Как регулировать переменный ток. Блок питания с регулировкой тока и напряжения

Вам понадобится

  • - транзисторы типа П416, ГТ308;
  • - переменный резистор СП-2;
  • - резисторы МЛТ;
  • - конденсаторы МБТ или МБМ 400 В

Инструкция

Сделайте вторичную обмотку при намотке сварочного . Изменяйте ток переключением количества витков. Это наиболее оптимальный вариант. Но применять данный способ можно только для подстройки тока, для регулировки его в широких пределах он не применяется. Стоит сказать, что данный метод связан с определенными проблемами. Прежде всего с тем, что регулирующее устройство проходит значительный ток, который приводит к его громоздкости, а для вторичной цепи невозможно подобрать стандартные переключатели, которые бы выдерживали ток до 200 А. Совсем друге дело - цепь первичной обмотки, так как токи здесь в 5 раз слабее.

Соберите тиристорный регулятор. Элементная база доступна, он прост в управлении, не нуждается в настройке и хорошо зарекомендовал себя в процессе работы. Регулировка мощности осуществляется периодическим отключением на заданный промежуток времени I-ой обмотки сварочного трансформатора на каждом полупериоде тока. При этом среднее значение тока уменьшается.

Включите основные элементы регулятора (тиристоры) параллельно и встречно друг другу. Они будут поочередно открываться импульсами тока, которые формируются транзисторами VT1, VT2. При подаче питания на регулятор оба закрыты, через переменный R7 начинают конденсаторы С1 и С2. При достижении на одном из них напряжения лавинного пробоя транзистора, последний откроет путь току разряда соединенного с ним конденсатора. После чего соответствующий тиристор, подключающий нагрузку к сети. При начале следующего полупериода все повторяется, но наоборот, в обратной полярности.

Регулировку момента тиристоров производите изменением сопротивления переменного резистора R7 от начала до конца полупериода. Это приводит к изменению общего тока в I-й обмотке сварочного трансформатора. Для уменьшения или увеличения диапазона регулировки измените сопротивление переменного резистора R7 в меньшую или в большую сторону соответственно.

Замените резисторы R5, R6, которые включены в базовые цепи и транзисторы VT1, VT2, которые работают в лавинном режиме, на динисторы. Соедините аноды динисторов с крайними выводами резистора R7, а катоды подключите к резисторам R3 и R4. Для регулятора тока собранного на динисторах используйте приборы типа КН102А. Используйте в качестве VT1, VT2 транзисторы типа П416, ГТ308, но можете заменить их современными высокочастотными маломощными с близкими параметрами. Используйте переменный резистор типа СП-2, типа МЛТ. Конденсаторы типа МБТ или МБМ рабочим напряжением от 400 В. Регулятор не наладки, убедитесь только в стабильной работе транзисторов в лавинном режиме.

Это достаточно распространённый вопрос, который имеет несколько путей решений. Есть один из наиболее популярных способов решить проблему, регулировка происходит посредством активного балластного соединения на выходе обмотки (вторичной).

На территории Российской Федерации, сварка для переменного тока заключается в используемой частоте в 50 Гц. В качестве источника питания используется сеть с напряжением 220В. А все трансформаторы для сварки, имеют первичную и вторичную обмотку.

В агрегатах, используемых в промышленной зоне, регулировку тока осуществляют по-разному. Например, с помощью подвижных функций обмоток, а также магнитного шунтирования, дроссельного шунтирования разного типа. Используют также магазины балластных сопротивлений (активных) и реостат.

Такой выбор силы сварочного тока нельзя назвать удобным способом, благодаря сложной схеме конструкции, перегревам и дискомфортом при переключениях.

Более удобным способом урегулировать сварочный ток, можно, если намотать вторичку (вторичную обмотку), сделав отводы, что позволит изменять напряжение при переключении количество витков.

Но контролировать напряжение в широких пределах, в этом случае, не выйдет. Также отмечают определённые недостатки при корректировке из вторичной цепи.

Таким образом, регулятор сварочного тока, на первоначальных оборотах пропускает через себя ток высокой частоты (ТВЧ), что тянет за собой громоздкость конструкции. А стандартные переключатели вторичной цепи, не предполагают нагрузки в 200 А. Зато в цепи первичной обмотки, показатели в 5 раз меньше.

В результате был найден оптимальный и удобный инструмент, при котором регулировка сварочного тока не кажется такой запутанной — это тиристор. Специалисты всегда отмечают его простоту, удобство в управлении и высокую надёжность. Сила сварочного тока зависит от отключения первичной обмотки на конкретные промежутки времени, на каждом из полупериодов напряжения. При этом средние показатели напряжения снизятся.

Принцип работы тиристора

Детали регулятора подключены как параллельно, так и встречно друг другу. Они постепенно открываются импульсами тока, которые образуются транзисторами vt2 и vt1. При запуске прибора оба тиристора закрыты, С1 и С2 это конденсаторы, они будут заряжаться через резистор r7.

В тот момент, как напряжение какого-либо из конденсаторов достигнет напряжения лавинной пробивки транзистора, тот открывается, и через него и идёт ток разряда, совместного с ним конденсатора. После открытия транзистора открывается соответствующий ему тиристор, он подключит нагрузку в сеть. Затем начинается противоположный по признакам полупериод переменного напряжения, что предполагает закрытие тиристора, затем следует новый цикл подзарядки конденсатора, уже в противоположной полярности. Далее открывается следующий транзистор, но снова подключит нагрузку в сеть.

Сварка постоянным и переменным током

В современном мире, в большей мере используется сварка с постоянным током. Это связано с возможностью уменьшения количества присадочного материала электродов в сварном шве. Но при сварке переменным напряжением, можно добиться очень качественного результата сварки. Источники сварочного тока, работающие с переменным напряжением можно разделить на несколько видов:

  1. Приборы для аргонодуговой сварки. Здесь используются специальные электроды, которые не плавятся, благодаря этому аргонная сварка становится максимально комфортной;
  2. Аппараты для производства РДС переменным электрическим током;
  3. Оборудование для сварки с помощью полуавтомата.

А методы сварки переменным способом делятся на два типа:

  • использование неплавящихся электродов;
  • штучные электроды.

Сварка постоянным током бывает двух типов, обратной и прямой полярности. Во втором варианте сварочный ток движется от минуса к положительному показателю, а тепло сосредотачивается на заготовке. А обратная концентрирует внимание на торце электрода.

Сварочный генератор для постоянного тока состоит из двигателя и самого генератора тока. Их используют для ручной сварки в монтажных работ и в полевых условиях.

Изготовление регулятора

Чтобы изготовить регулирующее устройство для сварочного тока, потребуются такие компоненты:

  1. Резисторы;
  2. Проволока (нихромовая);
  3. Катушка;
  4. проект или схема прибора;
  5. Переключатель;
  6. Пружина из стали;
  7. Кабель.

Эксплуатация балластного соединения

Показатель балластного сопротивления регулирующего аппарата находится на уровне 0,001 Ом. Он подбирается путём эксперимента. Непосредственно для получения сопротивления, преимущественно используется сопротивление проволоки больших мощностей, их применяют в троллейбусах или на подъёмниках.

Уменьшить сварочное напряжение высокой частоты, можно даже используя стальную пружину для двери.


Такое сопротивление включается стационарно или по-другому, чтобы в будущем была возможность с легкостью отрегулировать показатели. Один край этого сопротивления подключается к выходу конструкции трансформатора, другой обеспечивается специальным инструментом для зажима, который сможет перекидываться по всей длине спирали, что позволит выбрать нужную силу напряжения.

Основная часть резисторов с использованием проволоки большой мощности, производится в виде открытой спирали. Она монтируется на конструкцию в длину полметра. Таким образом, спираль делается также из проволоки ТЭНа. Когда резисторы, изготовленные из магнитного сплава скооперировать со спиралью или любой деталью из стали, в процессе работы прохождения тока с высокими показателями, она начнёт заметно дрожать. Такой зависимостью спираль обладает только до того момента, пока она не растянется.

Как сделать дроссель самостоятельно?

Вполне реальным является самостоятельное изготовление дросселя в домашних условиях. Это имеет место при наличии прямой катушки с достаточным количеством витков нужного шнура. Внутри катушки проводятся прямые пластинки из металла от трансформатора. Путём выбора толщины этих пластинок, есть возможность выбора стартового реактивного сопротивления.

Рассмотрим конкретный пример. Дроссель с катушкой с 400 витками и шнура диаметром 1,5 мм, заполняется пластинками с сечением 4,5 квадратных сантиметров. Длина катушки и провода должна быть одинакова. В результате трансформаторный ток 120 А уменьшится наполовину. Такой дроссель изготавливается с сопротивлением, которое можно изменять. Чтобы провести такую операцию, необходимо замерить углубление прохождения стержня сердечника внутрь катушки. С отсутствием этого инструмента, катушка будет иметь не значительное сопротивление, но если стержень будет введён в неё, сопротивление повысится до максимума.

Дроссель, который наматывается правильным шнуром, не будет перегреваться, но, возможно, сердечник будет отличаться сильной вибрацией. Это учитывается при стяжке и крепеже железных пластин.

Сегодня, как в промышленности, так и в гражданской сфере, есть немало установок, электроприводов, технологий, где для питания требуется не переменное, а постоянное напряжение. К таким установкам относятся различные промышленные станки, строительное оборудование, двигатели электротранспорта (метро, троллейбус, погрузчик, электрокар), и другие установки постоянного тока разного рода.

Напряжение питания для некоторых из этих устройств должно быть изменяемым, чтобы например изменяющийся ток питания электродвигателя приводил бы к соответствующему изменению скорости вращения его ротора.

Один из первых способов регулировки постоянного напряжения — регулирование при помощи реостата. Затем можно вспомнить схему двигатель — генератор — двигатель, где опять же регулированием тока в обмотке возбуждения генератора достигалось изменение рабочих параметров конечного двигателя.

Но эти системы не экономичны, они считаются устаревшими, и гораздо более современными являются схемы регулирования . Тиристорное регулирование более экономично, более гибко, и не приводит к увеличению массо-габаритных параметров установки целиком. Однако, обо всем по порядку.

Реостатное регулирование (регулирование при помощи добавочных резисторов)

Регулирование при помощи цепи последовательно соединенных резисторов позволяет изменять ток и напряжение питания электродвигателя путем ограничения тока в его якорной цепи. Схематически это выглядит как цепочка добавочных резисторов, присоединенных последовательно к обмотке двигателя, и включенных между ней и плюсовой клеммой источника питания.

Часть резисторов может быть по мере надобности шунтирована контакторами, чтобы соответствующим образом изменился ток через обмотку двигателя. Раньше в тяговых электроприводах такой метод регулирования был распространен весьма широко, и за неимением альтернатив приходилось мириться с очень низким КПД в силу значительных тепловых потерь на резисторах. Очевидно, это наименее эффективный метод — лишняя мощность просто рассеивается в виде ненужного тепла.

Здесь напряжение для питания мотора постоянного тока получается на месте, при помощи генератора постоянного тока. Приводной мотор вращает генератор постоянного тока, который и питает в свою очередь мотор исполнительного механизма.

Регулирование рабочих параметров двигателя исполнительного механизма достигается путем изменения тока обмотки возбуждения генератора. Больше ток обмотки возбуждения генератора — большее напряжение подается на конечный двигатель, меньше ток обмотки возбуждения генератора — меньшее напряжение, соответственно, подается на конечный двигатель.

Данная система, на первый взгляд, более эффективна, чем просто рассеивание энергии в виде тепла на резисторах, однако и она отличается своими недостатками. Во-первых, система содержит две дополнительные, довольно габаритные, электрические машины, которые необходимо время от времени обслуживать. Во-вторых, система инерционна — соединенные три машины не в состоянии резко изменить свой ход. В результате снова КПД получается низким. Однако, на протяжении некоторого времени такие системы использовались на заводах в 20 веке.

Метод тиристорного регулирования

С появлением во второй половине 20 века полупроводниковых приборов, появилась возможность создания малогабаритных тиристорных регуляторов для двигателей постоянного тока. Двигатель постоянного тока теперь просто подключался к сети переменного тока через тиристор, и, варьируя фазу открывания тиристора, стало возможным получить плавное регулирование скорости вращения ротора двигателя. Этот метод позволил совершить рывок в подъеме КПД и быстродействия преобразователей для питания моторов постоянного тока.

Метод тиристорного регулирования и сейчас используется, в частности, для управления скоростью вращения барабана в автоматических стиральных машинах, где в качестве привода служит коллекторный высокооборотный мотор. Справедливости ради отметим, что аналогичный метод регулирования работает и в тиристорных диммерах, способных управлять яркостью свечения ламп накаливания.

Постоянный ток при помощи инвертора преобразуется в переменный ток, который затем при помощи трансформатора повышается или понижается, после чего выпрямляется. Выпрямленное напряжение подается на обмотки электродвигателя постоянного тока. Возможно дополнительное , тогда достигаемый эффект на выходе несколько похож на тиристорное регулирование.

Наличие трансформатора и инвертора в принципе приводит к удорожанию системы в целом, однако современная полупроводниковая база позволяет строить конверторы в виде готовых малогабаритных устройств с питанием от сети переменного тока, где трансформатор стоит высокочастотный импульсный, и в итоге габариты получаются небольшими, а КПД уже достигает 90%.

Импульсное управление

Система импульсного управления моторами постоянного тока похожа по своему устройству на импульсный . Этот метод является одним из наиболее современных, и именно его используют сегодня в электрокарах и внедряют в метро. Звено понижающего преобразователя (диод и дроссель) объединено в последовательную цепь с обмоткой мотора, и регулируя ширину подаваемых на звено импульсов, добиваются требуемого среднего тока через обмотку мотора.

Такие импульсные системы управления, по сути — импульсные преобразователи, отличаются более высоким КПД — более 90%, и обладают отличным быстродействием. Здесь открываются широкие возможности для , что весьма актуально для станков с большой инерционностью и для электрокаров.

Андрей Повный

Одна из главных составляющих по-настоящему качественного - это правильная и точная настройка сварочного тока в соответствии с поставленной задачей. Опытным сварщикам часто приходится работать с металлом разной толщины, и порой стандартной регулировки min/max недостаточно для полноценной работы. В таких случаях возникает необходимость многоступенчатой регулировки тока, с точностью до ампера. Эту проблему можно легко решить путем включения в цепь дополнительного прибора - регулятора тока.

Ток можно регулировать по вторичке (вторичной обмотке) и по первичке (первичной обмотке). При этом каждый из способов настройки трансформатора для сварки имеет свои особенности, которые важно учитывать. В этой статье мы расскажем, как осуществляется регулировка тока в , приведем схемы регуляторов для сварочного , поможем грамотно выбрать регулятор сварочного тока по первичной обмотке для сварочного трансформатора.

Существуют множество способов регулировки тока, и выше мы писали о вторичной и первичной обмотке. На самом деле, это очень грубая классификация, поскольку регулировка еще делится на несколько составляющих. Мы не сможем разобрать все составляющие в рамках этой статьи, поэтому остановимся на наиболее популярных.

Один из самых часто применяемых методов регулировки тока - это добавление на выходе вторичной обмотки. Это надежный и долговечный способ, баластник можно легко сделать своими руками и использовать в работе без дополнительных приборов. Зачастую баластники используют исключительно для уменьшения силы тока.

Если вы не готовы мириться с этими недостатками, то рекомендуем обратить внимание на метод, когда производится регулировка сварочного тока по первичной обмотке. Для этих целей зачастую используются электронные приборы, которые можно легко сделать своими руками. Такой прибор будет беспроблемно регулировать ток по первичке и не доставит сварщику неудобств при эксплуатации.

Электронный регулятор станет незаменимым помощником дачника, который вынужден проводить сварку в условиях нестабильного напряжения. Часто домам просто не положено использование электроприборов более 3-5 кВт, а это очень ограничивает в работе. С помощью регулятора можно настроить свой аппарат таким образом, чтобы он мог бесперебойно работать даже с учетом низкого напряжения. Также такой прибор пригодится мастерам, которым необходимо постоянно перемещаться с места на место во время работы. Ведь регулятор не нужно таскать за собой, как баластник, и он никогда не станет причиной травм.

Теперь мы расскажем о том, как самому изготовить электронный регулятор из тиристоров.

Схема тиристорного регулятора

Выше вы можете видеть схему простейшего регулятор на 2 тиристорах с минимумов недефицитных деталей. Вы также можете сделать регулятор на симисторе, но наша практика показала, что тиристорный регулятор мощности долговечнее и работает более стабильно. Схема для сборки очень простая и по ней вы сможете довольно быстро собрать регулятор, имея минимальные навыки пайки.

Принцип действия данного регулятора тоже прост. У нас есть цепь первичной обмотки, в которую подключается регулятор. Регулятор состоит из транзисторов VS1 и VS2 (для каждой полуволны). RC-цепочка определяет момент, когда откроются тиристоры, вместе с тем меняется сопротивление R7. В результате мы получаем возможность изменять ток по первичке трансформатора, после чего ток меняется и во вторичке.

Обратите внимание! Настройка регулятора осуществляется под напряжением, об этом не стоит забывать. Чтобы избежать фатальных ошибок и не получить травму нужно обязательно изолировать все радиоэлементы.

В принципе, вы можете использовать транзисторы старого образца. Это отличный способ сэкономить, поскольку такие транзисторы можно без проблем найти в старом радиоприемнике или на барахолке. Но учтите, что такие транзисторы должны использоваться на рабочем напряжении не менее 400 В. Если вы посчитаете нужным, можете поставить динисторы вместо транзисторов и резисторов, показанных на схеме. Мы динисторы не использовали, поскольку в данном варианте они работают не очень стабильно. В целом, эта схема регулятора сварочного тока на тиристорах неплохо зарекомендовала себя и на ее основе было изготовлено множество регуляторов, которые стабильно работают и хорошо выполняют свою функцию.

Также вы могли видеть в магазинах регулятор РКС-801 и регулятор контактной сварки РКС-15-1. Мы не рекомендуем изготавливать их самостоятельно, поскольку это займет много времени и несильно сэкономит вам деньги, но если есть такое желание, то можете изготовить РКС-801. Ниже вы видите схему регулятора и схему его подключения к сварочнику. Откройте картинки в новом окне, чтобы лучше видеть текст.

Измерение сварочного тока

После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.

Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим .

Токоизмерительные клещи - это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения . Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с такой прибор оправдывает все ожидания.

Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.

Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.

Вместо заключения

Регулирование сварочного тока на полуавтомате - это не так сложно, как может показаться на первый взгляд. Если вы обладаете минимальными знаниями в области электротехники, то сможете без проблем собрать своими силами регулятор тока для сварочного аппарата на тримисторах, сэкономив на покупке этого прибора в магазине. Самодельные регуляторы особенно важны для домашних мастеров, которые не готовы к дополнительным тратам на оборудование. Расскажите о своем опыте изготовления и использования регулятора тока в комментариях и делитесь этой статьей в своих социальных сетях. Желаем удачи в работе!

Предлагается конструкция удобного и надёжного регулятора постоянного тока. Диапазон изменения им напряжения — от 0 до 0,86 U2, что позволяет использовать этот ценный прибор для различных целей. Например, для зарядки аккумуляторных батарей большой ёмкости, питания электронагревательных элементов, а главное — для проведения сварочных работ как обычным электродом, так и из нержавеющей стали, при плавной регулировке тока.

Принципиальная электрическая схема регулятора постоянного тока.

График, поясняющий работу силового блока, выполненного по однофазной мостовой несимметричной схеме (U2 — напряжение, поступающее со вторичной обмотки сварочного трансформатора, alpha — фаза открывания тиристора, t — время).

Регулятор может подключаться к любому сварочному трансформатору с напряжением вторичной обмотки U2=50. 90В. Предлагаемая конструкция очень компактна. Общие габариты не превышают размеры обычного нерегулируемого выпрямителя типа «мостик9raquo; для сварки постоянным током.

Схема регулятора состоит из двух блоков: управления А и силового В. Причём первый представляет собой не что иное, как фазоимпульсный генератор. Выполнен он на базе аналога однопереходного транзистора, собранного из двух полупроводниковых приборов n-p-n и p-n-p типов. С помощью переменного резистора R2 регулируется постоянный ток конструкции.

В зависимости от положения движка R2 конденсатор С1 заряжается здесь до 6,9 В с различной скоростью. При превышении же этого напряжения транзисторы резко открываются. И С1 начинает разряжаться через них и обмотку импульсного трансформатора Т1.

Тиристор, к аноду которого подходит положительная полуволна (импульс передаётся через вторичные обмотки), при этом открывается.

В качестве импульсного можно использовать промышленные трёхобмоточные ТИ-3, ТИ-4, ТИ-5 с коэффициентом трансформации 1:1:1. И не только эти типы. Хорошие, например, результаты дает использование двух двухобмоточных трансформаторов ТИ-1 при последовательном соединении первичных обмоток.

Причём все названные типы ТИ позволяют изолировать генератор импульсов от управляющих электродов тиристоров.

Только есть одно «но9raquo;. Мощность импульсов во вторичных обмотках ТИ недостаточна для включения соответствующих тиристоров во втором (см. схему), силовом блоке В. Выход из этой «конфликтной9raquo; ситуации был найден элементарный. Для включения мощных использованы маломощные тиристоры с высокой чувствительностью по управляющему электроду.

Силовой блок В выполнен по однофазной мостовой несимметричной схеме. То есть тиристоры трудятся здесь в одной фазе. А плечи на VD6 и VD7 при сварке работают как буферный диод.

Монтаж? Его можно выполнить и навесным, базируясь непосредственно на импульсном трансформаторе и других относительно «крупногабаритных9raquo; элементах схемы. Тем более что соединяемых в данную конструкцию радиодеталей, как говорится, минимум-миниморум.

Прибор начинает работать сразу, без каких-либо наладок. Соберите себе такой — не пожалеете.

А.ЧЕРНОВ, г. Саратов. Моделист-конструктор 1994 №9.

Рубрика: «Электронные самоделки»

Простой электронный регулятор сварочного тока, схема

Часто приходится варить метал разной толщины и использовать электроды разного диаметра, а чтобы сварка была качественная, необходимо сварочный ток подстраивать, чтобы шов ложился ровно и метал не разбрызгивался. Но, регулировать ток вторичной обмотки сварочного трансформатора довольно проблематично, т.к. он может достигать до 180-250А.

Как вариант, для регулировки сварочного тока используют нихромовые спирали, включая последовательно их в цепь первичной или вторичной обмотки сварочного трансформатора, или дросели. Регулировать ток таким образом неудобно, да и сам регулятор громоздкий получается. Но есть и другой выход — сделать электронный регулятор сварочного тока, который бы регулировал ток в первичной обмотке сварочного аппарата.

Регулятор сварочного тока для самодельного сварочного аппарата еще очень полезен в тех случаях, когда приходится сваривать металл в местах где слабая электросеть, в селах например. Как правило там ограничивают потребление тока на каждый дом, ставя входной автомат на 16 А, т.е. нельзя включть нагрузку более 3,5 КВт. А хороший сварочный аппарат, варящий электродами диаметром 4-5 мм, потребляет 6-7, а то и 8 КВт.

Поэтому, уменьшили сварочный ток и одновременно уменьшили ток потребления сваточного аппарата, таким образом вложились в те 3,5 КВт и «троечкой» сварили то что вам надо.

Вот простая схема такого регулятора на 2 тиристорах и имеет она минимум недефицитных деталей. Можно сделать и на 1 симисторе, но, как показала практика, на тиристорах более надежно.

Работает регулятор сварочного тока следующим образом: в цепь первичной обмотки последовательно включается регулятор, который состоит из двух управляемых тиристоров VS1 и VS2(Т122-25-3, или Е122-25-3), на каждую полуволну. Момент открывания тиристоров определяется RC цепочкой (R7, C1, C2). Изменяя сопротивление R7, мы меняем момент открывания тиристоров и тем самым изменяем ток в первичной обмотке трансформатора, а следовательно меняется и ток во вторичной обмотке.

Транзисторы можно использовать старого образца — П416, ГТ308, их лекко можно найти в старых приемниках или телевизорах, а конденсаторы используются типа МБТ или МБМ на рабочее напряжение не менее 400 В.

Транзисторы VT1, VT2 и резисторы R5, R6, соединенные как показано на схеме, представляют собой аналог динисторов и в таком варианте они работают лучше чем динисторы, но при большом желании вместо VT1,R5 и VT2,R6 можно поставить обычные динисторы — типа КН102А.

При сборке и настройке регулятора сварочного тока не забывайте, что управление происходит под напряжением 220В. Поэтому, чтобы не допустить поражение электрическим током все радиоэлементы, а также теплоотводы тиристоров, должны быть изолированы от корпуса!

На практике, выше указанный электронный регулятор сварочного тока, отлично себя зарекомендовал.
За основу взят материал с журнала Радiоаматор.- 2000.-№5 «Сварочный трансформатор своими руками».

Недавно беседовал со своим преподавателем в университете, и на свою беду раскрыл свои радиолюбительские таланты. В общем кончился разговор тем, что взялся я собрать человеку тиристорный выпрямитель с плавным регулятором тока, для его сварочного «бублика9. Зачем это нужно? Дело в том, что переменным напряжением нельзя варить со специальными электродами, рассчитанными на постоянку, а учитывая что сварочные электроды бывают разной толщины (чаще всего от 2 до 6 мм), то и значение тока должно быть пропорционально изменено.

Выбирая схему сварочного регулятора, последовал совету -igRomana- и остановился на довольно простом регуляторе, где изменение тока производится подачей на управляющие электроды импульсов, формируемых аналогом мощного динистора, собранного на тиристоре КУ201 и стабилитроне КС156. Смотрим схему ниже:

Несмотря на то, что потребовалась дополнительная обмотка с напряжением 30 В, решил сделать проще, и чтоб не трогать сам сварочный трансформатор поставил небольшой дополнительный на 40 ватт. Тем самым приставка-регулятор стала полностью автономной — можно её подключать к любому сварочному трансформатору. Остальные детали регулятора тока собрал на небольшой плате из фольгированного текстолита, размерами с пачку сигарет.

В качестве основания выбрал кусок винипласта, куда прикрутил сами тиристоры ТС160 с радиаторами. Так как мощных диодов под рукой не оказалось, пришлось два тиристора заставить выполнять их функцию.

Она так-же крепится на общее основание. Для ввода сети 220 В использованы клеммы, входное напряжение со сварочного трансформатора подаётся на тиристоры через винты М12. Снимаем постоянный сварочный ток с таких-же винтов.

Сварочный аппарат собран, пришло время испытаний. Подаём на регулятор переменку с тора и меряем напряжение на выходе — оно почти не меняется. И не должно, так как для точного контроля вольтажа нужна хотя-бы небольшая нагрузка. Ей может быть простая лампа накаливания на 127 (или 220 В). Вот теперь и без всяких тестеров видно изменение яркости накала лампы, в зависимости от положения движка резистора-регулятора.

Вот и понятно, зачем по схеме указан второй подстроечный резистор — он ограничивает максимальное значение тока, что подаётся на формирователь импульсов. Без него выходной уже от половины движка достигает предельно возможного значения, что делает регулировку недостаточно плавной.

Для правильной настройки диапазона изменения тока, надо основной регулятор вывести на максимум тока (минимум сопротивления), а подстроечным (100 Ом) постепенно снижать сопротивление, пока дальнейшее его уменьшение не приведёт к увеличению сварочного тока. Зафиксировать этот момент.

Теперь сами испытания, так сказать по железу. Как и было задумано, ток нормально регулируется от нуля до максимума, однако на выходе не постоянка, а скорее импульсный постоянный ток. Короче электрод постоянного тока как не варил, так и не варит как следует.

Придётся добавлять блок конденсаторов. Для этого нашлось 5 штук отличных электролитов на 2200 мкФ 100 В. Соединив их с помощью двух медных полосок параллельно, получил вот такую батарею.

Проводим опять испытания — электрод постоянного тока вроде начал варить, но обнаружился нехороший дефект: в момент касания электрода, происходит микровзрыв и прилипание — это разряжаются конденсаторы. Очевидно без дросселя не обойтись.

И тут удача не оставила нас с преподавателем — в каптёрке нашёлся просто отличный дроссель ДР-1С, намотанный медной шиной 2х4 мм по Ш-железу и имеющий вес 16 кг.

Совсем другое дело! Теперь залипания почти нет и электрод постоянного тока варит плавно и качественно. А в момент контакта идёт не микровзрыв, а типа лёгкое шипение. Короче все довольны — учитель отличным сварочным аппаратом, а я избавлением от забивания головы архимутным предметом, не имеющим никакого отношения к электронике:)

Как сделать простой регулятор тока для сварочного трансформатора

Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальный вариант — еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.

Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело — цепь первичной обмотки, где токи в пять раз меньше.

После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы — широко известный тиристорный регулятор, схема которого изображена на рис.1.

При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе — работает не иначе, как «часы».

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.

Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.

Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.

Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.

Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

j&;лектрик Ин &2;о — элек &0;ротехника и элек &0;роника, дома &6;няя ав &0;оматизация, l&;татьи про &1;стройство и ремон &0; дома &6;ней элек &0;ропроводки, роk&;етки и в &9;ключатели, провода и кабели, иl&;точники l&;вета, ин &0;ересные &2;акты и многое др &1;гое для элек &0;риков и дома &6;них маl&;теров.

Ин &2;ормация и об &1;чающие ма &0;ериалы для на &5;инающих элек &0;риков.

Кейl&;ы, пример &9; и &0;ехнические ре &6;ения, обk&;оры ин &0;ересных элек &0;ротехнических новинок.

Вl&;я ин &2;ормация на l&;айте j&;лектрик Ин &2;о предоl&;тавлена в оk&;накомительных и поk&;навательных &4;елях. За применение э &0;ой ин &2;ормации админиl&;трация l&;айта о &0;ветственности не неl&;ет. Сай &0; може &0; l&;одержать ма &0;ериалы 12+

Перепе &5;атка ма &0;ериалов l&;айта k&;апрещена.

Сборка самодельных сварочных аппаратов постоянного тока

  • Сварочный аппарат: дуговая характеристика
  • Динамическая характеристика
  • Возможные детали и расчеты
  • Принципиальная схема
  • Работа схемы сварки:
  • Конструкция трансформатора и дросселей
  • Конструкция аппарата
    • Детали и материалы сварочного устройства:
    • Инструменты для сборки

Чтобы сделать самодельные сварочные аппараты постоянного тока, вам понадобится источник питания повышенной мощности, преобразующий номинальное напряжение обычной однофазной сети и обеспечивающий постоянную величину (в амперах) соответствующего тока для непосредственного возникновения и удержания нормальной электродуги.

Схемы самодельного аппарата для сварки на постоянном токе.

Источником питания повышенной мощности выступает схема из таких составляющих:

  • выпрямитель;
  • инверторы;
  • трансформатор тока и напряжения;
  • регуляторы тока и напряжения, улучшающие качественные характеристики электродуги (тиристоров, симисторов);
  • устройства вспомогательные.

На самом деле, исходя из схем самоделок, источником электродуги был и остается трансформатор, даже если не использовать вспомогательные узлы и схемы различных блоков регулирования.

Самодельный аппарат: блок-схема

Принципиальная электрическая схема блока питания сварочного аппарата.

Блок питания вставляется в соответствующую коробку из пластмассы или металла. Он снабжается необходимыми элементами: соединительными разъемами, различными выключателями, клеммами и регуляторами. Сварочный аппарат можно оборудовать ручками для переноски и колесиками.

Такую конструкцию довольно хорошего качества сварки можно выполнить самостоятельно. Главный секрет такого аппарата – это минимальное понимание сварочного процесса, выбор материала, а также мастерство и терпение при изготовлении этого устройства,.

Но для сборки аппарата самостоятельно вы должны хотя бы немного понять и изучить основные навыки, момент возникновения и горения электродуги и теорию плавления электрода. Знать характеристики сварочных трансформаторов и их магнитопроводов.

Вернуться к оглавлению

Самодельный аппарат: трансформатор

Основой любой схемы сварочного устройства является понижающий нормальное напряжение (с 220 В до 45-80 В) трансформатор. Он работает в специальном дуговом режиме с максимальной мощностью. Такие трансформаторы просто обязаны выдерживать очень большие токи номиналом около 200 А. Их характеристики должны согласовываться, ВАХ трансформатора непременно должна всецело соответствовать специальным требованиям, иначе ее нельзя применить для режима дуговой сварки.

Сварочные аппараты (их конструкции) сильно разнятся. Разнообразие сварочных самодельных трансформаторов огромно, ведь в конструкциях очень много поистине уникальных решений. Помимо этого, самодельные трансформаторы очень просты: в них отсутствуют дополнительные устройства, предназначенные для непосредственной регулировки тока конструкции, которая протекает:

Конструкция самодельного сварочного полуавтомата.

  • с помощью узкоспециализированных регуляторов;
  • путем переключения некоторого числа витков катушек.

Трансформатор в основном состоит из таких элементов:

  1. Магнитопровод металлический. Выполняется путем набора пластин из трансформаторной стали.
  2. Обмотки: первичная (сетевая) и вторичная (рабочая). Они бывают с выводами для регулировки (путем переключения) или для схемы устройства.

При расчете трансформатора на необходимый ток, варку производят, как правило, сразу с рабочей обмотки, не навешивая схем и разнообразных элементов ограничения и регулировки. Первичную обмотку необходимо выполнять с клеммами, отводами. Они служат для увеличения-уменьшения тока (например, поднастроить трансформатор при малом напряжении сети).

Главная часть любого трансформатора – его магнитопровод. При изготовлении самодельных разработок применяют магнитопроводы со списанных статоров электродвигателей, старых телевизионных и силовых трансформаторов. Поэтому и существует огромное разнообразие разработанных народными умельцами различных магнитопроводов для таких устройств.

Сварочный трансформатор на бaзe широко распространённого ЛАТР2 (а).

  • размеры магнитопровода;
  • обмотки – число витков;
  • уровень напряжений на входе-выходе;
  • I п – ток потребляемый;
  • I max – ток максимальный выходной.

Характеристики дополнительные просто невозможно оценить или измерить дома, даже с помощью приборов. Но как раз они и определяют годность трансформатора аппарата для формирования качественного шва при питании в режиме сварки руками.

Это напрямую зависит от того, как трансформатор «держит ток» и называется внешняя ВАХ (ВВАХ) питания.

ВВАХ – зависимость потенциалов (U) на разъемах и тока сварки, который меняется от нагрузочных свойств трансформатора и от электрической дуги.

Для сварки руками применяют лишь крутопадающую характеристику, а в автоматах используют пологоспадающую и жесткую.