Стробоскоп из светодиодной ленты своими руками. Светодиодный стробоскоп (светодиодный маяк) на TL494

Если вам нравится делать техобслуживание своего авто самому, то для уменьшения затрат на покупку инструмента вы можете сделать стробоскоп для зажигания своими руками.

Что такое стробоскоп

Стробоскопом называют прибор для наблюдения объектов, совершающих быстрые периодически повторяющиеся движения. Для этого он освещает движущийся объект яркими вспышками света, повторяющимися с частотой равной частоте движения этого объекта. При таком освещении движущийся объект кажется неподвижным. В двигателе авто с помощью стробоскопа можно определить величину угла опережения зажигания. Для этого нужно синхронизировать вспышки импульсами зажигания в первом цилиндре, а свет направлять на метки ВМТ и установки момента опережения зажигания, освещая и шкив коленвала с риской.

Стробоскопы заводского изготовления в качестве излучателя световых вспышек обычно имеют безынерционную импульсную лампу, позволяющую сделать настройки угла опережения зажигания даже в условиях яркого солнечного освещения. Однако она имеет небольшой срок службы и не всегда бывает в продаже. Поэтому с появлением светодиодов силой света более 2000 мкд при изготовлении стробоскопа своими руками стало удобнее пользоваться ими. Чтобы убедить в значительности превосходства параметров светового потока новых светодиодов, напомним, что у АЛ307 при том же потребляемом токе сила света составляет всего 10–16 мкд.

(схема к видеоматерилам в описании под видео)

Материалы

Предлагаемая для изготовления своими руками схема стробоскопа проста и не требует сложной настройки. Чтобы сделать простой стробоскоп для корректировки момента опережения зажигания своими руками, понадобятся следующие инструменты, детали и материалы:

  1. Карманный фонарик с достаточно большим отсеком для батареек.
  2. Светодиоды КИПД21П-К – 9 шт.
  3. Микросхема К561ТМ2 (два двухступенчатых D-триггера). Российские аналоги: К176ТМ2, 564ТМ2; импортный аналог – CD4013/HEF4013.
  4. Транзистор КТ315Б – 2 шт. (VT1, VT2); КТ815А – 1шт. (VT3).
  5. Подстроечный резистор СПЗ-196 или СП5-1 сопротивлением 33 кОм.
  6. Постоянные резисторы 5,1 Ом – 3 шт., 3 кОм – 1 шт., 15 кОм – 1 шт., 20 кОм – 2 шт., 330 кОм – 1 шт., мощностью не менее 0,125 Вт.
  7. Диод КД213 или любой другой средней мощности с U обр. макс не менее 16 В.
  8. Неполярные конденсаторы КМ-5, К73-9 или другие. С1 должен быть рабочим напряжением не менее 200 В остальные не меньше 16 В. 0,068 мкФ – 3 шт., 47 пФ – 1 шт.
  9. Любой тумблер для включения питания устройства.
  10. 1 м экранированного провода (например, антенного).
  11. 3 зажима «крокодил».
  12. Небольшой кусочек фольгированного текстолита толщиной 1 мм.
  13. Многожильный двойной изолированный медный провод – 1,5 м.
  14. Клеевой пистолет.
  15. Паяльник, припой, флюс.

Конструкция устройства

Корпусом стробоскопа будет фонарик. Схема собирается навесным монтажом. Готовая схема заливается горячим пластиком из клеевого пистолета, и после отвердения заливки помещается в отсек для батареек фонарика. Питающий и сигнальный кабели выводятся наружу через просверленные в корпусе отверстия. К концам проводов питания нужно припаять зажимы, обозначив полярность. На вход стробоскопа подключить антенный кабель. К центральной жиле входного кабеля припаять зажим «крокодил». После подключения стробоскопа к мотору авто с его помощью на вход будут подаваться импульсы синхронизации высоковольтного провода зажигания. Чтобы это стало возможным, достаточно надеть его на изоляцию высоковольтного провода зажигания первого цилиндра двигателя авто. Импульс синхронизации пойдет через емкость, образуемую центральной жилой провода зажигания и зажимом. То есть простой самодельный емкостной датчик будет состоять из зажима «крокодил», надетого на высоковольтный провод.

Сделать световой излучатель удобнее всего, смонтировав группу светодиодов, вплотную друг к другу в центре диска из фольгированного текстолита. Устанавливать его следует так, чтобы светодиоды, пройдя в отверстие для лампочки в отражателе, оказались как можно ближе к точке расположения нити накаливания. Прикрепить текстолит к рефлектору можно при помощи клеевого пистолета.

Питание

Питание прибора происходит от бортовой электрической сети авто. Диод VD1 предохраняет устройство от случайного подключения питания обратной полярности. Импульс синхронизации с емкостного датчика через цепь C1, R2 подается на вход триггера DD1.1, включенного как ждущий мультивибратор. Импульс высокого уровня запускает ждущий мультивибратор, триггер при этом переключается, а конденсатор С3, заряженный в исходном состоянии, начинает перезаряжаться через резистор R3. Приблизительно через 15 мс этот конденсатор перезарядится настолько, что напряжение на входе R вновь сбросит триггер в исходное состояние.

Так ждущий мультивибратор реагирует на каждый положительный импульс с емкостного датчика, вырабатывая синхронно входному прямоугольный выходной импульс высокого уровня постоянной длительности (15 мс), которая определяется номиналами резистора R3 и конденсатора C3. Последовательность этих импульсов с неинвертирующего выхода триггера DD1.1 поступает на вход второго ждущего мультивибратора, собранного по аналогичной схеме на триггере DD1.2. Длительность импульсов второго узла достигает 1,5 мс и определяется параметрами резистора R4 и конденсатора C4. Выходное напряжение второго триггера открывает триоды VT1 – VT3, и через светодиоды проходят импульсы тока величиной от 0,7 до 0,8 А.

Некоторые тонкости

Несмотря на то что величина тока значительно больше допустимой для этих светодиодов (максимально допустимый прямой импульсный ток всего 100 мА), не следует опасаться перегрева и выхода их из строя. Потому что длительность импульсов невелика, а их скважность в нормальном режиме не меньше 15. Яркость же вспышек девяти светодиодов позволяет пользоваться прибором даже днем.

Редакция журнала «Радио» сообщает о том, что для того чтобы убедится в работоспособности устройства, было проведено его испытание.

Светодиоды с успехом перенесли импульсный ток величиной 1 А в течение часа, при этом не было обнаружено даже небольшого их перегрева. Обычно же время работы с прибором не превышает 5 мин, да и ток, проходящий через них в этой конструкции, несколько меньше.

Назначение ждущего мультивибратора на триггере DD1.1 – защита светодиодов от выхода из строя при увеличении частоты вращения коленвала. Обычно прибором работают при частоте вращения коленвала близкой к холостому ходу (от 800 до 1200 об/мин). Так как длительность вспышек величина постоянная, при увеличении частоты вращения коленвала будет уменьшаться скважность импульсов тока через светодиоды, и, как следствие этого, увеличится нагревание последних. Поэтому длительность импульсов ждущего мультивибратора на триггере DD1.1 выбрана такой, что при достижении частоты вращения коленвала 2 тыс. об -1 скважность его выходной последовательности импульсов приближалась к 1. При дальнейшем же возрастании частоты вращения, а с ней и входных импульсов, происходит прекращение синхронизации ими выходных импульсов, а узел начинает вырабатывать последовательность импульсов усредненной частоты, что гораздо менее опасно для светодиодов.

Настройка устройства

Опытным путем установлено, что длительность вспышек должна быть от 0,5 до 0,8 мс. При меньшей длительности вспышек во время установки угла опережения с помощью стробоскопа велико ощущение недостатка света. Если же длительность больше, то движущаяся метка как бы размазывается. Необходимую длительность легко подобрать своими руками не измеряя, а руководствуясь только зрительными ощущениями. Регулируется она с помощью подстроечного резистора R4. Больше схема ни в каких настройках не нуждается.

Использование прибора

Для установки угла (момента) опережения своими руками устройством освещают установочные метки, работающего на холостых оборотах двигателя авто. Одна из них находится на вращающихся деталях мотора авто (на шкиве коленвала или на маховике). Вторая метка – неподвижна, она находится или на крышке передней части блока цилиндров авто, или на корпусе коробки передач. Если в свете прибора подвижная метка кажется стоящей напротив неподвижной, зажигание авто в норме и не требует регулировки момента (угла) опережения.

В случае несовпадения меток для регулировки момента опережения нужно соответственно изменить положение трамблера. Для задержки момента зажигания нужно повернуть трамблер по ходу вращения бегунка, а чтобы сделать его раньше – в обратную сторону. Если же искрообразованием в вашем авто управляет микропроцессор, ищите неисправный датчик или доверьте решение этой проблемы профессионалам.

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя.

Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей.

Принципиальная схема стробоскопа

Схема разработана и представлена в девятом издании журнала «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни.

В принципиальной электрической схеме стробоскопа для авто можно условно выделить 4 части:

  1. Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер.
  2. Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь.
  3. Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4.
  4. Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.

Принцип работы

Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.

Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.

Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.

Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.

Печатная плата и детали сборки

Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более прецизионных импортных элементах. Ниже представлена плата с применением отечественных компонентов для штыревого монтажа.

Плата в файле Sprint Layout 6.0: plata.lay6

Диод VD1 – КД2999В или любой другой с малым падением прямого напряжения. Конденсатор С1 должен быть высоковольтным с емкостью в 47 пФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 на 0,068 мкФ 16 В. Все резисторы, кроме R4, типа МЛТ или планарные с номиналами, указанными на схеме. Подстроечный резистор R4 типа СП-3 или СП-5 на 33 кОм.

Триггер ТМ2 лучше использовать 561 серии, которая отличается высокой помехоустойчивостью и надёжностью. Но можно заменить его микросхемой 176 и 564 серии, учитывая их распиновку. Транзисторы VT1-VT2 подойдут КТ315 Б, В, Г или КТ3102 с большим коэффициентом усиления. Выходной транзистор – КТ815, КТ817 с любой буквенной приставкой. Светодиоды HL1-HL9 лучше взять сверхъяркие с малым углом рассеивания. Их располагают на отдельной плате по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить более современными аналогами, немного усовершенствовав плату.

Готовую плату управления стробоскопа и плату со светодиодами удобно разместить в корпусе переносного фонарика. При этом необходимо предусмотреть отверстие в корпусе под регулятор R4, а в качестве SA1 можно использовать штатный выключатель.

Настройка

В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.

Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.

Установка УОЗ стробоскопом

Прежде чем рассмотреть работу автомобильного стробоскопа, нужно понять суть стробоскопического эффекта. Если движущийся в темноте объект на мгновение осветить вспышкой, то он будет казаться застывшим в месте, где произошла вспышка. Если на вращающееся колесо нанести яркую метку и освещать его яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент вспышек можно зрительно фиксировать местоположение метки.

Перед регулировкой момента зажигания автомобиля наносят две метки: подвижную на коленчатом валу (маховике) и стационарную – на корпусе двигателя. Затем присоединяют датчик, подают питание на стробоскоп и включают двигатель в режим холостого хода. Если во время вспышек метки совпадают, то УОЗ выставлен оптимально. В противном случае следует произвести корректировку до полного их совпадения.

Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате корректировки вырастет КПД двигателя и увеличится срок его службы.

Читайте так же

Правильность работы двигателя автомобиля зависит от того, как выставлено зажигание. Вызвано это тем, что горючая смесь, поступающая в камеру сгорания, должна полностью воспламеняться. Для установки зажигания используется стробоскоп, который можно изготовить своими руками, либо приобрести в специализированном магазине. О том, как просто сделать стробоскоп для установки зажигания своими руками пойдет речь ниже.

Назначение стробоскопа, детали, которые понадобятся для его изготовления

Стробоскоп для установки зажигания служит для того, чтобы автолюбитель смог настроить правильность и своевременность подачи электрического тока, который образует искру. Она служит для воспламенения зажигательной смеси в камере сгорания цилиндров бензиновых силовых агрегатов.

От своевременности ее подачи зависит правильность работы мотора, его мощность. Поэтому правильно выставленное зажигание необходимо для того чтобы хорошо работал силовой агрегат.

В специализированных магазинах это приспособление стоит от 1 000 рублей до 7 000. Поэтому в целях экономии средств лучше сделать самодельный стробоскоп для установки зажигания своими руками. На его сборку (делал самостоятельно), нужно будет потратить сумму до 500 рублей.

Вообще стробоскоп представляет из себя простейшую схему и конструкцию. В его основе лежит принцип воздействия искры на лед лампочки, которые можно взять из любого фонарика. Таким образом, легко выставить угол зажигания, которое будет идеально отвечать требованиям по своевременному и полному воспламенению топливной смеси.

Рассмотрим перечень деталей, которые понадобятся для того чтобы легко сделать самостоятельно стробоскоп:

  • транзистор, имеющий маркировку КТ 315;
  • тиристор, который имеет маркировку КУ 112 А;
  • медные провода;
  • фонарик на диодных лампочках (их должно быть не меньше 6 штук, можно больше);
  • таймер, используется для некоторых самодельных стробоскопов;
  • низкочастотный диод, имеющий маркировку V 2;
  • резисторы, с силой 0.125 Вт;
  • реле, которое имеет индекс RWH/SH-112D;
  • шнур длиной в 1 метр для питания прибора;
  • основа для сбора микросхемы, изготовленная из изолирующего специального материала;
  • специальные клеммы (зажимы).

Вот какие составные части понадобятся для того чтобы осуществить монтаж стробоскопа своими руками. Их можно приобрести в специальных магазинах, либо на радиорынках.

Схема простейшего стробоскопа выглядит таким образом:

Важно запомнить, что для изготовления данного прибора лучше всего взять корпус простого диодного фонарика, либо из-под фотовспышки. Туда поместятся все детали, включая микросхему на которой будут находиться детали.

Сборка стробоскопа

Процесс сборки происходит в домашних условиях с помощью паяльника, в следующем алгоритме (за основу взят корпус осветительного фонарика):

  • высверливание отверстия на задней стенке корпуса фонарика, это нужно для того, чтобы провести шнур питания;
  • к концам шнура припаиваются специальные клеммы, главное не перепутать полярность (они берутся разного цвета);
  • размещение датчика на правой или левой стороне корпуса;
  • просверливание отверстия , оно делается в месте расположения датчика, в него вставляется (прокладывается шнур), который подсоединяется к контакту Х 1, указан на схеме;
  • сбор микросхемы , это делается по вышеуказанной схеме, с помощью паяльника (если автолюбитель не силен в сборе таких схем, тогда ему нужно обратиться к специалисту в данной области);
  • припаивание медной проволоки к основной жиле провода, она будет служить в качестве специального датчика стробоскопа;
  • изоляция всех соединений специальной лентой.

Вот как сделать стробоскоп с помощью своих рук с наименьшими финансовыми затратами .

Важно запомнить, что такой прибор может использоваться не только для выставления зажигания, но и в качестве проверок свечей, настройки регулятора. Вот сколько полезных функций он может выполнять для автолюбителя.

Разновидности самодельных стробоскопов

Выше указана схема и алгоритм создания простейшего стробоскопа. Некоторые умельцы также рекомендуют изготовление таких приборов на основе таймера, либо светодиодов.

Рассмотрим, какая схема стробоскопа, куда входит таймер:

Эта конструкция более сложная, поэтому если автолюбителю кажется, что он не сможет собрать ее самостоятельно, лучше обратится к специалисту, приобретя все необходимые детали. Если нет таймера отечественного производства, его можно заменить на иностранный, который должен иметь маркировку NE 555. А диоды для такой схемы лучше использовать имеющие обозначение КД 521.

Интересно узнать, что изготовив такой прибор с таймером, на нем можно установить регулятор, переключая который он начнет работать как тахометр. При этом на его работу не повлияет даже слабый заряд аккумуляторной батареи.

Теперь рассмотрим схему, которая позволяет изготовить стробоскоп на светодиодах. Сразу нужно отметить, что они отличаются повышенной надежностью, его можно использовать даже при ярком дневном свете.

Схема такого стробоскопа следующая:

В основе всей схемы будет лежать микросхема имеющая маркировку 155 АГ 1, которая может запуститься импульсами, что имеют отрицательную полярность. Сопротивления, подходящие для нее R 1, R 2, R 3, резистор R 6. Сопротивления ограничивают амплитуду входящего сигнала, а емкость С 4 регулирует длительность сигнала, поступающего от мотора.

Настройка стробоскопа

После того, как данный прибор изготовлен, его нужно настроить. Происходит это таким образом:

  • прогревается мотор, его нужно запустить, прогреть, а затем перевести в режим работы холостых оборотов;
  • стробоскоп подключается клеммами к аккумуляторной батарее;
  • медный провод (датчик) наматывается на жилу цилиндра;
  • свет, который будет создаваться направляется на специальную точку обозначенную на корпусе;
  • найти неподвижную плоскость (точку) на маховике мотора;
  • вращать корпусом элемента зажигания для того, чтобы совпали две точки, после чего зафиксировать его в этом месте.

После проведения этих манипуляций прибор готов к выполнению своих функций. Такой порядок установки главное не нарушать.

Стробоскоп для настройки зажигания можно изготовить своими руками, купив для этого нужные детали. После этого он настраивается, и будет служить автолюбителю не хуже тех, которые продаются в магазинах. Помимо настройки зажигания, такие приборы, изготовленные с помощью таймера или светодиодных фонарей, могут выполнять другие полезные функции.

Очень мощный светодиодный стробоскоп, который отлично дополнит любой танцпол дискотеки. Построен стробоскоп на трех светодиодных матрицах общей мощностью 150 Вт.

Принцип работы устройства состоит в том, чтобы давать очень короткие импульсы света (вспышки) через заданный промежуток времени. По действию очень сильно напоминает молнию во время дождя, когда полностью темное помещение на миллисекунды озаряет яркий свет.
Во время дискотеки это выглядит особенно завораживающе.
Детали:

  • Светодиодная матрица –
  • Источник 12 В –
  • Транзистор K2543 –
  • Диодный мост –
  • Микросхема NE555 –
  • Резисторы и конденсаторы –
Светодиоды на сетевое напряжение со встроенным драйвером:

Схема стробоскопа


Я бы не сказал, что схема сложная, скорее простая. Но она не имеет гальванической развязки по напряжению, что означает – нельзя прикасаться ни к одному элементы схемы во время её работы и во время сборки быть особо внимательным.
Визуально схему можно разделить на блок питания 12 В, генератор импульсов, выпрямитель и линейку светодиодов.

Работа стробоскопа

На микросхеме NE555 собран генератор коротких импульсов. Время между импульсами можно менять вращая ручку переменного резистора R3.
К выходу этого генератора подключен ключ на полевом транзисторе, который коммутирует напряжение 220 В, в цепи питания светодиодных матриц, включенных параллельно друг другу.
Светодиодные матрицы питаются постоянным током, который выпрямляется диодным мостом. Это нужно для того, чтобы можно было коммутировать цепь полевым транзистором, который работает только с постоянным напряжением.

Сборка стробоскопа

Стробоскоп собран в кожухе от кабельканала. Светодиоды прикручены к широкой стороне, без радиаторов. Так как светодиод используется где-то на 2-5% от своей мощности (импульсная работа), то надобность в теплоотводах отпадает.


Боковые стенки вырезаны из того же кабельканала и приклеены клеем. Сверху выведен переменный резистор для регулировки частоты мерцания.



Блоки схемы в корпусе:




Предостережение

Светодиоды очень мощные и могут повредить ваши глаза, так что смотреть на них при работе не рекомендуется. Стробирующие вспышки особенно опасны, так как глаз расслабляется в темноте, а яркий импульс проникает напрямую в сетчатку глаза.
Так же не забываем, что вся схема находиться под сетевым напряжением, опасным для жизни.

Результат работы

Работу стробоскопа, к сожалению, не передать ни через фото, ни через видео. Так как даже видеокамера очень плохо улавливает короткий импульс и её в итоге просто засвечивается.
Но я от себя могу сказать, что стробоскоп получился отличный, вспышки короткие и очень яркие. Смотрится очень эффектно, в общем все как надо.

Наверняка многие из нас хотели бы иметь дома стробоскоп, чтобы украсить небольшую вечеринку и придать ей немного драйва. Как правило их делают на импульсных лампах, но к сожалению они довольно дорогие и имеют маленький ресурс.

Я решил заменить лампы на светодиоды, и с уверенностью скажу, что такой стробоскоп своими руками для дискотеки сможет изготовить даже начинающий радиолюбитель.

Сам стробоскоп собирается на 2-х печатных платах, на одной из них расположены светодиоды, а на второй - блок управления. Главной деталью в блоке управления является микросхема-таймер LM555.

Именно она генерирует импульсы, частота которых определяет то, как быстро будет мерцать стробоскоп, и регулируется переменным резистором. Я использовал 60 светодиодов, но можно использовать любое количество кратное трем (3, 6, 9 …).

В качестве блока питания подойдет любой источник от 6-ти до 12-ти вольт. У меня он работает от одной батарейки «Крона», но при желании можно подключить его к блоку питания 12 Вольт (для этого предусмотрен дополнительный разъем). В этом случае стробоскоп светит намного ярче.

Вот список радиодеталей, которые понадобятся при изготовлении стробоскопа:

  • Сверхъяркие светодиоды (белые, 5 мм) - 60 шт;
  • Микросхема-таймер 555;
  • Полевик IRFZ44N;
  • Переменный резистор 1 мОм;
  • Резистор 5,6 Ом (2 Вт);
  • Резистор 56 Ом;
  • Резистор 10 кОм;
  • Резистор 100 кОм;
  • Конденсатор 1 мкФ x 50 В;
  • Конденсатор 1000 мкФ x 16 В;
  • Диод 1N4148;

Корпусные детали и прочая мелочевка:

  • Пластиковый корпус 90×60×25 мм;
  • Оргстекло 90×60 мм;
  • Текстолит;
  • Стойки М4×22 мм (мама-мама) - 4 шт;
  • Стойки М4×10 мм (мама-папа) - 4 шт;
  • Винты для стоек М3×8 мм;
  • Батарейка «Крона» + ответный разъем для нее;
  • Разъем питания (штыревой);
  • Переключатель движковый (2 положения);

Схема и печатная плата были нарисованы в программе Eagle . Управляющая плата получилась небольшой, при желании её можно сделать еще меньше, используя SMD компоненты. Размеры платы со светодиодами - 87 на 57 мм.

(PDF, 62 Кб);
(PDF, 13 Кб);
(PDF, 48 Кб);
(PDF, 10 Кб);
(PDF, 47 Кб).




К сожалению я не делал фотографии в процессе пайки, но надеюсь что это не будет вам помехой. Вот несколько фотографий, на которых видно уже запаянные платы для стробоскопа.



После изготовления печатных плат и напайки на них радиоэлементов можно приступать к корпусированию.




Внутри корпуса пришлось срезать несколько пластиковых стоек, которые мешали.

Чтобы защитить светодиоды я использовал оргстекло, установив его на стойки (между оргстеклом и корпусом стробоскопа - 10 мм).



Теперь остается только вставить все разъемы, закрутить болты и стробоскоп своими руками для дискотеки готов!




Вот видео работы стробоскопа:

Примечание: Если вы захотите сделать цветной стробоскоп, можете использовать RGB светодиоды (что довольно дорого), либо вырезать различные светофильтры из цветного оргстекла.