К561ла7 схема включения. Генератор на К561ЛА7 с регулировкой частоты

Простые радиосхемы начинающим

В этой статье мы рассмотрим несколько простых электронных устройств на основе логических микросхем К561ЛА7 и К176ЛА7. В принципе эти микросхемы практически одинаковые и имеют одинаковое предназначение. Несмотря на небольшую разницу в неокторых параметрах они практически взаимозаменяемы.

Коротко о микросхеме К561ЛА7

Микросхемы К561ЛА7 и К176ЛА7 представляют собою четыре элемента 2И-НЕ. Конструктивно выполнены они в пластмассовом корпусе черного цвета с 14-ю выводами. Первый вывод микросхемы обозначен в виде метки (так называемый ключ) на корпусе. Это может быть или точка или выемка. Внешний вид микросхем и цоколевка выводов показаны на рисунках.

Питание микросхем составляет 9 Вольт, питающее напряжение подается на выводы: 7 вывод- "общий", 14 вывод- "+".
При монтаже микросхем необходимо быть внимательным с цоколевкой- случайная установка микросхемы "наизнанку" выводит ее из строя. Пайку микросхем желательно производить паяльником мощностью не более 25 Ватт.

Напомним что эти микросхемы назвали "логическими" поэтому что они имеют всего лишь два состояния- или "логический ноль" или "логическая единица". Причем при уровне "единица" подразумевается напряжение близкое к напряжению питания. Следовательно- при уменьшении напряжения питания самой микросхемы и уровень "Логической единицы" будет меньше.
Давайте проведем небольшой эксперимент (рисунок 3)

Сначала превратим элемент микросхемы 2И-НЕ просто в НЕ, соединив для этого входы. На выход микросхемы подключим светодиод, а на вход будем подавать напряжение через переменный резистор, контролируя при этом напряжение. Для того чтобы светодиод загорелся необходимо на выходе микросхемы (это вывод 3) получить напряжение равное логической "1". Контролировать напряжение можно при помощи любого мультиметра включив его в режим измерений постоянного напряжения (на схеме это PA1).
А вот с питанием немного поиграем- сначала подключим одну батарейку 4,5 Вольта.Так как микросхема является инвертором, следовательно для того чтобы получить на выходе микросхемы "1" необходимо наоборот на вход микросхемы подать логический "0". Поэтому начнем наш эксперимент с логической "1"- то есть движок резистора должен быть в верхнем положении. Вращая движок переменного резистора дождемся момента когда загорится светодиод. Напряжение на движке переменного резистора, а следовательно и на входе микросхемы будет примерно около 2,5 Вольт.
Если подключить вторую батарейку, то мы получим уже 9 Вольт, и светодиод у нас в этом случае загорится при напряжении на входе примерно 4 Вольта.

Здесь, кстати, необходимо дать небольшое разъяснение : вполне возможно что в Вашем эксперименте могут быть другие результаты отличные от вышеуказанных. Ничего удивительного в этом нет: во первых двух совершенно одинаковых микросхем не бывает и параметры у них в любом случае будут отличаться, во-вторых логическая микросхема может любое понижение входного сигнала распознать как логический "0", а в нашем случае мы понизили входное напряжение в два раза, ну и в-третьих в данном эксперименте мы пытается заставить работать цифровую микросхему в аналоговом режиме (то есть управляющий сигнал у нас проходит плавно) а микросхема, в свою очередь работает как ей положено- при достижении определенного порога перебрасывает логическое состояние мгновенно. Но ведь и этот самый порог у различных микросхем может отличаться.
Впрочем цель нашего эксперимента была простая- нам необходимо было доказать что логические уровни напрямую зависят от питающего напряжения.
Еще один нюанс : такое возможно лишь с микросхемами серии КМОП которые не очень критичны к питающему напряжению. С микросхемами серии ТТЛ дела обстоят иначе- питание у них играет огромную роль и при эксплуатации допускается отклонение не более чем в 5%

Ну вот, краткое знакомство закончилось, переходим к практике...

Простое реле времени

Схема устройства показана на рисунке 4. Элемент микросхемы здесь включен так-же как и в эксперименте выше: входы замкнуты. Пока кнопка кнопка S1 разомкнута, конденсатор С1 находится в заряженном состоянии и ток через него не протекает. Однако вход микросхемы подключен и к "общему" проводу (через резистор R1) и поэтому на входе микросхемы будет присутствовать логический "0". Так как элемент микросхемы является инвертором то значит на выходе микросхемы получится логическая "1" и светодиод будет гореть.
Замыкаем кнопку. На входе микросхемы появится логическая "1" и, следовательно, на выходе будет "0", светодиод погаснет. Но при замыкании кнопки и конденсатор С1 мгновенно разрядится. А это значит что после того как мы отпустили кнопку в конденсаторе начнется процесс заряда и пока он будет продолжаться через него будет протекать электрический ток поддерживая уровень логической "1" на входе микросхемы. То есть получится что светодиод не загорится до тем пор пока конденсатор С1 не зарядится. Время заряда конденсатора можно изменять подбором емкости конденсатора или изменением сопротивления резистора R1.

Схема вторая

На первый взгляд практически то же самое что и предыдущая, но кнопка с времязадающим конденсатором включена немного по-другому. И работать она будет тоже немного иначе- в ждущем режиме светодиод не горит, при замыкании кнопки светодиод загорится сразу, а погаснет уже с задержкой.

Простая мигалка

Если включить микросхему как показано на рисунке то мы получим генератор световых импульсов. По сути это самый простой мультивибратор, принцип работы которого был подробно описан на этой странице.
Частота импульсов регулируется резистором R1 (можно даже установить переменный) и конденсатором С1.

Управляемая мигалка

Давайте немного изменим схему мигалки (которая была выше на рисунке 6) введя в нее цепь из уже знакомого нам реле времени- кнопку S1 и конденсатор С2.

Что у нас получится: при замкнутой кнопке S1, на входе элемента D1.1 будет логический "0". Это элемент 2И-НЕ и поэтому не важно что у него творится на втором входе- на выходе в любом случае будет "1".
Эта самая "1" поступит на вход второго элемента (который D1.2) и значит на выходе этого элемента будет прочно сидеть логический "0". А раз так то светодиод загорится и будет гореть постоянно.
Как только мы отпустили кнопку S1, начинает заряд конденсатора С2. В течение времени заряда через него будет протекать ток удерживая уровень логического "0" на выводе 2 микросхемы. Как только конденсатор зарядится, ток через него прекратится, мультивибратор начнет работать в своем обычном режиме- светодиод будет мигать.
На следующей схеме также введена эта-же цепочка но включена она уже иначе: при нажатии на кнопку светодиод начнет мигать а по истечение некоторого времени станет гореть постоянно.

Простая пищалка

В этой схеме ничего особо необычного нет: все мы знаем что если к выходу мультивибратора подключить динамик или наушник то он начнет издавать прерывистые звуки. На малых частотах это будет просто "тикание" а на более высоких частотах это будет писк.
Для эксперимента больший интерес представляет схема показанные ниже:

Здесь опять же знакомое нам реле времени- замыкаем кнопку S1, размыкаем ее и через некоторое время устройство начинает пищать.

Техника измерений

Генератор на К561ЛА7 с регулировкой частоты

Цифровые микросхемы могут реализовывать не только математическую логику. Один из примеров альтернативного функционала – генераторы тактовых импульсов.

В самом простейшем виде генератор представляет собой ни что иное, как колебательный контур, собранный на базе конденсатора и сопротивления (так называемый RC-контур). Однако, такие схемы отличаются низким качеством выходного сигнала и нелинейностью формируемых импульсов.

Придать им правильную "квадратную" форму смогут микросхемы, реализующие простую логику "И-НЕ", такие как К561ЛА7 или аналоги. Но обо всем поподробнее.

Описание К561ЛА7

Микросхема реализует логику четырёх независимых элементов "И-НЕ" (схема с цоколевкой ниже).

Рис. 1. К561ЛА7

Номинальное напряжение для питания – 10 В, максимальное – не более 15 В.

Может работать практически при любой температуре (от -45 до +85°С), потребляет совсем немного тока (до 0,3 мкА) и имеет небольшое время задержки (80 нс).

К прямым аналогам можно отнести микросхему CD4011A. Однако, в описываемой задаче могут применяться также:

  • К176ЛЕ5 (допустима прямая замена без изменения схемы);
  • Микросхемы из серии К561;
  • К176ПУ2/или ПУ1;
  • А также другие микросхемы, реализующие логику четырёх или более независимых инверторов.

На всякий случай приведем таблицу истинности.

Рис. 2. Таблицу истинности

Простой генератор частоты

Схема, обозначенная ниже, будет формировать меандр (прямоугольные импульсы).

Рис. 3. Схема, которая будет формировать меандр

Фактически можно обойтись и без последнего блока D1.4.

Колебания задаются контуром C1R1, а логические элементы преобразуют синусоидальный сигнал в прямоугольный, отсекая фронты спада и подъема согласно логике инвертирования (есть сигнал на входе, превышающий пороговое значение – выдается на 0, отсутствует – выдается логическая единица).

Недостаток такого генератора – отсутствие возможности регулирования частоты (она фиксированная и определяется номиналом конденсатора с резистором) и влияния на время паузы, длительности импульса (или их соотношение – то есть скважность).

Регулируемый генератор

Схема, обозначенная ниже позволяет отдельно регулировать время паузы и длительность импульса.

Рис. 4. Схема, которая позволяет отдельно регулировать время паузы и длительность импульса

За эту логику отвечают настроечные резисторы R2 и R3. Частотный диапазон регулируется незначительно и потому для его кардинальной смены можно предусмотреть включение нескольких конденсаторов разной емкости (на замену C1), включаемых в схему попеременно.

Еще одна версия с возможностью регулирования скважности (основана на схеме все того же мультивибратора).

Рис. 5. Вариант схемы с возможностью регулирования скважности

Можно назвать ее практически универсальной для различного рода экспериментов с ГТИ (генераторами тактовых импульсов).

Выглядит она следующим образом.

Рис. 6. Схема с различной формой сигнала

Номинал резисторов и конденсаторов не особо принципиален и может быть изменен под свои нужды.

Как видно выше, есть сразу три выхода с прямоугольным сигналом (меандром), треугольным и синусом.

Каждый из них может быть изменен соответствующими подстроечными резисторами.


Дата публикации: 06.03.2018

Мнения читателей
  • Виталий / 17.05.2019 - 16:50
    Подскажите а как увиличить амплитуду сигнала если в первой схеме поставить с1 на 100п например?и как рассчитать правельно резистор?
  • Антон / 31.08.2018 - 22:04
    Достаточно неплохо.

Рассмотрим схемы четырех электронных приборов построенных на микросхеме К561ЛА7 (К176ЛА7). Принципиальная схема первого прибора показана на рисунке 1. Это мигающий фонарь. Микросхема вырабатывает импульсы, которые поступают на базу транзистора VT1 и в те моменты, когда на его базу поступает напряжение единичного логического уровня (через резистор R2) он открывается и включает лампу накаливания, а в те моменты, когда напряжение на выводе 11 микросхемы равно нулевому уровню лампа гаснет.

График, иллюстрирующий напряжение на выводе 11 микросхемы показан на рисунке 1А.

Рис.1А
Микросхема содержит четыре логических элемента "2И-НЕ", входы которые соединены вместе. В результате получается четыре инвертора ("НЕ". На первых двух D1.1 и D1.2 собран мультивибратор, вырабатывающий импульсы (на выводе 4), форма которых показана на рисунке 1А. Частота этих импульсов зависит от параметров цепи, состоящей из конденсатора С1 и резистора R1. Приблизительно (без учета параметров микросхемы) эту частоту можно рассчитать по формуле F = 1/(CxR).

Работу такого мультивибратора можно пояснить так: когда на выходе D1.1 единица, на выходе D1.2 - нуль, это приводит к тому, что конденсатор С1 начинает заряжаться через R1, а вход элемента D1.1 следит за напряжением на С1. И как только это напряжение достигнет уровня логической единицы, схема как-бы переворачивается, теперь на выходе D1.1 будет ноль, а на выходе D1.2 единица.

Теперь уже конденсатор станет разряжаться через резистор, а вход D1.1 будет следить за этим процессом, и как только напряжение на нем станет равно логическому нуля схема опять перевернется. В результате уровень на выходе D1.2 будут импульсы, а на выходе D1.1 тоже будут импульсы, но противофазные импульсам на выходе D1.2 (рисунок 1А).

На элементах D1.3 и D1.4 выполнен усилитель мощности, без которого, в принципе, можно обойтись.

В данной схеме можно использовать детали самых разных номиналов, пределы, в которые должны укладывать параметры деталей отмечены на схеме. Например, R1 может иметь сопротивление от 470 кОм до 910 кОм, конденсатор С1 иметь емкость от 0,22 мкФ до 1,5 мкФ, резистор R2 - от 2 кОм до 3 кОм, таким же образом подписаны номиналы деталей и на других схемах.

Рис.1Б
Лампа накаливания - от карманного фонаря, а батарея питания - либо плоская на 4,5В, либо "Крона" на 9В, но лучше если взять две "плоские", включенные последовательно. Цоколевка (расположение выводов) транзистора КТ815 показана на рисунке 1Б.

Второе устройство - реле времени, таймер со звуковой сигнализацией окончания установленного временного промежутка (рисунок 2). В основе лежит мультивибратор, частота которого сильно увеличена, по сравнению с пред-идущей конструкцией, за счет уменьшения емкости конденсатора. Мультивибратор выполнен на элементах D1.2 и D1.3. Резистор R2 взять такой же как R1 в схеме на рисунке 1, а конденсатор (в данном случае С2) имеет значительно меньшую емкость, в пределах 1500-3300 пФ.

В результате импульсы на выходе такого мультивибратора (вывод 4) имеют звуковую частоту. Эти импульсы поступают на усилитель, собранный на элементе D1.4 и на пьезокрамический звукоизлучатель, который при работе мультивибратора издает звук высокого или среднего тона. Звукоизлучатель - пьезокерамический зуммер, например от звонка телефона-трубки. Если он имеет три вывода нужно подпаять любые два из них, а потом опытным путем выбрать из трех два таких, при подключении которых громкость звука максимальная.

Рис.2

Мультивибратор работает только тогда, когда на выводе 2 D1.2 будет единица, если ноль - мультивибратор не генерирует. Происходит это потому, что элемент D1.2 это элемент "2И-НЕ", который, как известно, отличается тем, что если на его один вход подать нуль, то на его выходе будет единица независимо от того, что происходит на его втором входе.

На базе микросхемы К561ЛА7 можно собрать генератор, который может быть применен на практике для генерации импульсов для каких либо систем или импульсы после усиления через транзисторы или тиристоры могут управлять световыми приборами (светодиодами, лампами). В итоге на данной микросхеме возможно собрать гирлянду или бегущие огни. Далее в статье вы найдете принципиальную схему подключения микросхемы К561ЛА7, печатную плату с расположением радиоэлементов на ней и описание работы сборки.

Принцип работы гирлянды на микросхеме КА561 ЛА7

Микросхема начинает генерировать импульсы в первом из 4 элементов 2И-НЕ. Длительность импульса свечения светодиода зависит от номинала конденсатора С1 для первого элемента и соответственно С2 и С3 для второго и третьего. Транзисторы фактически являются управляемыми "ключами", при подаче управляющего напряжения от элементов микросхемы на базу, открываясь они пропускают электрический ток от источника питания и питают цепочки светодиодов.
Питание осуществляется от источника питания 9 В, с номинальным током не менее 100 мА. При правильном монтаже электросхема не нуждается в настройке и сразу работоспособна.

Обозначение радиоэлементов в гирлянде и их номиналы согласно выше приведенной схемы

R1, R2, R3 3 мОм - 3 шт.;
R4, R5, R6 75-82 Ом - 3 шт.;
С1,С2,С3 0,1 мкф - 3 шт.;
НL1-HL9 светодиод АЛ307 - 9 шт.;
D1 микросхема К561ЛА7 - 1 шт.;

На плате показаны дорожки для травления, габариты текстолита и расположение радиоэлементов при пайке. Для травления платы возможно применение платы с односторонним покрытием медью. В данной случае на плате устанавливается все 9 светодиодов, если светодиоды будут собраны в цепочку - гирлянду, а не смонтированы на плате, то ее габариты возможно сократить.

Технические характеристики микросхемы К561ЛА7:

Напряжение питания 3-15 В;
- 4 логических элемента 2И-НЕ.

Устройство для создания эффекта огней бегущих из центра к краям солнышка. Кол-во светодиодов - 18 шт. Uпит.= 3...12В.

Для подстройки частоты мерцания изменить номиналы резисторов R1, R2, R3 или конденсаторов C1, C2, C3. К примеру, увеличение R1, R2, R3 вдвое (20к) частота уменьшится вдвое. При замене конденсаторов C1, C2, C3 увеличить емкость (22мкФ). Возможна замена К561ЛА7 на К561ЛЕ5 либо на полный зарубежный аналог CD4011. Номиналы резисторов R7, R8, R9 зависят от напряжения питания и от применяемых светодиодов. При сопротивлении 51 Ом и напряжении питания 9В ток через светодиоды будеть чуть меньше 20мА. Если вам нужна экономичность устройства и вы используете светодиоды яркого свечения при малом токе, то сопротивление резисторов можно сушественно увеличить (до 200 Ом и даже больше).

Еще лучше, при питании 9В использовать последовательное соединение светодиодов:

Ниже приведены рисунки печатных плат двух вариантов: солнышко и мельница:


C этой схемой также часто просматривают: