R Ф обычно задаются в пределах R Ф = (0,15…0,5)R H ; КПД резистивно-емкостного фильтра сравнительно мал и обычно составляет 0,6…0,8, причем при η ф = 0,8 R Ф = 0,25R H .

Преимущества резистивно-емкостных фильтров: малые габариты, масса и стоимость; недостаток – низкий КПД.

Простейшая схема RC -генератора синусоидальных колебаний на операционном усилителе приведена на рис. 37а.

Рис. 37. RC-генератор синусоидальных колебаний

RC генераторы используют для задания частоты резисивно - емкостную связь. Основные два вида генераторов синусоидальных колебаний это: генератор с фазосдвигающей цепью и генератор на основе моста Вина. Генератор с фазосдвигающей цепью - это обычный усилитель с фазосдвигающей цепью обратной связи. На комбинации цепочек имеют место потери мощности, поэтому транзистор должен иметь достаточно высокий коэффициент усиления.

Частота генератора рассчитывается по формуле.

R в этой формуле - значения сопротивлений R1,R2, (они одинаковые). C - это соответственно, любое из значений емкости С1 или С2 (также одинаковые)

Генератор на основе моста Вина – двухкаскадный усилитель с цепью опережения-запаздывания и делителем напряжения.

Резисторы R1 и R2 одинакового номинала(по сопротивлению), сопротивление резистора R3 примерно вполовину меньше. Емкость конденсаторов C1 и C2 равна, а конденсатора C3 - примерно в два раза больше.
Частота генерируемых колебаний определяется соотношением.

Где C - номинал конденсатора C1(C2), R номинал сопротивления - R1(R2).
При R1,R2 = 10KOm, R3=4,7KOm, C1,C2 =16нФ, C3=33нФ частота равняется, примерно - 1000гц.
Используя сдвоенный переменный резистор (в качестве R1 и R2) можно плавно изменять частоту колебаний в больших пределах.

Генератор синосуидальных колебаний имеющий несколько поддиапазонов, можно получить с помощью несложной коммутационной схемы, с помощью которой можно попеременно подключать конденсаторы различной емкости, в качестве С1, С2 и С3. Подобное устройство может быть очень полезным для радиолюбителя, в частности - для настройки различных усилительных каскадов.

Электронные генераторы синусоидальных колебаний (L,C –генератор)

LC-генераторы

Генераторы синусоидальных колебаний – это генераторы, которые генерируют напряжение синусоидальной формы.



Они классифицируются согласно их частотно-задающим компонентам. Тремя основными типами генераторов являются LC генераторы, кварцевые генераторы и RCгенераторы.

LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соединенных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний.

Кварцевые генераторы, подобны LC генераторам, но обеспечивают более высокую стабильность колебаний.

RC-генераторы используются на низких частотах, в них для задания частоты колебаний используется резистивно-емкостная цепь.

T ремя основными типами электронных генераторов сигналов синусоидальной формы являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соедененных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний. LC генераторы используют в основном, в диапазоне радиочастот. На низких(звуковых) частотах удобнее применять RC генераторы, в которых для задания частоты колебаний используются резистивно - емкостная цепь.

LC генераторы синусоидальных колебаний.

Основными типами LC генераторов являются генератор Хартли и генератор Колпитца.

Генератор Хартли.

В генераторе Хартли, или как еще называют эту схему - индуктивной трехточке положительная обратная связь, необходимая для возникновения колебаний берется с отвода катушки индуктивности(L1 - L2) колебательного контура.

Генератор Колпитца.



В генераторе Колпитца (емкостной трехточке) положительная обратная связь снимается с средней точки составной емкости(C1 - C2) колебательного контура. Генератор Колпитца более стабилен, чем генератор Хартли и более часто используется. Когда требуется высокая стабильность, используют кварцевые генераторы.

Кварц - это материал, способный преобразовывать механическую энергию в электрическую и наоборот. Если к кристаллу кварца приложить переменное напряжение, он начнет колебаться, в такт с его частотой. Каждый кристалл обладает собственной резонансной частотой, зависящей от его размеров и структуры. Чем ближе частота приложенного напряжения, к резонансной частоте, тем выше интенсивность колебаний. Для изготовления кварцевого резонатора на кристаллическую пластинку кварца наносят металлические электроды.

Схема кварцевого генератора Хартли с параллельной обратной связью.

Кварц включен последовательно в цепь обратной связи. Если частота колебательного контура отклоняется от частоты кварца, волновое сопротивлние(импенданс) кварца увеличивается, уменьшая величину обратной связи с колебательным контуром. Колебательный контур возвращается на частоту кварца.

Генератор Пирса.

Очень популярная схема, поскольку в ней не используются катушки индуктивности.

Верхний предел резонанса кварца составляет 25 МГц. Если необходим стабильный генератор на более высокой частоте используют схему Батлера. Колебательный контур настраивается на частоту кварца или на частоту одной из его нечетных гармоник (третьей или пятой).


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

RC автогенератор с согласующим каскадом и фазосдвигающей цепью

Основным достоинством RC автогенераторов является возможность генерирования стабильных низкочастотных колебаний (до 20 кГц). Недостатком таких генераторов является не экономичность по сравнению с LC автогенераторами, т. к. RC автогенераторы работают в мягком режиме самовозбуждения.

В RC автогенераторах для построения избирательной цепи используются RC фильтры В рассматриваемом автогенераторе цепь положительной обратной связи строится последовательным включением нескольких RC фильтров.

Рассмотрим процессы, происходящие в RC фильтре представленном на рисунке 16, а. Для наглядности, пояснение будем пояснять с помощью векторной диаграммы (рисунок 16, б). При подаче на вход напряжения Uвх в цепи протекает ток i. Этот ток создает падение напряжение на конденсаторе U С и резисторе U R . Напряжение U R одновременно является выходным напряжением Uвых. Напряжение Uвых совпадает по фазе с током i, а напряжение U C сдвинуто относительно Uвых на 90°. Напряжение на входе цепи равно геометрической сумме векторов Uвых и U С и соответствует вектору Uвх. Вектора Uвх и Uвых сдвинуты по фазе относительно друг друга на угол j.

Рисунок 16 - Принципиальная электрическая схема RC фильтра и векторная диаграмма поясняющая процессы происходящие в нем.

Угол j можно увеличивать, уменьшая емкость конденсатора. Как видно из диаграммы j<90°. Поэтому для выполнения баланса фаз необходимо последовательное включение нескольких фильтров. При этом главным условием является равенство сдвига фаз каждым из фильтров, в противном случае каждый из фильтров будет иметь свою резонансную частоту, отличную от других фильтров и колебания будут отсутствовать. На практике используют последовательное включение трех фазосдвигающих звеньев, каждое из которых дает сдвиг фазы 60°, или четырех звеньев, каждое из которых дает сдвиг фазы 45°. На рисунке 17 приведены две возможные трехзвенные фазосдвигающие цепи. Временные диаграммы напряжений на выходе каждого звена этих цепей приведены на рисунке 18.

Рисунок 17 - Принципиальные электрические схемы трехзвенных фазосдвигающих цепей

Частота генерируемых колебаний при использовании этих схем определяется выражениями:

для схемы приведенной на рисунке 17, а

fг=0,065/ RC (27)

Рисунок 18 - Временные диаграммы напряжений на выходе звеньев фазосдвигающей цепи

для схемы приведенной на рисунке 17, б

fг=0,39/ RC (28)

где R=R 1 = R 2 =R 3 и С=С 1 = С 2 =С 3

Таким образом, фильтры в рассматриваемом генераторе выполняют сразу несколько функций: определяют частоту генерируемых колебаний, определяют форму колебаний и участвуют в выполнении баланса фаз.

Принципиальная электрическая схема RC автогенератора с согласующим каскадом и фазосдвигающей цепью представлена на рисунке 19.

В этом генераторе усилительный каскад собран на транзисторе VT1. Нагрузкой усилителя является резистор R3. Трехзвенная фазосдвигающая цепь состоит из элементов C4 C5 C6 и R4 R5 R6. Для согласования низкого входного сопротивления транзистора VT1 с сопротивлением фазосдвигающей цепи используется согласующий каскад? эмиттерный повторитель. Данный каскад собран на транзисторе VT2 включенный по схеме с общим коллектором. При отсутствии этого каскада низкое входное сопротивление VT1 будет шунтировать цепь обратной связи и значительно уменьшать коэффициент обратной связи, а это

Рисунок 19 - Принципиальная электрическая схема RC автогенератора с согласующим каскадом и фазосдвигающей цепью

приведет к несоблюдению условия баланса амплитуд. Нагрузкой эмиттерного повторителя служит резистор R9. Напряжение смещение на транзисторы подаются делителями напряжения R1 R2 и R7 R8. Элементы С1 R10 являются фильтром питания. С2 С3 С7 являются разделительными конденсаторами. Коэффициент обратной связи такого генератора равен 1/29, поэтому для выполнения баланса амплитуд коэффициент усиления усилителя должен быть Кус?29.

RC автогенератор с фазобалансной цепью

В генераторах с четным числом усилительных каскадов нет необходимости использовать в цепи положительной обратной связи фазосдвигающие цепи. Для выделения колебаний требуемой частоты в выходном напряжении таких генераторов, в цепь обратной связи включают четырехполюсник, обладающий частотно-избирательными свойствами (фазобалансную цепь). Принципиальная электрическая схема такого четырехполюсника представлена на рисунке 20.

Для генерирования колебаний необходимо, чтобы данный четырехполюсник не вносил сдвига фаз между входным напряжением Uвх и выходным напряжением Uвых, т. е. j вх должна быть равна j вых. Частота, на которой j вх =j вых определяется по выражению

Рисунок 20 - Принципиальная электрическая схема частотно-избирательного четырехполюсника

f г=1/2 p ? R 1 C 1 R 2 C 2 (29)

Удобно выбирать R 1 =R 2 =R, C 1 =C 2 =C тогда выражение 26 примет вид

f г=1/2 p RC (30)

На всех остальных частотах будет происходить сдвиг фазы, а значит на этих частотах не будет выполняться условие баланса фаз и колебания с этими частотами будут отсутствовать.

Коэффициент обратной связи в этом случае будет равен 1/3, а следовательно, для выполнения баланса амплитуд коэффициент усиления усилителя автогенератора должен быть не менее 3.

Принципиальная электрическая схема RC автогенератора с фазобалансной цепью представлена на рисунке 21.

Рисунок 21 - Принципиальная электрическая схема RC автогенератора с фазобалансной цепью

В этом генераторе усилитель собран на двух усилительных каскадах собранных на транзисторах VT1 и VT2. Нагрузкой этих каскадов являются резисторы R3 и R5. Напряжение смещения на транзисторы подается фиксированным током базы через резисторы R2 и R4. Элементы С1 R1 C2 R2 образуют фазобалансную цепь в цепи положительной обратной связи. Элементы С4 С5 являются разделительными конденсаторами. R6 С3 элементы фильтра питания. Условие баланса амплитуд в этой схеме выполняется за счет двух усилительных каскадов, с помощью которых легко достигается коэффициент усиления равный 3. Баланс фаз достигается включением двух транзисторов по схеме с общим эмиттером (суммарный сдвиг фаз в этом случае 180°+180°=360°).

RC автогенератор с мостом Вина

Достоинством этого генератора является возможность изменения частоты генерируемых колебаний. Принципиальная электрическая схема этого генератора представлена на рисунке 22.

Рисунок 22 - Принципиальная электрическая схема RC автогенератора с мостом Вина

В этом генераторе усилитель также имеет два усилительных каскада собранные на транзисторах VT1 и VT2. Нагрузкой этих каскадов являются резисторы R4 и R9. Напряжение смещения на резисторы поступает через делители напряжения R2 R3 и R7 R8.

Выходное напряжение поступает на вход усилителя через фазобалансную цепь C1 R1 C2 R3, которая является одним из плеч моста Вина, второе плечо образовано элементами R6 R5. Вторая ветвь соединена с выходом усилителя через конденсатор С5 большой емкости, благодаря чему цепь R5 R6 не создает заметного сдвига фаз. Наряду с положительной обратной связью, вводится отрицательная обратная связь образованная элементами R5 R10 C5 R6. Отрицательная обратная связь, снижая коэффициент усиления, существенно снижает нелинейные искажения генерируемых колебаний. Снижение коэффициента усиления не приводит к нарушению баланса амплитуд т. к. реальный двухкаскадный усилитель имеет коэффициент усиления намного больше 3. Кроме того элементы R5 R10, обеспечивают температурную стабилизацию рабочей точки транзисторов. Регулировка частоты генерируемых колебаний в рассматриваемом генераторе осуществляется одновременной регулировкой сопротивлений резисторов R1 R3, однако, может осуществляться и одновременной регулировкой емкостей конденсаторов C1 C2.

Применение генераторов с колебательными контурами (типа LC) для генерирования колебаний с частотами меньше 15--20 кГц затруднено и неудобно из-за громоздкости контуров. В настоящее время для этих целей широко используются генераторы типа RC, в которых вместо колебательного контура применяются избирательные RС-фильтры. Генераторы типа RC могут генерировать весьма стабильные синусоидальные колебания в сравнительно широком диапазоне частот от долей герца до сотен килогерц. Кроме того, они имеют малые габариты и массу. Наиболее полно преимущества генераторов типа RC проявляются в области низких частот.

Структурная схема генератора синусоидальных колебаний типа RC приведена на рис. 1.5.

Рис. 1.5

Усилитель строится по обычной резистивной схеме. Для самовозбуждения усилителя, т. е. для превращения первоначально возникших колебаний в незатухающие, необходимо на вход усилителя подавать часть выходного напряжения, превышающую входное напряжение или равную ему по величине и совпадающую с ним по фазе, иными словами, охватить усилитель положительной обратной связью достаточной глубины. При непосредственном соединении выхода усилителя с его входом происходит самовозбуждение, однако форма генерируемых колебаний будет резко отличаться от синусоидальной, поскольку условия самовозбуждения будут одновременно выполняться для колебаний многих частот. Для получения синусоидальных колебаний необходимо, чтобы эти условия выполнялись только на одной определенной частоте и резко нарушались на всех других частотах.


Рис. 1.6

Эта задача решается с помощью фазовращающей цепочки, которая имеет несколько звеньев RC и служит для поворота фазы выходного напряжения усилителя на 180°. Изменение фазы зависит от числа звеньев п и равно

В связи с тем что одно звено RC изменяет фазу на угол < 90°, минимальное число звеньев фазовращающей цепочки п -- 3. В практических схемах генераторов обычно используют трехзвенные фазовращающие цепочки.

На рис. 1.6 изображены два варианта таких цепочек, получивших название соответственно «R-параллель» и «С-параллель». Частота генерируемых синусоидальных колебаний для этих схем при условии R1 = R 2 = R 3 = R и C t = С 2 = С3 = С рассчитывается по следующим формулам: для схемы на рис. 1.6, а:

для схемы на рис. 4.6, б:

Для обеспечения баланса амплитуд коэффициент усиления усилителя должен быть равен затуханию, вносимому фазовращающей цепочкой, через которую напряжение с выхода поступает на вход усилителя, или превышать его.

Расчеты показывают, что для приведенных схем затухание

Следовательно, схемы с использованием трехзвенных фазовращающих цепочек, имеющих одинаковые звенья, могут генерировать синусоидальные колебания с частотой f 0 лишь в том случае, если коэффициент усиления усилителя превышает 29.

В фазовращающей цепи с одинаковыми звеньями каждое последующее звено оказывает шунтирующее действие на предыдущее. Для уменьшения шунтирующего действия звеньев и снижения затухания в фазовращающей цепи обратной связи могут применяться так называемые прогрессивные цепочки. В этом случае сопротивление резистора каждого последующего звена выбирается в tn раз больше сопротивления предыдущего звена, а емкости последующих звеньев во столько же раз уменьшаются:

Обычно величина т не превышает 4--5.

На рис. 1.7 приведена одна из возможных схем автогенератора типа RC с фазовращающей цепочкой.

С точки зрения обеспечения условия баланса фаз такой генератор можно было бы построить и на одном транзисторе (Т2) с общим эмиттером. Однако в этом случае цепочка обратной связи шунтирует резистор R K усилительного транзистора и снижает его усиление, а малое входное сопротивление транзистора резко увеличивает затухание в цепи обратной связи. Поэтому целесообразно разделить выход фазовращающей цепи и вход усилителя с помощью эмиттерного повторителя, собранного на транзисторе Т1.

Работа автогенератора начинается в момент включения источника питания. Возникающий при этом импульс коллекторного тока содержит широкий и непрерывный спектр частот, обязательно включающий в себя и необходимую частоту генерации. Благодаря выполнению условий самовозбуждения колебания этой частоты становятся незатухающими, тогда как колебания всех других частот, для которых условие баланса фаз не выполняется, быстро затухают.

Автогенераторы с фазовращающими цепями обычно применяются для генерации синусоидальных колебаний фиксированной частоты. Это связано с трудностью перестройки частоты в широком диапазоне. Диапазонные автогенераторы типа RC строятся несколько иначе. Рассмотрим этот вопрос более подробно.

Если усилитель поворачивает фазу входного сигнала на 2? (например, усилитель, имеющий четное число каскадов), то при охвате положительной обратной связью достаточной глубины он может генерировать электрические колебания без включения специальной фазовращающей цепочки. Для выделения требуемой частоты синусоидальных колебаний из всего спектра частот, генерируемых такой схемой, необходимо обеспечить выполнение условий самовозбуждения только для одной частоты. С этой целью в цепь обратной связи может быть включена последовательно-параллельная избирательная цепочка, схема которой приведена на рис. 1.8.

Рис. 1.7

Определим свойства этой цепочки, рассматривая ее как делитель напряжения.

Между выходным и входным напряжениями существует очевидная зависимость


Коэффициент передачи напряжения этой цепью

На квазирезонансной частоте w 0 коэффициент передачи напряжения должен быть равен действительному числу. Это возможно лишь в том случае, если сопротивления, выраженные соответствующей математической записью в числителе и знаменателе последней формулы, будут иметь одинаковый характер. Данное условие обеспечивается лишь в том случае, если действительная часть знаменателя равна нулю, т. е.

Отсюда частота квазирезонанса

Что же касается коэффициента передачи напряжения, то на квазирезонансной частоте он равен

Подставляя в эту формулу значение

Считая R1 = R 2 = R и C 1 = С 2 = С, найдем окончательные значения f 0

Затухание, вносимое рассматриваемой избирательной цепочкой на квазирезонансной частоте, равно

Это означает, что минимальный коэффициент усиления, при котором удовлетворяется условие баланса амплитуд, также должен быть равен 3. Очевидно, что это требование выполнить достаточно легко. Реальный транзисторный усилитель, имеющий два каскада (наименьшее четное число), позволяет получить усиление по напряжению, намного превышающее К о = 3. Поэтому целесообразно наряду с положительной обратной связью ввести в усилитель отрицательную обратную связь, которая, снижая коэффициент усиления, в то же время существенно уменьшает возможные нелинейные искажения генерируемых колебаний. Принципиальная схема такого генератора приведена на рис. 1.9.


Схема транзисторного RC-генератора с перестройкой частоты

Терморезистор в цепи эмиттера транзистора Т1 предназначен для стабилизации амплитуды выходного напряжения при изменении температуры. Регулировка частоты осуществляется с помощью спаренного потенциометра R1R2.

В настоящее время дискретные элементы (транзисторы) достаточно редко используются для постоения генераторов. Чаще всего для этих целей применяют различные типы интегральных микросхем. Схемы, построенные на ОУ, перемножителях, компараторах и таймерах, отличаются простотой, стабильностью параметров, универсальностью. Гибкость и универсальность ОУ позволяют с минимальным количеством внешних компонентов создавать простые, но в то же время удобные при настройке и регулировке генераторы практически всех типов с удовлетворительными параметрами.

Принцип работы таких генераторов основан на использовании в цепях ОС фазосдвигающих или резонансных элементов: моста Вина, двойного Т-образного моста, сдвигающих RС-цепей.

Существуют и другие способы генерирования синусоидальных колебаний, например фильтрацией импульсов треугольной формы или выделением первой гармонической составляющей прямоугольных импульсов.

Применение генераторов с колебательными контурами для генерирования колебаний низких частот (ниже 10 кГц) затруднено из-за значительно увеличивающихся номиналов катушек индуктивности и конденсаторов, что влечет за собой увеличение размеров и стоимости генератора.

Поэтому в настоящее время для генерирования низких и инфранизких частот широко используются RC-генераторы, в которых вместо колебательного контура используются RC-фильтры.

RC-генераторы, работая в сравнительно широком диапазоне частот от долей герца до нескольких мегагерц, обеспечивают достаточную стабильность колебаний и имеют малые габариты и массу.

Применение полевых транзисторов в схемах RC-генераторов выгодно отличает их от биполярных транзисторов возможностью использования в цепи положительной обратной связи высокоомных резисторов, что в свою очередь позволяет использовать конденсаторы с меньшими номиналами, обладающие большей стабильностью.

Простейшие RC-генераторы на изображены на рис. 1. Как известно, условия возбуждения генератора требуют, чтобы цепь обратной связи изменяла на 180° (для однокаскадного генератора) фазу сигнала, поступающего со стоковой нагрузки в цепь затвора.

В схеме генератора, приведенной на рис. 1, а, это достигается выполнением цепи обратной связи из нескольких последовательно включенных простых RC-звеньев. Кроме того, ослабление сигнала при прохождении цепи обратной связи должно компенсироваться усилением каскада.

Для цепей с одинаковыми по значению элементами R и С условие баланса фаз на генерируемой частоте f 0 выполняется при следующих соотношениях :

для трёхзвенных f 0 =0,065/RC;

для четырёхзвенных f 0 =0,133/RC

Рис. 1. Схемы простейших RC-генераторов.

а - с фазирующей RC-цепочкой; б - с истоковым повторителем; в - с Т-образным RC-мостом.

Для трёхзвенной RC-цепи обратной связи требуемый коэффициент усиления каскада должен быть больше 29 , а в четырёхзвенной RC-цепи не менее 18,4.

Для повышения устойчивости работы генератора (из-за шунтирующего действия цепью обратной связи резистора нагрузки Rc) часто вводят дополнительный каскад - истоковый повторитель (рис. 1, б), имеющий высокое входное сопротивление.

Схема генератора с двойным Т-образным RC-фильтром (рис. 1, в), элементы которого выбраны следующим образом: С1=С2=С; С3=С/0,207; R1=R2=R; R3=0,207R - функционирует при условии, если коэффициент усиления каскада не менее 11. При этом частота колебаний

Рассмотренные простейшие RC-генераторы на ПТ не нашли широкого применения из-за присущих им недостатков.

Первый недостаток - это необходимость получения большого коэффициента усиления каскада, который у генератора с трёхзвенной цепью обратной связи должен быть не менее 29, Практическая реализация такого коэффициента усиления затруднительна из-за малого значения крутизны ПТ. Если учесть, что для улучшения формы генерируемых колебаний вводится отрицательная обратная связь, то коэффициент усиления каскада должен быть еще больше.

Второй недостаток - невозможность перестройки в широком диапазоне частот генераторов, выполненных по схеме с RC-цепочка-ми и Т-образным мостом в цепи обратной связи.

ГЕНЕРАТОРЫ, ПЕРЕСТРАИВАЕМЫЕ В ШИРОКОМ ДИАПАЗОНЕ ЧАСТОТ

Наиболее широкое применение среди RC-генераторов нашла схема с фазовым RC-мостом (генератор на мосте Вина), принципиальная схема которого изображена на рис. 2. К достоинствам подобной схемы следует отнести малое затухание и нулевой сдвиг фаз в цепи обратной связи на частоте генерации.

Таким образом, при включении фазового RC-моста для выполнения условия баланса фаз необходимо, чтобы усилитель генератора обеспечивал сдвиг фаз 360°.

Частота генерации при равенстве R1=R2=R и С1=С2=С определяется выражением

f 0 =1/2RCπ (1)

На этой частоте затухание фазового RС-моста минимально и равно 3. (Затухание β - величина ослабления, которое вносит фазовый RC-мост в проходящий сигнал в зависимости от расстройки Δf - определяется по выражению β=(9+(2Δf) 2 /f 0) 1/2) Отсюда следует, что минимальный коэффициент усиления, при котором удовлетворяется условие баланса амплитуд, должно быть не менее 3. Благодаря малому значению требуемого усиления появляется возможность введения глубокой отрицательной обратной связи, что ведет к уменьшению уровня нелинейных искажений при работе в широком диапазоне частот.

В схеме рис. 2, а отрицательная обратная связь осуществляется за счет резистора в цепи истока транзистора T1 и введения цепочки R5C3. В качестве резистора R5 использовался малоинерционный термистор ТВД-4, резисторы R1, R2 - типа ПТМН, а конденсаторы С1 и С2 - типа КСО-Г. При указанных на схеме номиналах частота генерации f 0 =1500 Гц. При изменении температуры в диапазоне от 10 до 50° С была получена относительная нестабильность частоты

Δf/f=0,05% на 10° С.

Фазовый RC-мост имеет в своем составе всего по два одноименных элемента; следовательно, его можно перестраивать в широком диапазоне частот, изменяя значение только двух элементов R1, R2 или С1, С2), что делает перестройку генераторов с такими мостами конструктивно удобной.

На рис. 2, б приведена схема перестраиваемого генератора низкой частоты с фазовым RC-мостом. Частота генерируемых колебаний плавно перестраивается с помощью сдвоенного потенциометра R2, R3. Усилитель генератора двухкаскадный с непосредственной связью. Для стабилизации амплитуды колебаний генератора и его режима работы введена глубокая отрицательная обратная связь как по постоянному, так и переменному току (цепочка R8, R6, R5) Для перекрытия всего звукового диапазона следует ввести переключатель, который одновременно изменял бы емкости конденсаторов RC и С2 в обоих плечах моста.

Рис. 2. Принципиальные схемы генераторов с фазовым RС-мостом.

а - с двухкаскадным усилителем и ёмкостной связью; б - с двухкаскадным усилителем и непосредственной связью.

Рис. 3. Генератор, перестраиваемый в широком диапазоне

а - принципиальная схема; б - структурная схема.

Более сложная схема RС-генератора с использованием полевых транзисторов, позволяющая перестраивать частоту в декадном диапазоне, изображена на рис. 3. Для параметров, указанных на схеме, частота генератора лежит в диапазоне 500 кГц - 5 мГц; однако, изменив ёмкости конденсаторов, можно получить частоты в других диапазонах .

Два фазовращателя, фазоинвертор, усилитель и аттенюатор соединяются таким образом, что образуют петлю обратной связи. Схема будет генерировать колебания с частотой, при которой полный фазовый сдвиг составляет 360°. На этой частоте каждый из двух идентичных фазовращателей обеспечивает фазовый сдвиг на 90°.

Управляемый напряжением фазовращатель состоит из конденсатора C1 и транзистора Т2.

Транзисторы Т3, Т4 и конденсатор С3 образуют второй фазовращатель, который работает аналогично первому. Благодаря высокому сопротивлению фазовращателей отпадает необходимость в буферных каскадах. Затворы транзисторов Т2 и Т4 заземлены по переменному току и, следовательно, могут быть соединены. Транзистор Т5 предназначен для усиления сигнала.

Транзистор Т7 и резистор R6 образуют управляемый напряжением аттенюатор, при этом транзистор Т7 используется в качестве управляемого резистора.

Амплитудный детектор состоит из усилителя на транзисторе Т6, диодного детектора Д1 и фильтра R5C5. Когда амплитуда входного сигнала увеличивается, напряжение на затворе транзистора Т7 становится более отрицательным, при этом возрастает динамическое сопротивление транзистора и уменьшается коэффициент усиления в петле обратной связи.

СТАБИЛИЗАЦИЯ АМПЛИТУДЫ КОЛЕБАНИЙ

Свойство полевого транзистора изменять сопротивление канала в зависимости от приложенного к затвору управляющего напряжения нашло достаточно широкое применение в генераторах для автоматической стабилизации уровня выходного сигнала.

На рис. 4, а приведена схема RC-генератора синусоидальных колебаний с регулируемой отрицательной обратной связью . Двухкаскадный усилитель на полевых транзисторах Т1 и Т3 охвачен положительной обратной связью через элементы R1-R4, С1, С3. Отрицательная обратная связь осуществляется через делитель, состоящий из резистора R6 и управляемого сопротивления канала полевого транзистора Т2 Установление стационарной амплитуды происходит за счет воздействия UВых (через детектор Д1 и его элементов R7, С5) на глубину отрицательной обратной связи и на режим питания транзистора Т1. Инерционность АРУ определяется в основном ёмкостью конденсатора С5 и сопротивлением резистора R7 . Такая автоматически регулируемая отрицательная обратная связь позволяет повысить стабильность характеристик генератора по сравнению с обычной схемой при изменении напряжений питания и температуры окружающей среды. При изменении питания от 18 до 10 В амплитуда выходного сигнала снижалась на 8%.

Рис. 4. Генераторы со стабилизацией амплитуды генерируемых колебаний.

а - RС-генератор с регулируемой ООС; б - LC-генератор с аттенюатором на ПТ.

Несколько иначе осуществляется автоматическая стабилизация уровня выходного сигнала генератора, принципиальная схема которого изображена на рис. 4, б . Напряжение сток - исток полевого транзистора Т1 регулируется переменным резистором R3, установленным в цепи затвора второго транзистора Т2. Часть выходного напряжения через трансформатор L1, L2 поступает на выпрямитель Д1 и фильтр R3C7. В зависимости от положения потенциометра R3 изменяется рабочая точка полевого транзистора, изменяется сопротивление его канала и соответственно амплитуда сигнала на выходе генератора. Потенциометром R3 устанавливают необходимую амплитуду выходного напряжения, которая в дальнейшем автоматически поддерживается на заданном уровне.

Как видно из приведённых выше примеров, использование полевых транзисторов в схемах автоматической стабилизации выходного напряжения генераторов позволяет значительно упростить подобные схемы и уменьшить необходимую мощность управления регулируемого элемента.

ЧМ ГЕНЕРАТОРЫ

В автоматике и телемеханике, измерительной технике возникает необходимость в широкополосной частотной модуляции при низкой несущей частоте. Так, например, в радиотелеметрии с частотным разделением каналов каждому- каналу отводится своя поднесущая частота. Генераторы поднесущих частот - это низкочастотные генераторы, частоты которых промодулированы сигналами от датчиков. Применение LC-генераторов в таких системах нежелательно из-за громоздкости выполнения в низкочастотном диапазоне. Поэтому в качестве задающего частотно-модулированного генератора поднесущей частоты используется RС-генератор.

Частота RС-генератора, как уже говорилось выше, определяется параметрами фазирующей RС-цепочки, изменяя которые определенным образом, осуществляют частотную модуляцию колебаний генератора. Для получения линейной модуляционной характеристики необходимо, чтобы одновременно по линейному закону изменялись отношения 1/R или 1/С фазирующей цепочки.

Рис. 5. ЧМ генератор на ПТ, а - принципиальная схема; б - модуляционная характеристика.

В качестве перестраиваемых напряжением ёмкостей применяются полупроводниковые диоды и транзисторы, используя зависимость ёмкости p-n перехода от обратного напряжения. Существенным недостатком подобного способа является большая нелинейность модуляционной характеристики ЧМ генератора из-за нелинейного изменения ёмкости от приложенного напряжения.

Полупроводниковые диоды и биполярные транзисторы можно использовать и в качестве переменных сопротивлений. Однако такому способу получения ЧМ свойственны следующие недостатки : нелинейность модуляционной характеристики при больших девиациях частоты; большая амплитудная модуляция; плохая развязка источника модулирующего сигнала и автогенератора; значительная мощность, потребляемая управляющей цепью.

Перечисленных недостатков лишен способ осуществления ЧМ с помощью полевых транзисторов. Применение ПТ в качестве переменных сопротивлений в фазирующей цепи RС-генератора позволяет реализовать их важное достоинство - линейную зависимость проводимости канала от управляющего напряжения и высокое входное сопротивление частотного модулятора.

На рис. 5 изображена принципиальная схема ЧМ генератора с фазовым RС-мостом и его модуляционная характеристика для ПТ (Т{Г2) типа КП103Ж и КП103М, используемых в качестве переменных резисторов.

Резисторы R1 и R2 включены для уменьшения глубины девиации до необходимой; кроме того, используя резисторы с отрицательным ТКС, можно уменьшить влияние температурных изменений сопротивления канала ПТ на стабильность частоты генератора. С помощью источника смещения Eсм устанавливают необходимое значение сопротивления каналов ПТ при управляющем (модулирующем) сигнале UBX=0.

МУЛЬТИВИБРАТОРЫ

Релаксационные генераторы низких частот имеют большую постоянную времени. В мультивибраторах, выполненных на биполярных транзисторах, для получения большой постоянной времени используются электролитические конденсаторы с большой ёмкостью, обладающие невысокой стабильностью. Высокое же входное сопротивление полевых транзисторов позволяет получать необходимую постоянную времени в релаксационных схемах без использования конденсаторов с большой ёмкостью. Поэтому в тех случаях, когда требуется реализовать постоянные времени примерно несколько секунд или минут, целесообразно использовать полевые транзисторы.

В схеме, изображенной на рис. 6, а, два полевых транзистора включены по схеме истоковых повторителей, а два биполярных транзистора являются переключателями. Принцип работы схемы аналогичен принципу работы обычного мультивибратора, причём комбинацию биполярного и полевого транзистора следует рассматривать как некоторый активный элемент. Таким образом, в схему вносится высокое входное сопротивление полевых транзисторов и одновременно обеспечивается большое полное усиление. Биполярные транзисторы не входят в состояние насыщения, так как напряжение их коллекторов питает стоки полевых транзисторов. В результате такого соединения мультивибратор устойчиво самовозбуждается; поскольку рабочие точки транзисторов смещены в линейную область, любое изменение входного тока вызывает изменение коллекторного напряжения. Эта схема хорошо работает и на высоких частотах.

Рис. 6. Схемы мультивибраторов на ПТ.

а - с ненасыщенными биполярными транзисторами; б - с насыщенными биполярными транзисторами.

Длительность пребывания мультивибратора в каждом из состояний определяется разрядом конденсатора С1 или С2 через резистор цепи затвора. Когда напряжение достигает значения, равного напряжению отсечки полевого транзистора, изменение тока истока заставляет схему перейти в другое состояние. Если ёмкость каждого конденсатора С1 и С2 равна 4 мкФ, то, изменяя R1 и R2 в сторону увеличения, можно повысить длительность периода мультивибратора от 8 мс до 6 мин. Если ёмкость каждого из конденсаторов выбрать равной 100 пФ, то частоту можно изменить от 100 Гц до 3 мГц

Несколько иначе выполнен мультивибратор, схема которого изображена на рис. 6, б . Рассмотрим принцип действия этой схемы. Допустим, что транзистор Т1 переходит в состояние насыщения, тогда на затворе Т4 появляется положительный потенциал и транзисторы Т4 и Т2 закрываются. Скачок напряжения на коллекторе Т2 приводит к надежному открыванию транзисторов Т1 и Т3. Ток смещения, текущий к затвору Т3 через резистор R2, поддерживает его в этом состоянии. Конденсатор С1 разряжаясь через резистор уменьшает напряжение смещения на затворе Т4. Когда напряжение Uзи транзистора Т4 уменьшается до напряжения отсечки, транзисторы Т4 и Т2 начинают проводить и быстро открываются, в то время как Т1 и Т3 закрываются. Длительность импульса мультивибратора определяется по формуле

(2)

где Ес - напряжение источника питания.

При номиналах деталей, указанных на схеме рис. 8, б, получена длительность импульса примерно 25 с.

ГЕНЕРАТОРЫ ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ

Используя источник неизменного тока на полевом транзисторе в генераторе пилообразного напряжения, можно получить пилу, линейность и наклон которой почти не зависят от случайных изменений управляющего напряжения. Кроме того, полевые транзисторы позволяют реализовать схемы генераторов развертки с такими значениями линейности и длительности, которых трудно достигнуть при использовании биполярных транзисторов.

Генератор пилообразного напряжения, изображенный на рис. 7, состоит из источника постоянного тока на полевом транзисторе T1, конденсатора переменной ёмкости С1 и однопереходного транзистора Т2. С помощью потенциометра R2 устанавливается значение постоянного тока стока полевого транзистора Т1, соответствующее термостабильной точке ПТ. Отрицательная обратная связь, создаваемая включенными в цепь истока резисторами R1 и R2 с большим сопротивлением, обеспечивает стабильный ток стока несмотря на наличие изменений напряжения питания. Этот ток линейно заряжает конденсатор переменной емкости С1 до напряжения запуска однопереходного транзистора Т2. Время заряда является функцией ёмкости конденсатора С1 .

Рис. 7. Схема генератора пилообразного напряжения.

Изменяя ёмкость конденсатора С1, можно регулировать частоту повторения выходного сигнала генератора в диапазоне от 500 Гц до 50 кГц. Накопительный конденсатор быстро разряжается через проводящий переключатель на транзисторе Т2. Пилообразное напряжение с конденсатора С1 подается на выход через эмиттерный повторитель на транзисторе Т3. Амплитуда выходного сигнала определяется положением движка потенциометра R4 и может регулироваться в пределах от 0 до 8 В . Во всём диапазоне частот нелинейность пилообразного напряжения в данной схеме не превышает 1%.

КВАРЦЕВЫЕ ГЕНЕРАТОРЫ

Одним из самых важных параметров генераторов является стабильность частоты генерируемых колебаний. Жёсткие требования к стабильности и воспроизводимости частоты в современных радиотехнических устройствах удается удовлетворить при использовании кварцевых генераторов.

Рис. 8. Схема кварцевого генератора.

Ламповые кварцевые генераторы в большинстве практических случаев являются неприемлемыми ввиду таких недостатков, как большая потребляемая мощность, большие габариты и масса. Кроме того, сама лампа является источником тепла, что затрудняет термостатирование генератора.

Ввиду малого входного сопротивления биполярных транзисторов кварцевый резонатор в автогенераторах включают только между базой и коллектором.

Полевые транзисторы, в которых отсутствуют перечисленные выше недостатки электронных ламп и биполярных транзисторов, в настоящее время достаточно часто используются в схемах кварцевых генераторов.

А.Г. Милехин

Литература:

  1. Гозлинг В. Применение полевых транзисторов. М., «Энергия», 1970.
  2. Барсуков Ф. И. Генераторы и селективные усилители низкой частоты. М., «Энергия», 1964.
  3. Гоноровский И. С Радиотехнические цепи и сигналы. М., «Советское радио», 1971.
  4. Ван дер Гиир. Перестройка RC-генератора в декадном диапазоне с помощью полевых транзисторов. - «Электроника», № 4, 1969.
  5. Крисилов Ю. Д. Автоматическая регулировка и стабилизация усиления транзисторных схем. М., «Советское радио», 1972.
  6. Проссер Л. Стабильные генераторы на полевых транзисторах. - «Электроника», 1966, № 20.
  7. Ханус, Мартинес. Стабильный НЧ мультивибратор с двумя ПТ. - «Электроника», 1967, №1.
  8. Илэд Л. Использование полевого транзистора для получения стабильного пилообразного напряжения. - «Электроника», 1966, № 16.
  9. Экспресс-информация «ПЭА и ВТ», 1973, № 47.
  10. Кинг Л. Стабильный кварцевый генератор на полевом транзисторе. - «Электроника», 1973, №13.
  11. Игнатов А.Н. Применение полевых транзисторов типа КП103 в аппаратуре связи. - В книге: Тенденции развития активных радиокомпонентов малой мощности. Новосибирск, "Наука", 1971.