Схема реобаса своими руками с дисплеем. Реобас – залог тихой работы компьютера

Как сделать и подключить реобас для компьютера? Необходимые детали, схемы с описаниями, пошаговая инструкция и дополнительные рекомендации по сборке, проверка реобаса для ПК и идеи монтажа. Видео.


Статья посвящается тем, кому надоело угадывать в каком положении находится ручка реобаса, да и вообще всем, у кого в корпусе безжалостно бушуют многочисленные вентиляторы. Девайс будем делать на четыре канала, кому надо можно сделать и больше, но мы остановились на этом количестве по нескольким причинам: во-первых, нам больше не надо, а во-вторых, в заглушку больше не влезает.

По сложности сразу отметим - нелегко. Для изготовления этого девайса вам понадобится немалый опыт работы с паяльником.

Вся конструкция основана на двух схемах: транзисторная схема для реобаса и индикатор загрузки винчестера. Вторую мы немного доработаем. Начнём с того, что нам для этого понадобится, а понадобится нам не мало.

Необходимые детали для сборки реобаса своими руками

Транзисторная схема: 4 шт.

  • Транзисторы КТ819Г
  • Реостаты 10 кОм на два канала
  • Радиаторы
Индикатор загрузки винчестера: 4 шт
  • Печатная плата
  • Микросхема LM3914
  • Резисторы: 10 кОм, 3кОм, 470 Ом, 330 Ом
  • Светодиоды 10шт
  • Шлейф
Дополнительно:
  • Резистор постоянный 750 Ом - 4 шт.
  • Трёхпозиционные выключатели - 4 шт.
  • Вентиляторы (тахометры нам не нужны) - 4 шт.
  • Корпус от CD-ROM - 1 шт.
  • Провода
  • Пружинные клеммы на 4 контакта - 2 шт.
  • Разъём MOLEX типа папа - 1 шт.
  • Заглушка от корпуса - 1 шт.
  • Ручки для реостатов - 4 шт.
Инструмент:
  • Паяльник и паяльные принадлежности.
  • Дрель с набором разных свёрл.
  • Кусачки.
  • Ну и конечно прямые руки.

Обратите внимание на то, что в схеме Индикатор загрузки винчестера нам не понадобится оптопара 4N25 и конденсатор. Также учтите, что нужны двухканальные реостаты и выключатели.

Сборка реобаса для компьютера - схемы и их описание

Начать нужно с разметки заглушки. Дело это нелёгкое. Оптимальное расположение вы можете увидеть ниже.


Хотелось сделать это немного по-другому, но заглушка не позволяет. Собираем транзисторную схему по следующему рисунку:


Два контакта нам не понадобятся, поэтому их можно откусить кусачками. После всех операций у нас должна остаться одна свободная пара контактов. К ним мы ещё вернёмся. Оставим не на долго то, что уже спаяли и займёмся платой индикатора загрузки винчестера.
  • Читайте про в компьютере
Нужно сделать 4 печатных платы по следующим схемам:


Коротко о процессе изготовления печатной платы:
  1. Вырезаем из фольгированного текстолита кусок нужного размера, маркером для дисков рисуем дорожки.
  2. В стеклянную банку насыпаем хлорное железо (FeCl3), разбавляем водой (H2O) и бросаем туда плату.
  3. Периодически помешиваем и ждём пока вытравится.
  4. После травки вытираем спиртом дорожки на плате, сверлим сверлом 0,8–1 мм. Можно использовать макетную плату, но в ней проще будет запутался. Далее напаиваем детали.
Теперь нужно соединить две схемы по следующему рисунку.


Помните ту пару контактов, которую мы оставили? Используем её.

На средний контакт подаём +12 вольт. А выход через 750 Ом резистор ведём и паяем к месту, которое обведено в кружок, то есть на +, где должен стоять конденсатор. Смотрите не перепутайте, а то будет вам Fatal Error.

  • Читайте также, как провести
Далее берём в руки трёхпозиционные двухканальные выключатели. Зачем они нам нужны именно трёхпозиционные? Чтоб можно было переключать по этой схеме: 12v/Reg/off.

Вот схема всего устройства:


Таких схем делаем 4 штуки.
  1. Берём корпус от CD-ROM, запихиваем туда всё это.
  2. В задней стенке сверлим (если надо) отверстия и выводим молекс типа папа и пружинные клеммы наружу.
  3. Далее нужно подпаять провода. Землю ведём на схемы индикаторов загрузки винчестера и на все чёрные контакты пружинных клемм. +5 только на индикатор загрузки винчестера. +12 на все средние контакты выключателей. И выводим провода от схемы + на все красные контакты пружинных клемм.
  4. Всё расставляем по своим местам. Подключаем MOLEX, вентиляторы.

Как подключить реобас? Проверка

  1. Если на вашем блоке питания нет защиты или вы не уверены в её наличии, то воспользуйтесь тестовым (если есть), а если последнего нет, идите к другу и проверьте всё это у него.
  2. Переводим выключатель в среднее положение - вентилятор не должен крутиться, ни одного светодиода не должно гореть.
  3. Переводим выключатель в нижнее положение - вентилятор крутится на все 12, все светодиоды горят (светятся). Попробуйте покрутить ручку, ничего не должно меняться.
  4. Переводим выключатель в верхнее положение - крутим ручку, вентилятор должен изменять свою скорость, количество светодиодов тоже должно меняться. В одном крайнем положении горят все светодиоды, в другом - только один.

Идеи по сборке реобаса для ПК

  1. Можно спаять схему диодной матрицы и подключить к уже существующей. Тогда вместо светодиодов (а может и вместе с ними) будут загораться цифры 1,2,3….,9. Тоже круто будет.
  2. Можно поставить конденсатор на 1500 мкф на схему и на 470 мкф параллельно каждому светодиоду, тогда каждый светодиод будет плавно потухать и загораться, а конденсатор на схеме будет вводить запаздывание.
Видео, как сделать реобас ZALMAN своими руками:

Пора сделать эффективное управление вентиляторами компьютера , зачем им впустую работать на полную мощность, расходуя лишнюю электроэнергию и вырабатывая свой рабочий ресурс. В этой статье будет рассмотрена схема устройства, называемого реобас. В принципе собрать реобас своими руками довольно просто, по крайней мере, тем, кто дружит с паяльником и решился на покупку дешевого реобаса китайского производства, или дорогого, сделанного известным брендом, я бы рекомендовал сделать его самостоятельно.

Давайте сразу определимся с терминологией статьи.

Кулер – вентилятор, установленный в компьютере на процессоре, на чипе видеокарты или материнской платы, также может быть установлен на корпусе, причем во множественном числе.

Реобас – устройство управления вентиляторами (кулерами) компьютера.

Самым простым реобасом является резистор, включенный в цепь питания вентилятора. Сопротивление резистора подбирается опытным путем, исходя из уменьшения шума кулера. При этом напряжение питания вентилятора снижается до 6 – 7 В. Стоит заметить, что при очередном включении компьютера есть большая вероятность, что кулер не запуститься, так как резистор ограничивает пусковой ток двигателя кулера, а это чревато выходом из строя, охлаждаемого компонента.

Допустим, мы подобрали резистор, при котором двигатель запускается десять раз из десяти. Появляется другая проблема, во время работы «тяжелого» программного обеспечения или «требовательной» игрушки необходимо максимальное охлаждение, а наш реобас схема которого – резистор, не позволяет этого, в результате перегрев и в лучшем случае перезагрузка компьютера.

Подведем итог вступления и обозначим алгоритм работы правильного реобаса. Собственно ничего сверхъестественного, схема реобаса должна обеспечивать:

  • полноценный запуск двигателя вентилятора;
  • правление скоростью вращения ротора двигателя в ручном и автоматическом режиме в зависимости от температуры охлаждаемого компонента.

В нашем реобасе, собранном своими руками, регулирование напряжения питания кулера происходит в импульсном режиме. Применение полевых транзисторов в цепи коммутации позволило уйти от потерь напряжения, так как сопротивление каналов полевого транзистора в открытом состоянии составляет доли Ома. Это значит, что пуск двигателя вентилятора произойдет однозначно и скорость вращения, в случае необходимости, будет практически максимальной, будто кулер подключен напрямую к 12 В.

Принцип действия предложенного реобаса таков: первоначально кулер, установленный на процессоре, работает в «тихом» режиме, а при достижении температуры, например, 50 °C переходит на максимальную мощность. Как только температура снижается, реобас переключает кулер обратно на «тихий» режим. Остальные вентиляторы «системника» работают на постоянной, выставленной скорости.

Пришло время взглянуть на схему реобаса , как происходит управление вентиляторами компьютера:

Схема состоит из двух равноправных каналов управления вентиляторами. Первый собран на микросхемах DA1, DA2 и транзисторах VT1 и VT2, управляет этот канал выходом XP1 к которому подключен кулер, охлаждающий процессор. Другой канал собран на микросхеме DA3 и транзисторе VT3, этот канал управляет выходом XP2, к которому подключены другие кулеры компьютера.

Микросхема DA1 это операционный усилитель, на нем построен узел управления вентилятором компьютера , а точнее процессора. Кулер начинает работать на полную мощность, когда температура теплоотвода превышает допустимую. В качестве датчика используется транзистор VT1, приклеенный к теплоотводу процессора. Точку срабатывания регулируют резистором R7. Выходной сигнал с ОУ DA1 при помощи диодов VD5 и VD6 складывается с сигналом генератора DA2 и открывает транзистор VT2 – кулер работает на полную мощность.

Микросхемы DA2 и DA3 в схеме реобаса это интегральные таймеры, на них собраны генераторы импульсов частотой 10 – 15 Гц. Скважность импульсов регулируется переменными резисторами R4, R5. Возможность регулирования скважности появилась благодаря введению в схему времязадающих конденсаторов C1, C2 и диодов VD1 – VD4, разделяющих цепи первого и второго генераторов. Регулирование скважности импульсов позволяет нам изменять частоту вращения роторов кулеров, при этом сохраняя высокий пусковой ток. Для устранения щелчков в двигателях служат конденсаторы C5 и C6, они сглаживают импульсы в моменты перепада.

Печатная плата реобаса своими руками, вид со стороны выводов:

Скачать печатную плату реобаса в формате.lay можно в конце статьи.

Используемые детали. DA1 – ОУ КР140УД708, подойдет аналогичный в таком же корпусе. Транзистор VT1 КТ315В можно заменить другим кремниевым маломощным такой же структуры с коэффициентом передачи тока не менее 100. Полевые транзисторы VT2, VT3 можно заменить на IRF640 или IRF644. Конденсаторы: C3 – пленочный, типа К73-17 или импортный аналог, остальные конденсаторы – электролитические, типа К50-35 или аналогичный импортный. Резисторы постоянные любые, мощность 0,125 Вт, подстроечные R4, R5 – СП3-44, R7 – СП4-3, также можно заменить импортными. Диоды КД522 могут быть заменены на маломощные импульсные аналоги.

Ну, вот мы и подошли к новому этапу, реобас своими руками мы собрали, займемся его настройкой. Естественно первый пуск и настройку нужно проводить на столе с питанием от проверочного БП, а уж потом подключать и устанавливать настроенный блок в корпус компьютера.

Подключаем кулеры к разъемам XP1 и XP2, устанавливаем движки резисторов R4, R5, R7 в крайнее правое положение, к разъему XS1 на контакты 2(+) и 1(-) подаем напряжение 12 В. Если все правильно собрали и подключили, а детали оказались заведомо годные, то при подаче питания вентиляторы начнут работать на максимальной скорости. Теперь медленно поворачивая движки резисторов R4, R5 добиваемся снижения скорости вращения, пока не пропадет гул и останется только звук воздушного потока.

Переходим к настройке узла управления вентилятором процессора, он собран, напоминаю, на ОУ DA1. Это один из главных этапов настройки реобаса. Нагрейте транзистор VT1 примерно до 40 °C, можно руками, затем движок резистора R7 медленно поворачивайте против часовой стрелки до момента переключения кулера на максимальную скорость вращения. Нагрев датчика (транзистор VT1) остановите, буквально в течение минуты скорость вращения снизится до первоначальной.

Установите собранный своими руками реобас в системный блок, подключите кулера, датчик (VT1) и включите компьютер. Желательно, чтобы у вас уже была установлена программа для мониторинга температуры компонентов компьютера. Рекомендую бесплатную утилиту HWMonitor , последнюю версию которой можно скачать на сайте разработчика.

Резистором R7 установите момент переключение кулера процессора на 50 °C, а резистором R4 установите скорость вращения такой, чтобы в обычном режиме работы температура процессора не превышала 30 – 40 °C. В том случае, если процессорный кулер будет часто переключаться с режима на режим, то нужно увеличить его скорость вращения, а также скорость вращения корпусных кулеров.

Теперь вы знаете, как собрать реобас своими руками и сделать правильное управление вентиляторами компьютера.

Список файлов

Реобасы уходят в прошлое? А вот и нет! Архитектура – наше все! Казалось бы, количество теплоты, которое выделяли еще совсем недавно топовые чипы, эффективнее рассеивать с помощью водяного охлаждения, но производители доказали, что дальнейшее увеличение частоты не столь эффективно, как совершенствование архитектуры. Соответственно, энергопотребление и выделение тепла уменьшились.

Шум и ШИМ

Но это была увертюра, а вообще-то я собирался рассказать про реобас. Мне воздушной системы охлаждения вполне хватает, но есть одна проблема (точнее, была) – надоедливый шум вентиляторов (особенно на процессоре). Я использую свой компьютер для разных задач, в том числе и для таких, при решении которых его ресурсы используются минимально (причем в основном по ночам, когда слышно, как капает вода в ванной у соседей). Зачем же мне в такие моменты мощная система охлаждения? А ведь она постоянно шумит… и шумит, и так все время… Вот и пришла в голову вполне логичная идея: сделать реобас своими руками. Купить приличный – дорого, да у меня в городе и негде (есть, конечно, но такое неприличное и непотребное, что лучше уж шум). И я начал поиск статей по данному поводу в Сети. Ничего гармоничного я, однако, не нашел, все что было – Совок (такой детский, пластмассовый). Везде – полностью аналоговая схема, а мне хотелось цифирь (!), так как используя всякого рода переменные резисторы, без четкой подстройки под данный вентилятор получить желаемые результаты нельзя. И пришел я к выводу, что надо все с нуля изобретать самому. Какие же передо мной встали задачи? Реобас должен быть цифровым, иметь минимум четыре ШИМ-канала с двумя программируемыми режимами, с индикацией текущего состояния ШИМ-каналов и, по возможности, на сенсорных кнопках. Во всем этом мне серьезно помогло увлечение микроконтроллерами AVR (Atmel). И что? И то! Получилось, даже больше, чем хотел в самом начале (это занятие сильно затягивает:)). Ко всему перечисленному выше добавился индикатор загрузки винчестера, а сенсорные кнопки реализованы на ура. А еще, ну это лишь мое мнение (и моих друзей), удалось достигнуть достаточно приличного внешнего вида. Но самое смешное во всем этом – цена. Она составила что-то около $7, что очень даже немного (если смотреть на готовые реобасы), плюс (в отличие от тех же готовых) возможность совершенствования прошивки.

Набиваем карманы

А теперь посмотрим, что же необходимо, чтобы сделать такой агрегат:

Для основной платы:

  1. AtMega8535 в DIP-корпусе – 1 шт.
  2. Транзисторы КТ815 – 4 шт.
  3. Транзисторы КТ3107 – 5 шт.
  4. R 300 Om (smd) – 8 шт.
  5. R 1 mOm (smd) – 8 шт.
  6. R 10 kOm (smd) – 5 шт.
  7. R 620 Om (млт 0,125w) – 4 шт.
  8. С 33 pF (smd) – 7 шт.
  9. С 560 pF (smd) – 7 шт.
  10. Диоды 1N4148 (кд522) – 4 шт.
  11. Панелька DIP-40 – 1 шт.
  12. Стабилитрон на 4.7 В – 1 шт.
  13. MOLEX (я не нашел нормальный, взял и порезал переходник для флопа).
  14. Радиатор от старой видеокарты или от Pentium 133 MMX (что-то в этом роде).
  15. Разъем для программирования.
  16. Разъемы под вентиляторы – 4 шт.

На заметку:

Если от букв «smd» кидает в жар, можно использовать млт 0.125w, припаивая их в предварительно сделанные отверстия в плате на месте «пятачков» для smd. Для конденсаторов – та же история. Хотя я расскажу ниже и о пайке smd.

R 620 – это резисторы для ограничения тока через базу транзисторов, к которым подключены вентиляторы. Я взял номинал 620 Ом, зная, что максимальные обороты при полностью открытом канале немного упадут. Это касается только мощных вентиляторов (для процессора). Если это критично, то можно взять номинал меньше, но не менее 330 Ом, желательно не более чем на один-два канала. Хотя если на транзисторы повесить просто большее охлаждение – свободно можно и на все четыре канала взять по 330 Ом. Панелька DIP-40 – не обязательна, но тогда надо припаивать сам кристалл, и тут шансы «убить» его возрастут в десятки раз.

Для дисплея:

  1. 7-сегментный светодиодный индикатор с общим анодом – 4 шт.
  2. Линейный светодиодный индикатор («столбик») – 1 шт.
  3. 20-ти жильный шлейф (35 см) – 1 шт.
  4. Гвозди (для кнопок) – 7 шт.
  5. Обрезки усиков от резисторов (для перемычек).

Я по собственной глупости купил индикаторы с зеленой пленкой, которые из-за нее выглядели тускло. Попробовал содрать пленку, после чего выяснилось, что пленка была еще и рассеивателем. Поэтому мне пришлось еще вешать отдельные рассеиватели, сделанные из прозрачного пакетика. Так что я не советую тебе брать именно такие индикаторы. Да! А программатор для Algorithm Builder у тебя есть? Как?! А сам Algorithm Builder? Без него никак нельзя, поэтому качаем (абсолютно бесплатно) утилиту (около 2 Мб) с сайта разработчика: http://algrom.net/russian.html

Для программатора потребуется:

  1. Разъем для COM-порта (мама) – 1 шт.
  2. Диоды 1N4148 (кд522) – 3 шт.
  3. R 1 kOm (млт 0,125w) – 7 шт.
  4. Проводки.

Платы

Ну что, начинаем собирать «железо»? Переводим картинки на текстолит – для этого печатаем их на лазерном (!) принтере на глянцевой или просто гладкой бумаге (идеально подходит журнальная), после чего переводим аккуратным проглаживанием с помощью утюга на обезжиренный текстолит. После остывания опускаем в воду или просто под струю воды, удаляем бумагу скатыванием. Внимательно просматриваем качество дорожек (пока они только обозначены тонером). Если между «пятачками» остались тонкие линии, то их необходимо удалить (например, с помощью тонкой отвертки или просто острого предмета). Если где-нибудь дорожка частично не перевелась, ее можно дорисовать цапонлаком.

Теперь переходим к травлению: для этого берем некоторую неметаллическую емкость (лишь бы плата в нее помещалась), в которую наливаем хлорное железо (лучше еще каких-нибудь железных гвоздиков ненужных накидать) и опускаем плату. Ждем, пока стравится все лишнее, после чего моем плату в воде, мелкой наждачной бумагой удаляем тонер. Затем сверлим все необходимые отверстия в текстолите. Еще раз внимательно все проверяем – желательно «прозвонить» дорожки и «пятачки» каким-нибудь тестером.

Теперь самое интересное – пайка. Я не применяю эпитет «сложное», но дело это – достаточно ответственное. Единственная реальная сложность – припаивание шлейфа (здесь без тисков не обойтись). Один конец шлейфа припаивается целиком (к плате дисплея), а другой (к основной плате) разделяется в соответствии со схемой по назначению линий и тоже припаивается. Для шлейфа я сделал дополнительные прорези в плате – это для того, чтобы он не оторвался, если нечаянно за него дернуть.

Теперь, как обещал, об smd: на один «пятачок» наносим немного припоя, затем прикладываем smd-элемент (удобнее пинцетом), придавливаем его отверткой, аккуратно паяльником расплавляем олово под ним. Теперь smd-элемент припаян с одной стороны. Другую припаять особого труда не составит, так как одна сторона уже зафиксирована. Транзисторы КТ815 должны располагаться так, чтобы металлическая часть была повернута не к плате, а наоборот, к охлаждению. На эти транзисторы после завершения пайки это самое охлаждение и крепится. Я взял радиатор от процессора Pentium 133 MMX, отрезал от него половинку и мешающий уголок, просверлил в двух местах, нарезал резьбу и прикрутил через плату сразу на все четыре транзистора. Если резьбу нарезать нечем, то свободно может подойти и просто каленый болтик, т.к. радиатор все равно из алюминия. Можно несколько раз закрутить/выкрутить болтик, предварительно смазав его маслом. При окончательной установке охлаждения не помешает и термопаста.

На заметку:

Внимательно просмотри, не соприкасается ли радиатор с чем-нибудь, кроме транзисторов, ведь он замкнут на землю!

На заметку:

Старайся при пайке сильно не перегревать элементы – и это касается не только smd!

С припаиванием остальных элементов вопросов возникнуть не должно. Теперь очень тщательно удаляем остатки флюса, по возможности тестером проверяем припаянные резисторы, диоды и т.д. И только после всех проверок можно вставлять кристалл в кроватку. С ним надо быть очень осторожным – «убить» его просто статикой от рук нет никаких проблем! Если внимательно посмотреть на фотографию главной платы, то на ней не будет стабилитрона, я его вообще-то и не предусматривал. Но материнская плата, как оказалось, подает на светодиод индикации загрузки винчестера напряжение не 0-3 В, а 2-5 В. В связи с этим и появился стабилитрон. Но печатные платы уже исправлены и предусматривают данную доработку. Что касается «кнопок» на дисплее, они делались так: я взял маленькие гвоздики, зажал их в патрон дрели и прошлифовал сначала напильником, а затем мелкой наждачной бумагой. На этом этапе красивые гвоздики можно не припаивать, так как все равно сначала надо протестировать работоспособность всей системы. Поэтому проще припаять кусочки скрепок. Вроде все готово – можно испытывать? Нет, еще пока рано. Теперь переходим к прошиванию «Меги».





Прошивка кристалла

Весь проект написан в Algorithm Builder 5.15. Algorithm Builder – графический ассемблер, наиболее удобная, на мой взгляд, среда для разработки программ под AVR. Тебе всего лишь требуется ее бесплатно скачать, ну и сделать очень простой программатор. Схема программатора находится в описании на Algorithm Builder. Запусти программу и нажми , после чего откроется manual. На странице 35 и представлена схема. Программатор я делал вообще без платы, просто по схеме спаял все в корпусе разъема для COM-порта.


Теперь открываем проект реобаса (Reobus 8535.alp). Ты можешь делать с ним все, что душе угодно (правда, не факт, что после этого он будет работать:)), но для начала советую проверить работоспособность спаянных плат. Подключаем программатор к COM-порту и к главной плате реобаса (расположение линий для программирования есть на схеме). Реобас питается от того же блока питания, что и системный блок, поэтому подключать от программатора к реобасу сигнальные 0 В просто нет смысла. Нажимаем «Программа» – > «Запуск с кристаллом».

Если ты нажмешь на счетчик, то Algorithm Builder обратится к кристаллу и покажет количество его перепрограммирований, а если что-то не так (нет связи между компьютером и кристаллом) – выдаст сообщение: «Кристалл недоступен». Если такое сообщение появилось, а у тебя все правильно подключено и питание на реобас подано, то заходим в «Опции» – > «Опции среды» – > «Порт». Галочка «Через адаптер» не (!) должна быть установлена (она устанавливается для программирования через активный программатор). Пробуем изменять номер порта, и если даже это не помогает, то ищем и удаляем в диспетчере устройств конфликтные устройства для COM-порта (у меня это оказался ИК-порт). Приступаем к прошивке кристалла: «Программа» – > «Запуск с кристаллом».

Из операций выставляем:

  1. Проверка типа кристалла.
  2. Очистка кристалла.
  3. Запись в память программы.
  4. Запись EEPROM.
  5. Запись fuse битов.

Уверенно жмем «Старт». Это все. Теперь кристалл при подаче питания начинает выполнять записанную программу.


На заметку:

Устанавливать запись fuse битов вообще-то не обязательно, так как необходимая частота для этого проекта – 1 МГц, а Mega8535, как и многие другие кристаллы Atmel, поставляется именно с такой установленной частотой внутреннего резонатора. Но если на твоем кристалле fuse биты уже записывались, то лучше их перезаписать.

На заметку:

Внимание! Если ты захочешь самостоятельно изменить установки fuse битов или блокирующих битов, будь осторожен – это может закончиться проблемами с дальнейшим перепрограммированием кристалла и его чтением!

Тестирование

Прежде чем начать тестирование, надо разобраться, как же управляется реобас. Предлагаю подключить к нему какой-нибудь вентилятор (я для удобства сделал к каждому вентилятору свой кабель-удлинитель). Те «кнопки», которые находятся внизу под индикаторами, выполняют функцию селектора каналов. Если «нажать» на одну из них, то на соответствующем индикаторе загорится точка. Пока точка горит, а горит она примерно 6 секунд после «нажатия» одной из «кнопок», правой и левой верхними «кнопками» можно менять скорость вентилятора на данном канале. Центральная верхняя «кнопка» сохраняет текущее состояние всех четырех каналов в память микроконтроллера. А если никакая точка не горит, то правая и левая верхние «кнопки» управляют переключением режимов. Градация скорости вращения идет от L (вентилятор остановлен) до H (максимальные обороты), с промежуточными положениями от 1 до 9. После включения питания первые секунды все каналы открыты на максимум (это дает вентиляторам возможность раскрутиться), после этого из памяти грузится первый режим. При переходе скорости с L на 1 для этой же цели на протяжении двух секунд канал работает на максимуме, и лишь потом переходит на 1. За счет чего же изменяется скорость вращения вентиляторов? Конечно же, реобас управляет каналами широтно-импульсной модуляцией, то есть на каком-то определенном промежутке времени лишь часть этого времени присутствует положительный сигнал. Я много раз слышал о том, что ШИМ создает такой свист, который даже перекрывает шум самих вентиляторов. Это далеко не так. Нет, определенный шум возникает, но он тише шума вентиляторов и на их фоне практически не слышен. А вообще, если ты ярый ШИМоненавистник, то можно параллельно транзисторам поставить резисторы, тогда шум должен исчезнуть (правда, для каждого вентилятора нужно подбирать свой резистор). Проводок индикатора загрузки винчестера (это который припаивается на главную плату рядом со стабилитроном) присоединяется в цепь светодиода на передней панели корпуса и материнской платы. Программа делает десять выборок, делит общий результат на два и выводит его на индикатор загрузки винчестера. Но минимальное выводимое значение – одно деление. Я пробовал в качестве минимального значения вообще ничего не выводить, но это было не очень удобно для восприятия и сильно раздражало.


Схема подключения. Ну что, все работает? Переходим дальше.

Внешний вид

Это завершающий этап. От него и зависит, насколько эффектно будет выглядеть весь проект. Для платы дисплея надо сделать лицевую панель – я смастерил ее из обычной пятидюймовой заглушки. Распечатал на принтере печатную плату дисплея (уже на обычной бумаге) и приклеил ее к заглушке. С запасом обрисовал точки под отверстия для индикаторов и пошел на балкон сверлить тонким сверлом отверстия по намеченным линиям. Также просверлил отверстия под кнопки (их диаметр зависит от толщины шлифованных гвоздиков). Затем аккуратно выломал окошки под индикаторы и обработал их напильником. Особой красоты и идеальности окошек добиваться не стоит, самое главное – проверить, проходят ли в них индикаторы. После следующего действия обитатели квартиры со мной достаточно долго не разговаривали. Речь, конечно же, о покраске:).






На заметку:

Совет: не стоит красить на балконе – как бы ты ни старался, все равно в квартире появится запах краски. Есть смысл уйти красить на улицу.

Нужен баллончик черной краски (можно самой дешевой) и что-нибудь для обезжиривания. На обезжиренную заглушку в несколько слоев наносим краску, даем немного подсохнуть и несем все обратно домой (но лучше пока еще «ароматную» заглушку отнести на тот же балкон).

Теперь понадобится тонировочная пленка. Ее можно добыть на автомобильном рынке. У меня была в гараже (вот где красить надо было) – черная 50%. Я вырезал кусочек немного больше заглушки и пошел в ванную. Полил заглушку водой (чтобы не было воздушных пузырей) и очень осторожно приложил пленку. Затем, двигаясь все время в одном направлении, разглаживанием вытеснил воду.

Пора вспоминать о гвоздиках-кнопках. Выпаиваем то, что было припаяно в качестве кнопок. Вставляем дисплей в заглушку и скрепляем обе части припаиванием гвоздиков! Главное в этом деле – не поцарапать об стол тонированную заглушку.

Платы можно покрыть цапонлаком. Далее следует установка устройства на место работы – в системный блок. Делать полноценный закрытый корпус для основной платы реобаса я не стал – это лишние проблемы при подключении/отключении вентиляторов. Я хотел через изолирующую подложку прикрепить плату к боковой стенке корзины 5.25, но уперся в результат своей скупости: взял слишком короткий шлейф (менее 20 см) для соединения плат между собой. Пришлось проложить изолирующую подложку просто на низ корзины 5.25 и здесь же закрепить плату. Изоляция сделана просто из коврика для мышки.

Теперь точно все. Можно наслаждаться тишиной… Но у меня было не все так просто, так как перед окончательной установкой реобаса внутрь системника я еще какое-то время продолжал испытывать и дорабатывать его. Недели две у меня реобас просто висел в воздухе между открученной передней панелью корпуса и, собственно, самим корпусом. Все это время к нему был подключен программатор. Испытания он достойно выдержал. Я больше всего опасался за перегрев транзисторов, но этого не произошло. Да, при большой нагрузке радиатор охлаждения транзисторов нагревается, но в разумных пределах (ему ведь надо иметь какую-то разность температур с воздухом в комнате).

Какой общий итог проделанной работы?

Во-первых, стало намного тише. Теперь, когда я сажусь за компьютер, меня больше не раздражает шум вентиляторов (зато я слышу грохот винчестера:)). Если мне надо задействовать все ресурсы на максимум (что вызывает резкое увеличение выделения тепла), для перехода к эффективному охлаждению я могу просто переключить режим на реобасе. А во-вторых, я самостоятельно сделал полноценную цифровую железку, чего и тебе желаю!



6 лучших реобасов для вашего десктопа | Введение

Если вы любите всё контролировать, держать все параметры системы под наблюдением и выжимать из компьютера максимум возможностей, то вы наверняка знаете, что такое реобас или, правильнее, контроллер вентиляторов. Простейший реобас представляет собой пульт управления, вставляемый в 5,25- или 3,5-дюймовый отсек на передней панели компьютера, который позволяет регулировать скорость вращения подключённых к нему вентиляторов с помощью потенциометров.

Такие модели существуют, но большинство современных реобасов представляют собой довольно сложные устройства с большими дисплеями, на которые выводятся данные о скорости вращения вентиляторов, температурных датчиков, уровне шума в корпусе и даже напряжении и частотах работы процессора и памяти. Нередко на такие контроллеры также устанавливаются дополнительные порты USB и аудиоразъёмы.

В этом обзоре мы поговорим о критериях выбора модели, которая больше всего подходит именно вам, а также обсудим достоинства и недостатки шести конкретных реобасов, которые можно приобрести в магазинах сегодня.

6 лучших реобасов для вашего десктопа | Основные требования

Прежде всего, определимся с тем, для чего нам нужен реобас и зачем нам знать о температуре и скорости вращения вентиляторов, ведь предполагается, что все эти регулировки система осуществляет автоматически. Представим себе, что компьютер с определённого момента стал работать слишком шумно, а кулеры стали вращаться на высоких оборотах. Разумеется, сидеть за такой машиной не слишком комфортно, поэтому нужно выяснить причину такого поведения, чтобы затем её устранить.

Во-первых, шум вентилятора может быть вызван его загрязнением - прежде всего пылью. А грязный кулер становится неэффективным, что приводит к работе процессора, видеокарты и других компонентах на повышенных температурах, а это, в свою очередь, негативно влияет на производительность.

Во-вторых, если вентилятор постоянно работает на повышенных оборотах, это может быть просто недостаточно эффективная модель для охлаждения конкретного компонента, и её стоит заменить на более мощную.

И чтобы узнать всё это, можно установить фирменные программы, поставляющиеся с материнской платой, заглянуть в BIOS, либо бросить быстрый взгляд на переднюю панель ПК - какой способ удобнее? Кроме того, реобас позволяет оперативно отрегулировать скорость вращения особенно шумных вентиляторов, в том числе, заставить их вращаться на повышенных оборотах лишь после перехода ключевой температурной точки, во всех же прочих случаях они будут почти не слышны.

Хороший реобас прежде всего выглядит как качественно сделанная вещь: с ярким дисплеем, видным с любой точки, с надёжными кнопками и потенциометрами, с 3- или 4-пиновыми разъёмами. У многих современных моделей управление осуществляется через сенсорный дисплей.

На рынке до сих пор присутствуют простые модели с 2-пиновыми разъёмами, но большинство оснащается 3- и 4-контактными разъёмами, позволяющими регулировать скорость вращения как по напряжению, так и по ШИМ (широтно-импульсной модуляции при постоянном напряжении). У моделей с 3-контактными разъёмами третий контакт служит для передачи информации о скорости вращения вентилятора и других служебных данных. Разумеется, мы рекомендуем модели именно с 4-пиновыми разъёмами как наиболее гибкие в подключении, хотя в продаже есть и очень достойные реобасы только с 3-контактными разъёмами.

В комплект поставки хороших реостатов обычно входят также температурные датчики, хотя ничто не мешает воспользоваться и датчиками от материнской платы или вообще приобретёнными отдельно.

На следующей странице мы познакомим вас с шестью моделями лучших на наш взгляд реобасов для настольных компьютеров.

6 лучших реобасов для вашего десктопа | NZXT Sentry 3

  • Цена в России: 4100 рублей

NZXT Sentry 3 - это, пожалуй, лучший реобас для вашего ПК, который сегодня можно купить за деньги. Он имеет практически всё для управления системой охлаждения даже самого навороченного компьютера. Судите сами: вы можете регулировать скорость трёх высокопроизводительных вентиляторов на каждом из 5 каналов, у него шикарный 5,4-дюймовый сенсорный ЖК-дисплей, а корпус выполнен из качественного металла и пластика. Предусмотрено подключение как по 3-пиновым, так и по 4-контактным разъёмам, т.е. управление как по напряжению, так и по ШИМ. Наконец, у Sentry 3 есть штатная защита от повышенного напряжения и замыкания - что ещё нужно требовательному владельцу?

ДОСТОИНСТВА:

  • Качественный корпус из металла и пластика
  • Управление 3 вентиляторами на каждом из 5 каналов
  • Выбор между 3-пиновым и 4-пиновым подключением
  • Яркий сенсорный дисплей
  • Защита от превышения напряжения и замыкания

НЕДОСТАТКИ:

  • В обилии проводов сложно разобраться
  • Высокая цена

6 лучших реобасов для вашего десктопа | Thermaltake Commander F6

  • Цена в России: 4100 рублей

Ещё один реобас с шикарным сенсорным дисплеем - это Thermaltake Commander F6. В отличие от NZXT Sentry 3, у него довольно спорный технократичный дизайн, который, однако, чрезвычайно порадует тех, кому нравится классическая радиоаппаратура. На RGB-дисплей выводятся данные о температуре и скорости вращения шести вентиляторов, а регулировка осуществляется при помощи физических потенциометров. В довершение ко всему, к нему можно подключить до двух светодиодных лент. Поддерживаются только 3-пиновые разъёмы, так что немного дороговато для такой функциональности.

ДОСТОИНСТВА:

  • Технократичный дизайн
  • RGB-дисплей
  • Возможность подключения светодиодных лент

НЕДОСТАТКИ:

  • Только 3-пиновые разъёмы
  • Дороговато для такой функциональности

6 лучших реобасов для вашего десктопа | Thermaltake Commander FT Touch Screen 5

  • Цена в России: 2700 рублей

Thermaltake Commander FT Touch Screen 5 -более доступная модель и с более традиционным по сегодняшним меркам дизайном поддерживает подключение пяти вентиляторов через 3-пиновые разъёмы с мощностью до 10 Вт на каждый канал. Поддерживается также программное управление по ШИМ через единственный 4-пиновый разъём для материнской платы. Все регулировки осуществляются через превосходный сенсорный 5,5-дюймовый дисплей. Вишенка на торте - штатные "производительный" и "тихий" режимы, обеспечивающие как максимальные обороты, так и работу с минимальным уровнем шума.

ДОСТОИНСТВА:

  • Превосходный 5,5-дюймовый сенсорный экран
  • 3- и 4-пиновые разъёмы
  • Режимы "производительный" и "тихий"

НЕДОСТАТКИ:

  • Мощность до 10 Вт на канал
  • Только программные регулировки по ШИМ

6 лучших реобасов для вашего десктопа | Aerocool Controller Touch 2000

  • Цена в России: 3500 рублей

Если на лицевой панели десктопа есть место для "двухэтажного" устройства, то есть смысл присмотреться к Aerocool Controller Touch 2000 с экраном по размеру, как у вашего смартфона. Впрочем, поскольку перед нами недорогая модель, возможности дисплея и самого устройства довольно ограничены: вы можете управлять скоростью вращения 4 вентиляторов, подключённых по 3-пиновым портами, в комплекте поставки есть дополнительные термодатчики, термолента и удлинители, а на лицевой панели нашлось место для двух портов USB 2.0, уже весьма экзотического порта eSATA, а также входа для микрофона и выхода на наушники.

ДОСТОИНСТВА:

  • Большой дисплей
  • Хорошая комплектация
  • Дополнительные порты

НЕДОСТАТКИ:

  • Отсутствие 4-пиновых портов
  • По формату подойдёт не для всех корпусов

6 лучших реобасов для вашего десктопа | Kingwin Four Channel Turn Knob Controller FPX-001

  • Цена в России: 1000 рублей

Kingwin Four Channel Turn Knob Controller FPX-001 - наглядный пример того, как шикарно может выглядеть дешёвая модель с минимумом функций. В отличие от большинства реобасов, она монтируется в 3,5-дюймовый отсек и на неё установлены четыре физических потенциометра для управления вентиляторами по напряжению. 4-пиновые разъёмы отсутствуют, как и дисплей, поэтому о температуре придётся узнавать программными средствами. И да, у него шикарная светодиодная подсветка регуляторов.

ДОСТОИНСТВА:

  • Рекордно низкая цена
  • Устанавливается в 3,5-дюймовый отсек
  • Эффектная подсветка

НЕДОСТАТКИ:

  • Нет дисплея с информацией о температуре
  • Нет 4-пиновых разъёмов

6 лучших реобасов для вашего десктопа | Lamptron FC2

  • Цена в России: 2900 рублей

И в заключение Lamptron FC2 - весьма любопытная полноразмерная модель с шестью физическими регуляторами на лицевой панели, причём яркость подсветки вокруг них увеличивается одновременно со скоростью вращения шести вентиляторов, подключающихся через 3-пиновые порты. Поддерживается подача до 45 Вт мощности на каждый канал - параметр, доступный далеко не всякому реобасу. К сожалению, данных о температуре мы не узнаем, поскольку у этой модели отсутствует дисплей, а управление по ШИМ может осуществляться только программными средствами

ДОСТОИНСТВА:

  • Привлекательный дизайн
  • Ручные органы управления с изменением яркости подсветки
  • 45 Вт мощности на каждый канал

НЕДОСТАТКИ:

  • Отсутствие дисплея
  • Лишь программное управление по ШИМ

Реобас (контроллер) — это регулятор оборотов вентиляторов для компьютера. Некоторые корпуса уже имеют встроенный реобас, например Zalman Z9 Plus с регулятором рассчитанным на подключение двух корпусных вентиляторов. Как правило, реобас приходится покупать отдельно и необходимо определиться с выбором подходящего девайса. Первоначально следует прикинуть, сколько вентилятором будет подключено к регулятору. В данной статье рассматриваются контроллеры предназначенные для управления от 4 до 6 вентиляторами. Все рассматриваемые реобасы можно купить на сайте aliexpress.com.

Alseye a-100l (6 вентиляторов)

Контроллер для шести вентиляторов с жидкокристаллическим дисплеем.

Alseye a-100l (r) с красно-белым дисплеем (для черного корпуса)

Alseye a-100l (b) с сине-белым дисплеем (для черного корпуса)

Обзор реобаса Alseye a-100l смотрите в видео.

AeroCool Touch-2100 (5 вентиляторов)

Данный реобас дополнительно имеет два порта USB 3.0 и разъемы для подключения наушников и микрофона.

Обзор устройства смотрите в видео.

NI5L (5 вентиляторов)

Данный реобас оснащен цветным жидкокристаллическим дисплеем и рассчитан на подключение пяти вентиляторов суммарной мощностью до 10 Вт. Предназначен для установки в пятидюймовый отсек.

Начинка NI5L

STW 5043 (4 вентилятора)

Контроллер STW 5043 интересен тем, что на экране одновременно отображаются обороты всех четырех вентиляторов.