Как сделать аккумулятор для шуруповерта из 18650. Аккумулятор из литий ионных батареек своими руками: как правильно заряжать

Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0 ,
где XX - указание диаметра в мм,
YY - значение длины в мм,
0 - отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / I зар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

Что такое плата защиты?

Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Назначение выводов (цоколевка):

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

Печатная плата и схема в сборе приведены ниже:

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя - .

Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой .

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из :

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток - до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в .

Можно ли заряжать литий-ионный аккумулятор без контроллера?

Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

U r = 5 - 2.8 = 2.2 Вольта

Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

R = U / I = 2.2 / 1 = 2.2 Ом

Мощность рассеивания резистора:

P r = I 2 R = 1*1*2.2 = 2.2 Вт

В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

Зарядка при помощи лабораторного блока питания

Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

Как заряжать литиевые батарейки?

И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

85 коп/шт. Купить MCP73812 65 руб/шт. Купить NCP1835 83 руб/шт. Купить *Все микросхемы с бесплатной доставкой

Переделка аккумулятора шуруповёрта на литиевые элементы

Многие владельцы шуруповёртов хотят переделать аккумуляторы от них на литиевые аккумуляторные элементы. На эту тему написано много статей и в настоящем материале хотелось бы суммировать информацию по этому вопросу. В первую очередь рассмотрим доводы в пользу переделки шуруповёрта на литиевые батареи и против нее. А также рассмотрим отдельные моменты самого процесса замены аккумуляторов.

Для начала следует задуматься, а нужна ли мне эта переделка? Ведь это будет откровенный «самопал» и в ряде случаев может привести к выходу из строя как аккумулятора, так и самого шуруповёрта. Поэтому, давайте, рассмотрим все за и против этой процедуры. Возможно, что после этого некоторые из вас решат отказаться от переделки Ni─Cd на литиевые элементы.

Доводы «за»

Начнём с преимуществ:

  • Энергетическая плотность литий─ионных элементов значительно выше, чем у никель─кадмиевых, которые по умолчанию используются в шуруповёртах. То есть, аккумулятор на литиевых банках будет иметь меньший вес, чем на кадмиевых при той же ёмкости и выходном напряжении;
  • Зарядка литиевых аккумуляторных элементов происходит значительно быстрее, чем в случае Ni─Cd. Для их безопасной зарядки потребуется около часа;
  • У литий─ионных аккумуляторов отсутствует «эффект памяти». Это значит, что их необязательно полностью разряжать перед тем, как ставить на зарядку .

Теперь о недостатках и сложностях .

Доводы «против»

  • Литиевые аккумуляторные элементы нельзя заряжать выше 4,2 вольта и разряжать ниже 2,7 вольта. В реальных условиях этот интервал ещё более узкий. Если выйти за эти пределы аккумулятор можно вывести из строя. Поэтому, кроме самих литиевых банок вам потребуется подключить и установить в шуруповёрт контроллер заряда-разряда ;
  • Напряжение одного элемента Li─Ion 3,6─3,7 вольта, а для Ni─Cd и Ni─MH это значение 1,2 вольта. То есть, возникают проблемы со сборкой аккумуляторной батареи для шуруповёртов с номиналом по напряжению 12 вольт. Из трёх литиевых банок, соединённых последовательно, можно собрать АКБ номиналом 11,1 вольта. Из четырёх ─ 14,8, из пяти ─ 18,5 вольта и так далее. Естественно, что и пределы напряжения при заряде-разряде также будут другие. То есть, могут возникнуть проблемы совместимости переделанной батареи с шуруповёртом;
  • В большинстве случаев в роли литиевых элементов для переделки используются банки стандарта 18650. По размерам они отличаются от Ni─Cd и Ni─MH банок. Кроме того, нужно будет место для контроллера заряда-разряда и проводов. Всё это нужно будет уместить в стандартном корпусе АКБ шуруповёрта. Иначе работать им будет крайне неудобно;
  • Зарядное устройство для кадмиевых аккумуляторов может не подойти для зарядки батареи после её переделки. Возможно, потребуется доработка ЗУ или использование универсальных зарядок ;
  • Литиевые аккумуляторы теряют работоспособность при отрицательных температурах. Это критично для тех, кто использует шуруповёрт на улице;
  • Цена литиевых аккумуляторов выше кадмиевых.

Замена аккумуляторов в шуруповёрте на литиевые

Что нужно прикинуть перед началом работ?

Нужно определиться с количеством элементов в батарее, что в итоге решает величину напряжения. Для трёх элементов потолок будет 12,6, а для четырёх ─ 16,8 вольта. Речь идёт о переделке широко распространённых аккумуляторов с номиналом 14,4 вольта. Лучше выбрать 4 элемента, поскольку при работе напряжение довольно быстро просядет до 14,8. Различие в несколько вольт не отразится на работе шуруповёрта.

Кроме того, большее количество литиевых элементов даст большую ёмкость. А значит, большее время работы шуруповёрта.



Далее нужно правильно выбрать сами литиевые элементы. Форм-фактор без вариантов – 18650. Основное, на что нужно смотреть, это разрядный ток и ёмкость. По статистике при штатной работе шуруповёрта потребляемый ток находится в диапазоне 5─10 ампер. Если резко нажать на кнопку запуска, то ток может на несколько секунд подскочить до 25 ампер. То есть, вам нужно выбирать литиевые с максимальным значением разрядного тока 20─30 ампер. Тогда при кратковременном увеличении тока до этих величин, аккумулятор не будет повреждён.

Номинальное напряжение литиевых элементов 3,6─3,7 вольта, а ёмкость в большинстве случаев составляет 2000─3000 мАч. Если позволяет корпус аккумулятора, можете взять не 4, а 8 элементов. По два соединить их в 4 параллельные сборки, а затем уже их подключить последовательно. В результате вы сможете нарастить ёмкость АКБ. Но далеко не в каждый корпус удастся упаковать 8 банок 18650.

И последний подготовительный этап – это выбор контроллера. По своим характеристикам он должен соответствовать по номинальному напряжению и току разряда. То есть, если вы решили собирать батарею 14,4 вольта, то выбираете контроллер с этим напряжением. Рабочий ток разряда обычно выбирается в два раза меньше, чем предельно допустимый ток.


Выше мы установили, что предельно допустимый кратковременный ток разряда для литиевых элементов 25─30 ампер. Значит, контроллер заряда-разряда должна быть рассчитана на 12─15 ампер. Тогда защита будет срабатывать при увеличении тока до 25─30 ампер. Не забывайте также о габаритах платы защиты. Её вместе с элементами нужно будет уместить в корпус АКБ шуруповёрта.

Всем привет. Обзор не столько аккумуляторов (на которые, кстати, вышел, благодаря Mysku), сколько варианта переделки шуруповёрта. Аккумуляторы качественные, ёмкость соответствует, вживление их вместо никель-кадмиевых прошло успешно

Участники обзора:

Высокотоковые аккумуляторы LG HE4 с Gearbest:
Аккумуляторы годные, проверку их ёмкости проводил знакомый на зарядном устройстве Opus, ёмкость соответствует. Больше никаких специальных тестов не проводилось.

Трёхканальное зарядное устройство Imax B3:
Это уже вторая попытка купить такую зарядку, в первый раз заказ не пришёл, вернули деньги. Заказанная у продавца по ссылке выше зарядка приехала, работает, в комплекте сетевой шнур длиной 40см, на картинке шнур явно другой. Шлейфа для подключения зарядки куда-либо в комплекте не было.

Держатель трёх аккумуляторов 18650:
На картинке продавца этот вариант держателя трёх 18650 имел штыри для запайки в печатную плату, но приехал ко мне совсем другой вариант, мало того, что не для печати, так ещё с напаянными колхозно перемычками, соединяющими все три батареи параллельно.






Получил частичный возврат денег. Перемычки отпаял, использовал, хоть и не так, как планировалось изначально.

Предыстория.
Моему шуруповёрту Интерскол ДА-12ЭР-01 уже почти 10 лет. Больше всего ему «досталось» во время время ремонта в квартире лет 6 назад, но обычно большую часть года он отдыхал, немного трудился летом на даче, ну и выполнял мелкие задачи: поделки, сборка мебели и т.д. Проблемы с аккумуляторами начались пару лет назад, один аккумулятор перестал держать заряд, второй отрабатывал вполне нормально. Я тогда разобрал дефектный аккумулятор, выявил два наиболее замученных элемента, и попытался заменить их подобными, купленными на ебэе. Но когда поставил новые элементы, то обнаружил, что и остальные элементы, что я посчитал ещё живыми, тоже кандидаты в мусорное ведро: под нагрузкой напряжение на них изменяло полярность. Менять все элементы смысла не было, поэтому я переделал этот аккумулятор в некий адаптер для подключения шуруповёрта к прикуривателю автомобиля.

Но подключать я его собирался не к бортовой сети авто, а к старому свинцовому аккумулятору 12в 7ач от галогенного света для видеокамеры, гнездо которого было аналогично гнезду автомобильного прикуривателя. Свет для видеокамер у меня уже давно светодиодный с питанием от литиевых аккумуляторов, но аккумулятор на 12в остался, вот и пригодился для шуруповёрта, правда использовался всего пару раз. Вот этот супермега адаптер:

Но так как аккумулятору 12в 7ач было уже больше 8 лет, он перестал держать заряд, восстановить его не удалось, и я был вынужден сдать его на металлолом. Так что скорее всего «адаптер» под прикуриватель разберу, подключать «шурик» к машине смысла не вижу.

Этим летом окончательно сдался и второй аккумулятор шуруповёрта, он стал разряжаться настолько быстро, что серьёзную работу им выполнять стало невозможно. Весной он ещё хоть как-то работал, но к осени десяток средненьких саморезов на одной зарядке стал его пределом.

Но тем не менее, я считаю, что поработали родные аккумуляторы шуруповёрта очень неплохо - у меня они протянули 8 и 10 лет, в то время как у знакомых умирали и на 3-м, и на 5-м году, при примерно таком же непрофессиональном режиме использования.

Покупка даже одного нового никель-кадмиевого аккумулятора - форменная дикость, это 50-60% цены подобного шуруповёрта (да, такие ещё продаются) с двумя такими аккумуляторами в комплекте. Также отверг я вариант покупки уже собранной батареи никель-кадмиевых аккумуляторов с али или ебэя, готовой к установке в корпус отжившего аккумулятора: это дешевле, но качество этих батарей сомнительное, так, у двух купленных мной на ебэе элементов был приличный разброс ёмкости, и сколько это всё проработает, неизвестно. К тому же, от никель-кадмия я решил отказаться окончательно и бесповоротно: от перевода на литий аккумуляторной отвёртки, что я проделал полгода назад, впечатления самые положительные.

Вообще, конечно, мой шуруповёрт уже старый и потрёпанный, поэтому были мысли купить ему на замену новый, современный, с литиевым аккумулятором. Но механическая часть пока ещё в полном порядке, а у современных недорогих шуриков механика чрезвычайно слабая: те, что доводилось держать в руках, имели просто неприличные люфты в подшипнике патрона через неприлично малый срок времени. А покупать профессиональный дорогой шуруповёрт смысла нет, большую часть года он пролежит в шкафу.

Но самое главное, что руки чесались переделать шуруповёрт под литий самому. При этом были определённые сомнения: стоимость аккумуляторов, платы защиты и выравнивания заряда приближалась к простенькому шурику на литии из Леруа-мерлена, с годовой гарантией. Но желание попаять и помастырить перебороло сомнения, что пришлют левые аккумуляторы, что что-то пойдёт не так и т.п.

Сначала я хотел сделать всё по классической схеме, то есть взять три высокотоковых аккумулятора формата 18650, добавить к ним плату защиты и выравнивания заряда 3S, соответственно переделать зарядное устройство под литий. Но потом решил сделать проще, и на мой взгляд, намного удобнее.

По опыту работы с аккумуляторами для видеокамер VBG6, F550, F770 и др, где два аккумулятора 18650 соединены последовательно, я давным-давно сделал вывод, что умирают аккумуляторы в основном из-за того, что схема выравнивания заряда не справляется со своей задачей. В итоге один аккумулятор постоянно перезаряжен, второй недозаряжен, и очень скоро батарея идёт в мусорное ведро. Даже замена умерших элементов на оригинал Sanyo, у которых параметры куда стабильнее, давала эффект не столь продолжительный, как хотелось бы, пара лет и всё…

А в шуруповёрте батарея будет из трёх элементов, токовые нагрузки куда выше, разбаланс ёмкости элементов проявится быстрее, поэтому я очень сомневаюсь, что плата выравнивания заряда/балансировки поможет аккумуляторам не умереть преждевременно. Поэтому и решил отказаться от зарядки сразу всех аккумуляторов от одного источника, в пользу зарядки каждого по отдельности. Трёхканальное зарядное устройство я решил взять готовое, широко известное Imax B3, на мой взгляд оно в любом случае эффективнее, чем плата балансировки, к тому же при этом весьма компактное и лёгкое.

От платы защиты от переразряда/перезаряда я решил вообще отказаться, на шуруповёрте есть индикатор напряжения аккумулятора, по нему вполне можно сориентироваться, насколько разряжен аккумулятор. Ну а если какой-то аккумулятор из трёх «подгуляет» и будет мучиться наравне со всеми (защита от снижения напряжения давно бы вырубила всю батарею)… знать, судьба у него такая, ему уже не помочь, зато батарея не будет отключаться раньше времени.

Прикинув, что после установки в корпус аккумулятора трёх элементов 18650 в нём останется ещё достаточно много свободного места, я решил и саму зарядку Imax B3 запихать туда же. При этом для зарядки аккумуляторов достаточно будет просто подключить к шуруповёрту шнур 220в. И ведь действительно удобно: никаких внешних зарядок, в комплекте к шуруповёрту будет только шнур 220в, причём шнур универсальный, даже от приёмника/принтера/муз.центра подойдёт.

Сказано-сделано. Первыми приехали ко мне аккумуляторы с GB, сначала я пытался их проверить сам, ставя по одному в имеющийся у меня повербанк, давая нагрузку в 1А, и рассчитывая ёмкость, исходя из времени работы до отключения. Несмотря на то, что я пересчитывал ёмкость с напряжения 5в до напряжения 3,7в, результаты у меня получились сильно заниженные, порядка 1,5ач, поэтому я попросил знакомого проверить эти аккумуляторы на полноценной тестовой зарядке Opus, модель не помню, и он успокоил меня, ёмкость всех аккумуляторов оказалась в норме, правда, не 2,5ач, а 2,3ач, что меня вполне устроило.

Изначально я хотел соединить аккумуляторы точечной сваркой, даже купил для этого никелевую ленту, но агрегат для точечной сварки так и не доделал. Поэтому решил использовать готовый держатель трёх элементов 18650, заказанный, правда, для совсем другой поделки. Он не соответствовал описанию продавца, но после небольшой переделки вполне подошёл, тем более что аккумуляторы сидят в нём очень плотно, контакты достаточно толстые и жёсткие. Даже при очень динамичной тряске аккумуляторы не выскакивали из держателя.

В самую последнюю очередь приехала ко мне зарядка Imax B3. Проверил - работает, тогда и запустил процесс переделки шуруповёрта на литий.

Родной аккумулятор был выпотрошен, я припаял провода к контактной группе, на основании корпуса закрепил винтами батарейный отсек, и припаял к нему провода. Поставил предохранитель на 10А, но его повесил на клеммах: автомобильный держатель не влез в корпус. Кстати, подпирает контактную группу один из никель-кадмиевых элементов, он как раз нужной длины. Погонял шуруповёрт от литиевых аккумуляторов и подивился, насколько мощно он теперь крутит.

Далее я установил зарядку Imax B3 в крышку аккумулятора, поставил на боковую стенку крышки разъём для зарядки (не родной). У индикаторных светодиодов удалил подставки, и вывел их в отверстия в корпусе, так что теперь можно наблюдать весь процесс зарядки по трём светящимся «глазам». Естественно, красный свет - идёт зарядка, зелёный - заряжено.

Далее подсоединил зарядку к аккумуляторам, немного погонял шуруповёрт, и поставил на зарядку. И вот тут вылезла проблема, о которой я уже читал, и избежать которой было в принципе нельзя. Микросхемы - контроллеры заряда TP4056 стали дико нагреваться. Ну ещё бы им не нагреваться, зарядный ток (судя по токозадающему резистору сопротивлением 1,8к) около 600 мА, на входе порядка 6в. Причём у меня были практически полностью заряженные аккумуляторы, напряжение на которых во время заряда было около 4,15в, при этом на каждой микросхеме рассеивалась мощность около 1,1 вт. Этого вполне достаточно, чтобы три микросхемы на небольшой плате, да ещё в замкнутом объёме, конкретно поджарились. Если б аккумуляторы пришлось заряжать с нуля, то на микросхемах рассеивалась бы ещё большая мощность.

Поэтому я заменил токозадающие резисторы, увеличив их с 1,8к до 4,7к, таким образом снизив зарядный ток до примерно 270 мА. Но даже при этом микросхемы обжигали пальцы. Конечно, ничего страшного в таком режиме не произошло, аккумуляторы нормально зарядились, почти одновременно загорелись зелёные светодиоды. Но всё-таки, в сильную жару зарядное устройство может перегреться, корпус-то у меня при испытаниях не был закрыт. Ну и ток заряда как-то маловат.

Поэтому я установил на микросхемы небольшой радиатор (через номакон), снова изменив токозадающие резисторы на 2,2к - зарядный ток около 500 мА. Погоняв зарядку в таком режиме, я не обнаружил сколь-либо серьёзного нагрева радиатора, и уверен, что и в жаркий день в закрытом корпусе аккумулятора температура будет в норме.



Единственное, что меня напрягает, так это максимальное напряжение на аккумуляторах в конце заряда: 4,20 4,23 4,21в. Разве это не слишком много? Но повлиять на это напряжение невозможно, разве что заменить микросхемы.

В общем, собрал новый аккумулятор окончательно. Вместо прежних 1,5ач он имеет ёмкость 2,3ач, причём без эффекта памяти. Минус в том, что его нельзя оставлять на сильном морозе, но никто же не заставляет так делать.





Ну и как работает от нового аккумулятора шуруповёрт, мне нравится.

Теперь немного о родном зарядном устройстве шуруповёрта:

Зарядка все 10 лет отработала нормально, несмотря на то, что грелась как утюг. Удивительно, но за 10 лет из неё так и не выветрился резкий запах пластика и жжёного гетинакса. Применить её теперь негде, поэтому решил её распотрошить:

Все изделия фирмы «Интерскол», с которыми мне доводилось сталкиваться, вызывали большие сомнения, что сделаны они у нас в стране, как утверждает сам «Интерскол». Слишком уж у них всё «по китайски», и печать, и сборка, и исключительно импортные комплектующие. Также и с зарядным устройством, «своего» просто ноль. Я знаком с отечественным производством, как ширпотреба, так и военной техники, и считаю, что в данном случае сделано всё «не по нашему». Думаю, «Интерскол» лишь клеил свои этикетки.

Но раз зарядка идёт в утиль, я решил позаимствовать из неё контактную группу, подключавшуюся к аккумулятору. Плату разобрал и опилил, оставив кусок с контактами:

Вопрос, зачем? Да чтобы иметь возможность подключить к аккумулятору вместо шуруповёрта внешнюю нагрузку. Раньше «походным» источником напряжения у меня был аккумулятор на 12в 7ач, но он умер, и логично было использовать вместо него аккумулятор для шуруповёрта. Вот я и изготовил из кусочка зарядки и других подвернувшихся под руку материалов специальный переходник.



Назначение этого переходника со штекером прикуривателя на проводке - питание бортсети автомобиля при съёме стартерного аккумулятора для подзарядки или замены на другой аккумулятор (у меня их два). Жутко не хочется восстанавливать настройки магнитолы и других устройств после обесточивания бортсети. Воткнул штекер в прикуриватель - и делай своё дело, можно при этом и габариты с аварийкой включить, и все настройки сохранятся. Жаль только лампы под капотом нет… Заводить мотор при подключенном внешнем аккумуляторе не рекомендуется, ограничитель зарядного тока аккумуляторов отсутствует, но в случае чего перегорит предохранитель на 5А в штекере.

В планах сделать переходник универсальным, чтобы подключать разные устройства, но я не нашёл у себя подходящего разъёма, позже переделаю.

В общем, переделкой шуруповёрта доволен. Обошлось мне это примерно в 1100 рублей, плюс три вечера после работы на переделку. На мой взгляд, получилось удобно, но, конечно, не без недостатков. За разрядом батареи нужно следить, чтобы не угробить аккумуляторы, и лучше переделанный шурик не давать в чужие руки. Но я сам пока ещё точно не знаю, как поведёт себя шуруповёрт при разряженной до предела батарее, насколько снизится его мощность, и что при этом покажет индикатор. Так что надо будет понаблюдать за шуруповёртом в процессе работы с ним.

Планирую купить +57 Добавить в избранное Обзор понравился +61 +114

Быстрая деградация батарей аккумуляторного инструмента — это настоящий бич. Почти всегда ресурс самого шуруповёрта превышает срок службы Ni-Cd элементов и приходится либо покупать запасные батареи, либо прощаться с инструментом. Сегодня мы расскажем об основном способе продления жизни АКБ.

Батарейка стандарта 18650 — почему она

Ремонт батарей для электроинструмента обычно подразумевает восстановление электролита никель-кадмиевых «банок» или их полную замену. Мысль о смене одного типа энергоэлементов на более совершенный вполне здравая. Так устраняется широкий ряд проблем аккумуляторного инструмента , включающий большой вес, малую ёмкость, эффект памяти и низкую способность держать заряд на холоде.

Однако почему это должны быть именно аккумуляторы формата 18650, а не какие-то другие? Ответ прост: это самый распространённый тип батарей, за исключением разве что аккумуляторов для мобильных телефонов или прочих гаджетов. Последние вполне можно использовать, но большая их часть несёт на борту встроенный контроллер заряда, а это лишняя трата денег.

Кроме того, аккумуляторы должны быть высокотоковыми, то есть способными поддерживать нагрузку в 70-100 Вт. Оптимально подойдут батарейки для электронных сигарет производства Samsung или LG. Продукцию неизвестного производителя брать не стоит: всё-таки Li-ion — штука довольно мощная и низкое качество корпуса энергоэлемента может спровоцировать потерю герметичности от перегрева со всеми вытекающими. А уж коли по соседству имеется ещё с полдюжины батареек, то последствия могут быть весьма плачевными.

Покупать батарейки можно на Aliexpress или других китайских интернет-магазинах, там они стоят достаточно дёшево (по 200-250 рублей за штуку, оптом дешевле). Параллельно нужно приобрести ряд дополнительных примочек, это обусловлено спецификой работы с литиевыми батареями. Ну а что это за примочки и в чём смысл их использования — расскажем по ходу описания переделки.

Разборка корпуса

Первым делом нужно разобрать корпус аккумулятора на две половинки. Проще всего это делается, если батарейный блок стянут 4-5 шурупами: просто раскручиваем их и вытягиваем верхнюю часть.

Если же корпус аккумулятора склеен (Makita, AEG), то мороки ощутимо прибавится. Укладываем аккумулятор на бок и тщательно обстукиваем клеевой шов резиновой киянкой. Удары точные, не сильные, частые. Равномерно отбиваем соединение по периметру и через каждые 50-100 ударов пробуем растянуть половинки. За 10-15 минут такой «экзекуции» сдаются даже самые упрямые корпуса.

Далее выбрасываем ненужные части содержимого. Контактную колодку нужно аккуратненько оторвать от двух верхних банок, чтобы на ней остались два никелевых язычка. Забегая вперед скажем, что обычно при переделке новую упаковку батареек сваривают между собой контактной сваркой на манер заводских. Это классное решение, но не каждый захочет и сдюжит собирать сварочную установку. Поэтому оставляйте длину полосок такой, чтобы к ней можно было закрепить провода двумя небольшими болтиками, а остальные элементы будут соединяться пайкой .

В любой удобной части корпуса нужно также проделать отверстие под балансировочный разъём JST-XH. С наружной стороны шилом размечаем прямоугольник высотой 6 мм и шириной 15 мм для напряжения аккумулятора 12 В или 20 мм для напряжения 18 В. Разъём вставляйте в проделанное отверстие и укрепите термоклеем или эпоксидкой.

Как разместить элементы

В отличие от Ni-Cd или Ni-MH элементов, литиевые аккумуляторы имеют более высокую ёмкость и напряжение, поэтому их в состав батареи войдёт меньшее количество. Размеры элемента 18650 таковы: 65 мм высота и 18 мм диаметр. Изначально проверьте, сколько их поместится в пустой корпус, и определите схему размещения, при необходимости срежьте мешающие рёбра жёсткости.

Если аккумуляторный блок имеет выступающую верхнюю часть, в неё поместится пара элементов. Ещё один удобно положить на бок прямо под двумя вертикальными. В оставшееся пространство можно уложить ещё от 5 до 7 батареек. Если батарея имеет слайд-разъём для зарядки, укладывайте элементы поперёк корпуса в две стопки.

Напряжение Li-ion аккумулятора равно 3,7 В, но под нагрузкой происходит просадка около 10-12%. Это значит, что для 12 В шуруповёрта понадобится минимум 4 аккумулятора, а для 18 В — не менее 5 шт., хотя лучше использовать 6, ведь много — не мало. Не переживайте, что двигатель «испугается» высокого напряжения и прикажет долго жить. При просадке под нагрузкой превышение напряжения будет минимальным и вполне в эксплуатационных пределах. С количеством аккумуляторов нужно определиться до того, как вы врежете в корпус балансировочный разъём, ибо контактов в нём должно быть на один больше, чем элементов в последовательном соединении.

Теперь о ёмкости. Она для литиевых элементов колеблется от 2,5 до 3 А/ч, что само по себе неплохо. Чтобы увеличить ёмкость вдвое, понадобится удвоить число аккумуляторов, но это однозначно того стоит. Единственное, что сможет вас остановить в этой затее — размеры батарейного блока. В любом случае помните, что число элементов должно быть строго кратным 4, 5 или 6, в зависимости от напряжения.

Когда вы сложите аккумуляторы в нужном порядке, скрепите их между собой изолентой и добейтесь полной неподвижности элементов внутри корпуса, заполнив оставшееся пространство кусочками пенополистирола или полиуретановой пены. Под провода место оставлять не нужно, в крайнем случае при окончательной сборке потребуется выполнить пару дополнительных подрезов.

Схема соединения аккумуляторов

Чтобы получить заветные 12 или 18 В, элементы нужно соединять последовательно. Всё, никаких хитростей, только соблюдайте полярность. Минус каждой батареи соединяется с плюсом следующей, крайние два провода подключаются к контактной колодке.

Если удваиваете ёмкость, последовательно соединяются не отдельные батарейки, а сборки из 2-х элементов. В каждой сборке положительный контакт соединён с положительным соседа, аналогично дело обстоит с отрицательными.

Чтобы в итоге перемычки между аккумуляторами не сплелись в невнятную паутину, продумайте схему соединения заранее. Удобнее всего спаивать батареи, когда они уже смотаны в тугую пачку, длину перемычек выбирайте минимальную.

Для пайки контакты каждого аккумулятора следует хорошо залудить. Сперва зачистите их надфилем или мелкой шкуркой, сняв верхний никелевый слой. Как флюс используйте ортофосфорную кислоту, припой самый обычный — ПОС-61 с канифолью. Паяльник должен быть мощным, 60 ВТ, не менее. Перегревать литиевые аккумуляторы нельзя категорически, время контакта с жалом — не более 2 сек. Поэтому сперва лудим, даём остыть, затем паяем.

Также предварительно залудите перемычки из многопроволочной жилы в 2,5 мм 2 и дополните их балансировочными проводами так, чтобы по одному проводку приходилось на каждый узел между параллельно соединёнными аккумуляторами или группами. Длина проводов — чтобы доставали до балансировочного разъёма в корпусе, сечение около 0,5 мм 2 .

При пайке первой разогревается залуженная жила перемычки, затем она подносится к контакту батарейки, пока на нём не расплавится припой. Во время остывания можно придавливать место спайки деревянной щепкой. И не жалейте олова — соединение должно быть очень надёжным. Также не забудьте смыть остатки флюса, иначе через полгода-год эксплуатации все усилия пойдут прахом. Особенно внимательно промывайте плюсовый контакт замысловатой формы, для смывки можно использовать медицинский спирт или ацетон.

Если вы попытаетесь подпаять крайние провода аккумуляторной батареи к никелевым контактам колодки, вы, скорее всего, её безнадёжно испортите, перегрев пластик. Гораздо лучше просверлить по два отверстия диаметром 3-4 мм и притянуть жилы к пластинкам парой небольших винтов. Здесь удобно использовать планочки с двойными отверстиями, которые массово выковыривались из старых советских вилок.

Вместе с крайними жилами связки аккумуляторов прикрутите ещё пару балансировочных проводов. Получившийся в итоге балансировочный шлейф нужно припаивать в определённом порядке. Из даташита на разъём определите его контакт, пронумерованный единицей, и припаяйте к нему провод от положительной клеммы. Далее следуйте по цепочке аккумуляторов и припаивайте провода последовательно, один за другим, завершая соединением последнего контакта с общей минусовой жилой.

Чем и как заряжать

Особенность зарядки связки из Li-ion аккумуляторов в том, что заряжать их нужно строго равномерно. Иначе один из элементов теряет в глубине зарядки и по причине малого напряжения начинает просаживать остальные, разряжаясь ещё сильнее. В литиевых шуруповёртных аккумуляторах, как и в батареях ноутбука, предусмотрены специальные контроллеры заряда.

Поэтому самым важным и затратным вашим приобретением станет универсальное зарядное устройство. Лучше всего, если это будет что-то из линейки SkyRC — эти приборы уже неоднократно доказали, что стоят потраченных денег. Можно взять китайскую подделку на 300-600 рублей дешевле, но обязательно с функцией зарядки Li-ion батарей с несколькими элементами. Не сокрушайтесь насчёт высокой стоимости: такая штука должна быть в арсенале каждого самоделкина, она поможет восстановить и правильно заряжать старые убитые аккумуляторы, в том числе и кислотно-свинцовые, и недавно изъятые из аккумуляторного блока Ni-Cd банки.

Для зарядки переделанного аккумулятора нужно переделать штатное зарядное устройство. Задача простая — подпаять к основным клеммам два зарядных провода, соблюдая полярность. Балансировочные разъёмы соединяются проводом «папа-папа», устройство устанавливается в нужный режим и проводится полностью автоматический процесс зарядки. Главное в эксплуатации такой батареи — не увести элементы в глубокий разряд, но обычно двигатель заметно сдаёт в мощности задолго до столь значительного падения напряжения, так что безнадёжно убить новые аккумуляторы у вас вряд ли получится.

Поставленная задача очень проста: сделать такой аккумулятор, чтобы его было довольно просто заряжать и заменять элементы внутри с помощью простых манипуляций.

В начале рассмотрим внутренности обычного аккумулятора шуруповерта. Внутри большинства шуруповертов находится много "банок" 1.2 Вольта, изготовленные по технологии Ni-Cd или Ni-MH. В шуруповерте сверху таких банок 12, т.е. итоговое напряжение аккумулятора примерно 12*1.2=14.4 В. Емкость не превышает 1.5 А/ч. Сами аккумуляторы служат довольно долго, но среди 12 штук часто находится 1-2, которые перестают работать намного раньше своих коллег. Получается, что через некоторое время батарея умирает из-за малой части своих внутренностей. Существует рецепт: заменить банку, которая не работает, а остальное оставить без изменений. Но при это эти банки сложно найти и если менять, то лучше все. Еще плюс паять их очень сложно, нужно иметь сварочный аппарат. В итоге я пришел к следующим выводам:

Надо чтобы емкость аккумулятора была больше, чтобы реже заряжать

Замена банок происходила за пару минут

Не покупать зарядку

Реализация

Современная технология аккумуляторов, которая используется повсеместно - это Литиевая (Li-Ion). Она используется в телефонах, ноутбуках, плеерах, фонариках и много еще где. Доступным решением является батарея 18650. Если разобрать обычный аккумулятор ноутбука, то там их можно найти:

Эти акб можно купить или достать из старого ноутбука. Если будете покупать рекомендую по соотношению цена/качество "Sanyo 2400 Ma/h red". Имейте ввиду, что они должны быть незащищенные. В противном случае они будут отключаться при возникновении тока 2А, что бывает часто в шуруповерте. Я недавно покупал россыпь оных на ebay, к сожалению мой продавец уже не доступен, т.к. ссылку не привожу.

Чтобы их удобно было менять нам еще понадобится так называемый пружинный держатель для 18650:

Многие такие видели для обычных батареек АА. Бывают на 1-4 АКБ. Что странно, в радио магазине или на рынке такие найти сложно, проще заказать в интернете на сайтах с дешевыми китайскими вещами по запросу "18650 holder". Стоимость последнего около 1-2$.

Последняя важная вещь для самодельного АКБ - это умная зарядка. У меня такая под боком была, очень рекомендую "Imax B6" или аналоги:

Теперь есть два способа подключения:

1) Просто соединяем последовательно все акб с помощью держателей и к концам подсоединяем клемы умного зарядного. Плюс этой систему- простота. Минус- банки должны быть одинаковыми иначе все могут испортиться. Дело в том, что если на любой банке 18650 напряжение упадет ниже 3х вольт, то ее можно будет вскоре выбрасывать. Если ваши АКБ разные, то вы не сможете проконтролировать этот ньюанс. Если что-то произойдет с одной банкой, нужно будет менять все вместе, иначе будут проблемы.