Схема генератора прямоугольных импульсов на транзисторах. Стабильный генератор прямоугольных импульсов

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.

На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).

Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100... 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.

Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.

На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).

Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

В один прекрасный день мне понадобился срочно генератор прямоугольных импульсов со следующими характеристиками:

--- Питание: 5-12в


---
Частота: 5Гц-1кГц.


---
Амплитуда выходных импульсов не менее 10в


--- Ток: около 100мА.

За основу был взят мультивибратор, он реализован на трех логических элементах микросхемы 2И-НЕ. Принцип которого при желании можно прочитать в Википедии. Но генератор сам по себе дает инверсный сигнал, что подтолкнуло меня применить инвертор (это 4-й элемент). Теперь мультивибратор дает нам импульсы положительного тока. Однако у мультивибратора нет возможности регулирования скважности. Она у него автоматически выставляется 50%. И тут меня осенило поставить ждущий мультивибратор реализованный на двух таких же элементах (5,6), благодаря которому появилась возможность регулировать скважность. Принципиальная схема на рисунке:

Естественно, предел указанный в моих требованиях не критичен. Все зависит от параметров С4 и R3 – где резистором можно плавно изменять длительность импульса. Принцип работы так же можно прочитать в википедии. Далее: для высокой нагрузочной способности был установлен эммитерный повторитель на транзисторе VT-1. транзистор применен самый распостранненый типа КТ315. резисторов R6 служит для ограничения выходного тока и зашита от перегорания транзистора в случае КЗ.

Микросхемы можно применять как ТТЛ, так и КМОП. В случае применения ТТЛ сопротивление R3 не более 2к. потому что: входное сопротивление этой серии приблизительно равно 2к. лично я использовал КМОП К561ЛА7 (она же CD4011) – два корпуса питание до 15в.

Отличный вариант для использования как ЗГ для какого ни будь преобразователя. Для использования генератора среди ТТЛ – подходят К155ЛА3, К155ЛА8 у последней коллекторы открыты и на выхода нужно вешать резисторы номиналом 1к.

Генераторы импульсов предназначены для получения импульсов определенной формы и длительности. Они используются во многих схемах и устройствах. А также их используют в измерительной техники для наладки и ремонта различных цифровых устройств. Прямоугольные импульсы отлично подойдут для проверки работоспособности цифровых схем, а треугольной формы могут пригодиться для свип-генераторов или генераторов качающейся частоты.

Генератор формирует одиночный импульс прямоугольной формы по нажатию на кнопку. Схема собрана на логических элементах в основе которой обычный RS-триггер, благодаря ему также исключается возможность проникновения импульсов дребезга контактов кнопки на счетчик.

В положении контактов кнопки, как показано на схеме, на первом выходе будет присутствовать напряжение высокого уровня, а на втором выходе низкого уровня или логического нуля при нажатой кнопке состояние триггера поменяется на противоположное. Этот генератор отлично подойдет для проверки работы различных счетчиков


В этой схемы формируется одиночный импульс, длительность которого не зависит от длительности входного импульса. Используется такой генератор в самых разнообразных вариантах: для имитации входных сигналов цифровых устройств, при проверке работоспособности схем на основе цифровых микросхем, необходимости подачи на какое-то тестируемое устройство определенного числа импульсов с визуальным контролем процессов и т. д

Как только включают питание схемы конденсатор С1 начинает заряжается и реле срабатывает, размыкая своими фронтовыми контактами цепь источника питания, но реле отключится не сразу, а с задержкой, так как через его обмотку будет протекать ток разряда конденсатора С1. Когда тыловые контакты реле опять замкнутся, начнется новый цикл. Частота переключении электромагнитного реле зависит от емкости конденсатора С1 и резистора R1.

Использовать можно почти любое реле, я взял . Такой генератор можно использовать, например, для переключения елочных гирлянд и других эффектов. Минусом данной схемы является применение конденсатора большой емкости.

Другая схема генератора на реле, с принципом работы аналогичной предыдущей схеме, но в отличии от нее, частота следования равна 1 Гц при меньшей емкости конденсатора. В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора.

В генераторе импульсов, на рисунке А, применены три логических элемента И-НЕ и униполярный транзистор VT1. В зависимости от значений конденсатора С1 и резисторов R2 и R3 на выходе 8 генерируются импульсы с частотой 0,1 - до 1 МГц. Такой огромный диапазон объясняется применению в схеме полевого транзистора, что дало возможность использовать мегаомные резисторы R2 и R3. С помощью их можно менять также менять скважность импульсов: резистором R2 задается длительность высокого уровня, а R3 - длительность напряжения низкого уровня. VT1 можно взять любой из серий КП302, КП303. - К155ЛА3.

Если использовать вместо К155ЛА3 микросхемы КМОП например К561ЛН2 можно сделать широкодиапазонный генератор импульсов без использования в схеме полевого транзистора. Схема этого генератора показана на рисунке В. Для расширения количества генерируемых частот емкость конденсатора времязадающей цепи выбирается переключателем S1. Диапазон частот этого генератора 1ГЦ до 10 кГц.

На последнем рисунке рассмотрена схема генератора импульсов в которой заложена возможность регулировки скважности. Для тех кто забыл, напомним. Скважность импульсов это отношение периода следования (Т) к длительности (t):

Скважность на выходе схемы можно задать от 1 до нескольких тысяч, с помощью резистора R1. Транзистор работающий в ключевом режиме предназначен для усиления импульсов по мощности

Если есть необходимость высокостабильного генератора импульсов, то необходимо использовать кварц на соответствующую частоту.

Схема генератора показанная на рисунке способна вырабатывать импульсы прямоугольной и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3 цифровой микросхемы К561ЛН2. Резистор R2 в паре с конденсатором С2 образуют дифференцирующую цепь, которая на выходе DD1.5 генерирует короткие импульсы длительностью 1 мкс. На полевом транзисторе и резисторе R4 собран регулируемый стабилизатор тока. С его выхода течет ток заряжающий конденсатор С3 и напряжение на нем линейно увеличивается. В момент поступления короткого положительного импульса транзистор VT1 открывается, а конденсатор СЗ разряжается. Тем самым формируя пилообразное напряжение на его обкладках. Переменным резистором можно регулировать ток заряда конденсатора и крутизну импульса пилообразного напряжения, а также его амплитуду.

Вариант схемы генератора на двух операционных усилителях

Схема построена с использованием двух ОУ типа LM741. Первый ОУ используется для генерации прямоугольной формы, а второй генерирует треугольную. Схема генератора построена следующим образом:


В первом LM741 на инвертирующий вход с выхода усилителя подключена обратная связь (ОС) выполненная на резисторе R1 и конденсаторе C2, а на неинвертирующий вход также идет ОС, но уже через делитель напряжения, на базе резисторов R2 и R5. Выходной первого ОУ непосредственно связан с инвертирующим входом второго LM741 через сопротивление R4. Этот второй ОУ вместе с R4 и C1 образуют схему интегратора. Его неинвертирующий вход заземлен. На оба ОУ подаются напряжения питания +Vcc и –Vee, как обычно на седьмой и четвертый выводы.

Работает схема следующим образом. Предположим, что первоначально на выходе U1 имеется +Vcc. Тогда емкость С2 начинает заряжаться через резистор R1. В определенный момент времени напряжение на С2 превысит уровень на неинвертирующем входе, что расчитывается по формуле ниже:

V 1 = (R 2 / (R 2 +R 5))× V o = (10 / 20)× V o = 0.5× V o

Выходной сигнал V 1 станет –Vee. Так, конденсатор начинает разряжаться через резистор R1. Когда напряжение на емкости станет меньше напряжения, определяемого формулой, выходной сигнал снова будет + Vcc. Таким образом, цикл повторяется, и благодаря этому генерируются импульсы прямоугольной формы с периодом времени, определяемым RC-цепочкой, состоящей из сопротивления R1 и конденсатора C2. Эти образования прямоугольной формы также являются входными сигналами для схемы интегратора, который преобразует их в треугольную форму. Когда выход ОУ U1 равен +Vcc, емкость С1 заряжается до максимального уровня и дает положительный, восходящий склон треугольника на выходе ОУ U2. И, соответственно, если на выходе первого ОУ имеется –Vee, то будет формироваться отрицательный, нисходящий склон. Т.е, мы получаем треугольную волну на выходе второго ОУ.

Генератор импульсов на первой схеме построен на микросхеме TL494 отлично подходит для наладки любых электронных схем. Особенность этой схемы заключается в том, что амплитуда выходных импульсов может быть равна напряжению питания схемы, а микросхема способна работать вплоть до 41 В, ведь не просто так ее можно найти в блоках питания персональных компьютеров.


Разводку печатной платы вы можете скачать по ссылке выше.

Частоту следования импульсов можно изменят переключателем S2 и переменным резистором RV1, для регулировки скважности используется резистор RV2. Переключатель SA1 предназначен для изменения режимы работы генератора с синфазного на противофазный. Резистор R3 должен перекрывать диапазон частот, а диапазон регулировки скважности регулируется подбором R1, R2

Конденсаторы С1-4 от 1000 пФ до 10 мкФ. Транзисторы любые высокочастотные КТ972

Подборка схем и конструкций генераторов прямоугольных импульсов. Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной - сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними

Формирует мощные короткие одиночные импульсы, которые устанавливают на входе или выходе любого цифрового элемента логический уровень, противоположный имеющемуся. Длительность импульса выбрана такой, чтобы не вывести из строя элемент, выход которого подключен к испытуемому входу. Это дает возможность не нарушать электрической связи испытуемого элемента с остальными.

Генераторы прямоугольных импульсов используют во многих радиотехнических устройствах: электронных счетчиках, игровых автоматах, применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц.

На рис. 51 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1. На логических элементах D1.1 и D1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 - напряжение низкого уровня; при нажатой кнопке - наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

А на рис. 52 показана схема простейшего импульсника на электромагнитном реле. При подаче питания конденсатор С1 заряжается черезрезистор R1 и реле срабатывает, отключая источник питания контактами К1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К1.1 опять замкнутся, снова начнет заряжаться конденсатор - цикл повторится.

Частота переключений электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использований реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно 1 раз в секунду.

Такой генератор можно использовать, например, для переключения гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток - необходимость использования конденсатора значительной емкости.

Рис. 51 Схема генератора одиночных импульсов

Рис. 52 Схема импульсника на электромагнитном реле

На рис. 53 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обесшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя печивает частоту импульсов 1 Гц при емкости конденсатора вдесятеро меньше - некоторое время откроется стабилитрон V1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора V2V3. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов V2 и V3 по схеме эмиттерного повторителя повышает входное сопротивление каскада.

Рис. 53. Схема генератора импульсов на транзисторе и электромагнитном реле

Рис 54. Генератор импульсов на логических элементах и полевом транзисторе

Реле К1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15...17 В и при токе 20...50 мА.

В генераторе импульсов, схема которого приведена на рис. 54, использованы логическая микросхема D1 и полевой транзистор V1. При изменении номиналов конденсатора С1 и резисторов R2 и S3 он генерирует импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность высокого потенциала на выходе генератора, а резистор R3 - длительность низкого потенциала. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1 ...2 мкФ. Сопротивления резисторов R2, R3 могут быть 10...15 МОм. Транзистор V1 может быть любым из серий КП302, КП303.

Этот генератор целесообразно собрать в корпусе и использовать как самостоятельный прибор для настройки цифровых устройств.

Иногда возникает необходимость в построении генератора, который формирует число импульсов. Соответствующее номеру нажатой кнопки. Его можно использовать, например, при налаживании характериографов или экзаменаторов, в которых каждому ответу соответствует определенное число очков. Принципиальная схема такого числоимпульсного генератора приведена на рис. 55.

Это устройство состоит из генератора импульсов, счетчика и дешифратора. Генератор, вырабатывающий прямоугольные импульсы с частотой следования около 10 Гц, собран на логических элементах D1.3, D1.4. С выхода элемента D1.4 импульсы поступают на двоично-десятичный счетчик, собранный на микросхеме D2.

Рис. 55. Схема числоимпульсного генератора (см. оригинал)

Четыре выхода этого счетчика (выводы 12, 9, 8 и 11) соединены со входами микросхемы D3, представляющей собой дешифратор на 4 входа и 16 выходов. При работе счетчика на одном из выходов дешифратора присутствует напряжение низкого уровня, причем номер этого выхода соответствует десятичному эквиваленту двоичного числа, поданного в двоичном коде на вход дешифратора.

При подаче питающего напряжения на выводе 9 элемента D1.3 будет напряжение низкого уровня, и импульсы с выхода генератора на вход счетчика не поступают. При нажатии одной из кнопок S1-S15 конденсатор С3 мгновенно заряжается через диод V1 до напряжения высокого уровня, на выводах 2 и 3 микросхемы D2 в это время появляется напряжение низкого уровня, устанавливающее счетчик в срстояние счета входных импульсов. Одновременно через замкнутый контакт нажатой кнопки напряжение высокого уровня подается на вход элемента D1.1 (вывод 2) и импульсы подаются на счетчик. При работе счетчика на выходах дешифратора последовательно появляется напряжение низкого уровня. Как только оно появится на выходе, с которым соединен левый (по схеме) контакт нажатой кнопки, подача импульсов на вход счетчика прекратится. С вывода 11 элемента D1.4 будет снято число импульсов, соответствующее номеру нажатой кнопки. Если продолжать удерживать кнопку нажатой, то через некоторое время конденсатор С3 разрядится через резистор R2, счетчик D2 установится в нулевое состояние, и генератор выдаст новую серию импульсов. Вполне понятно, что до окончания серии импульсов нажатую кнопку отпускать нельзя.

Формирователь импульсов на элементах D1.1 и D1.2, представляющий собой ждущий мультивибратор, предотвращает проникновение импульсов, создающихся дребезгом контактов кнопок, на вход счетчика.

Настройка устройства заключается в установке подбором резистора R1 и конденсатора С2 требуемой частоты следования импульсов генератора от единиц герц до десятков килогерц.

В описанных здесь генераторах импульсов можно использовать резисторы МЛТ-0,25, конденсаторы - К50-6. Транзисторы КТ315Б можно заменить транзисторами из серий КТ312, КТ315, КТ316. Диоды - любые из серий Д7, Д9, Д311. Кнопки S1 - S15 типа П2К, КМ1-Г и др. Микросхемы могут быть серий К133, К134, К136, К158.

Генераторы импульсов - это устройства, которые способны создавать волны определенной формы. Тактовая частота в данном случае зависит от многих факторов. Основным предназначением генераторов принято считать синхронизацию процессов у электроприборов. Таким образом, у пользователя есть возможность настраивать различную цифровую технику.

Как пример можно привести часы, а также таймеры. Основным элементом устройств данного типа принято считать адаптер. Дополнительно в генераторы устанавливаются конденсаторы и резисторы вместе с диодами. К основным параметрам устройств можно отнести показатель возбуждения колебаний и отрицательного сопротивления.

Генераторы с инверторами

Сделать генератор импульсов своими руками с инверторами можно и в домашних условиях. Для этого адаптер потребуется бесконденсаторного типа. Резисторы лучше всего использовать именно полевые. Параметр передачи импульса у них находится на довольно высоком уровне. Конденсаторы к устройству необходимо подбирать исходя из мощности адаптера. Если его выходное напряжение составляет 2 В, то минимальная должна находиться на уровне 4 пФ. Дополнительно важно следить за параметром отрицательного сопротивления. В среднем он обязан колебаться в районе 8 Ом.

Модель прямоугольных импульсов с регулятором

На сегодняшний день генератор прямоугольных импульсов с регуляторами является довольно распространенным. Для того чтобы у пользователя была возможность настраивать предельную частоту устройства, необходимо использовать модулятор. На рынке производителями они представлены поворотного и кнопочного типа. В данном случае лучше всего остановиться на первом варианте. Все это позволит более тонко проводить настройку и не бояться за сбой в системе.

Устанавливается модулятор в генератор прямоугольных импульсов непосредственно на адаптер. При этом пайку необходимо производить очень аккуратно. В первую очередь следует хорошо прочистить все контакты. Если рассматривать бесконденсаторные адаптеры, то у них выходы находятся с верхней стороны. Дополнительно существуют аналоговые адаптеры, которые часто выпускаются с защитной крышкой. В этой ситуации ее необходимо удалить.

Для того чтобы у устройства была высокая пропускная способность, необходимо резисторы устанавливать попарно. Параметр возбуждения колебаний в данном случае обязан находиться на уровне Как основную проблему генератор прямоугольных импульсов (схема показана ниже) имеет резкое повышение рабочей температуры. В данном случае следует проверить отрицательное сопротивление бесконденсаторного адаптера.

Генератор перекрывающих импульсов

Чтобы сделать генератор импульсов своими руками, адаптер лучше всего использовать аналогового вида. Регуляторы в данном случае применять не обязательно. Связано это с тем, что уровень отрицательного сопротивления может превысить 5 Ом. В результате на резисторы оказывается довольно большая нагрузка. Конденсаторы к устройству подбираются с емкостью не менее 4 Ом. В свою очередь адаптер к ним подсоединяется только выходными контактами. Как основную проблему генератор импульсов имеет асимметричность колебаний, которая возникает вследствие перегрузки резисторов.

Устройство с симметричными импульсами

Сделать простой генератор импульсов такого типа можно только с использованием инверторов. Адаптер в такой ситуации лучше всего подбирать аналогового типа. Стоит он на рынке намного меньше, чем бесконденсаторная модификация. Дополнительно важно обращать внимание на тип резисторов. Многие специалисты для генератора советуют подбирать кварцевые модели. Однако пропускная способность у них довольно низкая. В результате параметр возбуждения колебаний никогда не превысит 4 мс. Плюс к этому добавляется риск перегрева адаптера.

Учитывая все вышесказанное, целесообразнее использовать полевые резисторы. в данном случае будет зависеть от их расположения на плате. Если выбирать вариант, когда они устанавливаются перед адаптером, в этом случае показатель возбуждения колебаний может дойти до 5 мс. В противной ситуации на хорошие результаты можно не рассчитывать. Проверить генератор импульсов на работоспособность можно просто подсоединив блок питания на 20 В. В результате уровень отрицательного сопротивления обязан находиться в районе 3 Ом.

Чтобы риск перегрева был минимальным, дополнительно важно использовать только емкостные конденсаторы. Регулятор в такое устройство устанавливать можно. Если рассматривать поворотные модификации, то как вариант подойдет модулятор серии ППР2. По своим характеристикам он на сегодняшний день является довольно надежным.

Генератор с триггером

Триггером называют устройство, которое отвечает за передачу сигнала. На сегодняшний день они продаются однонаправленные или двухнаправленные. Для генератора подходит только первый вариант. Устанавливается вышеуказанный элемент возле адаптера. При этом пайку необходимо проделывать только после тщательной зачистки всех контактов.

Непосредственно адаптер можно выбрать даже аналогового типа. Нагрузка в данном случае будет небольшой, а уровень отрицательного сопротивления при удачной сборке не превысит 5 Ом. Параметр возбуждения колебаний с триггером в среднем составляет 5 мс. Основную проблему генератор импульсов имеет такую: повышенная чувствительность. В результате с блоком питания выше 20 В указанные устройства работать не способны.

повышенной нагрузки?

Обратим внимание на микросхемы. Генераторы импульсов указанного типа подразумевают использование мощного индуктора. Дополнительно следует подбирать только аналоговый адаптер. В данном случае необходимо добиться высокой пропускной способности системы. Для этого конденсаторы применяются только емкостного типа. Как минимум отрицательное сопротивление они должны быть способны выдерживать на уровне 5 Ом.

Резисторы для устройства подходят самые разнообразные. Если выбирать их закрытого типа, то необходимо предусмотреть для них раздельный контакт. Если все же остановиться на полевых резисторах, то изменение фазы в данном случае будет происходить довольно долго. Тиристоры для таких устройств практически бесполезны.

Модели с кварцевой стабилизацией

Схема генератора импульсов данного типа предусматривает использование только бесконденсаторного адаптера. Все это необходимо для того, чтобы показатель возбуждения колебаний был как минимум на уровне 4 мс. Все это позволит также сократить термальные потери. Конденсаторы для устройства подбираются исходя из уровня отрицательного сопротивления. Дополнительно необходимо учитывать тип блока питания. Если рассматривать импульсные модели, то у них уровень выходного тока в среднем находится на отметке 30 В. Все это в конечном счете может привести к перегреву конденсаторов.

Чтобы избежать таких проблем, многие специалисты советуют устанавливать стабилитроны. Припаиваются они непосредственно на адаптер. Для этого необходимо прочистить все контакты и проверить напряжение катода. Вспомогательные адаптеры для таких генераторов также используются. В этой ситуации они играют роль коммутируемого трансивера. В результате параметр возбуждения колебаний повышается до 6 мс.

Генераторы с конденсаторами РР2

Складывается генератор высоковольтных импульсов с конденсаторами данного типа довольно просто. На рынке найти элементы для таких устройств не составляет никаких проблем. Однако важно подобрать качественную микросхему. Многие с этой целью приобретают многоканальные модификации. Однако стоят они в магазине довольно дорого по сравнению с обычными типами.

Транзисторы для генераторов подходят больше всего однопереходные. В данном случае параметр отрицательного сопротивления не должен превышать 7 Ом. В такой ситуации можно надеяться на стабильность работы системы. Чтобы повысить чувствительность устройства, многие советуют применять стабилитроны. При этом триггеры используются крайне редко. Связано это с тем, что пропускная способность модели значительно снижается. Основной проблемой конденсаторов принято считать усиление предельной частоты.

В результате смена фазы происходит с большим отрывом. Чтобы наладить процесс должным образом, необходимо вначале работы настроить адаптер. Если уровень отрицательного сопротивления находится на отметке 5 Ом, то предельная частота устройства должна составлять примерно 40 Гц. В результате нагрузка с резисторов снимается.

Модели с конденсаторами РР5

Генератор высоковольтных импульсов с указанными конденсаторами можно встретить довольно часто. При этом использоваться он способен даже с блоками питания на 15 В. Пропускная способность его зависит от типа адаптера. В данном случае важно определиться с резисторами. Если подбирать полевые модели, то адаптер целесообразнее устанавливать именно бесконденсаторного типа. В том случае параметр отрицательного сопротивления будет находиться в районе 3 Ом.

Стабилитроны в данном случае используются довольно часто. Связано это с резким понижением уровня предельной частоты. Для того чтобы ее выровнять, стабилитроны подходят идеально. Устанавливаются они, как правило, возле выходного порта. В свою очередь, резисторы лучше всего припаивать возле адаптера. Показатель колебательного возбуждения зависит от емкости конденсаторов. Рассматривая модели на 3 пФ, отметим, что вышеуказанный параметр никогда не превысит 6 мс.

Основные проблемы генератора

Основной проблемой устройств с конденсаторами РР5 принято считать повышенную чувствительность. При этом термальные показатели также находятся на невысоком уровне. За счет этого часто возникает потребность в использовании триггера. Однако в данном случае необходимо все же замерить показатель выходного напряжения. Если он при блоке в 20 В превышает 15 В, то триггер способен значительно улучшить работу системы.

Устройства на регуляторах МКМ25

Схема генератора импульсов с данным регулятором включает в себя резисторы только закрытого типа. При этом микросхемы можно использовать даже серии ППР1. В данном случае конденсаторов требуется только два. Уровень отрицательного сопротивления напрямую зависит от проводимости элементов. Если емкость конденсаторов составляет менее 4 пФ, то отрицательное сопротивление может повыситься даже до 5 Ом.

Чтобы решить данную проблему, необходимо использовать стабилитроны. Регулятор в данном случае устанавливается на генератор импульсов возле аналогового адаптера. Выходные контакты при этом необходимо тщательно зачистить. Также следует проверить пороговое напряжение самого катода. Если оно превышает 5 В, то подсоединять регулируемый генератор импульсов можно на два контакта.