Связь между импульсной и передаточной характеристики. Связь между импульсной характеристикой и передаточной функцией цепи

В радиотехнических цепях сопротивления нагрузки обычно велики и не влияют на четырехполюсник либо сопротивление нагрузки стандартно и уже учтено в схеме четырехполюсника.

Тогда четырехполюсник может характеризоваться одним параметром, устанавливающим связь между выходным и входным напряжениями при пренебрежении током нагрузок. При синусоидальном сигнале такой характеристикой является передаточная функция цепи (коэффициент передачи), равная отношению комплексной амплитуды сигнала на выходе к комплексной амплитуде сигнала на входе: , где – фазово-частотная характеристика, - амплитудно-частотная характеристика цепи.

Передаточная функция линейной цепи вследствие справедливости принципа суперпозиции позволяет анализировать прохождение сложного сигнала через цепь, разлагая его на синусоидальные составляющие. Другой возможностью использования принципа суперпозиции является разложение сигнала на сумму сдвинутых во времени d-функций d(t). Реакцией цепи на действие сигнала в виде d-функций является импульсная характеристика g(t), т. е. это сигнал на выходе, если сигнал на входе есть d-функция. при . При этом g(t) = 0 при t < 0 – выходной сигнал не может возникнуть ранее момента появления входного сигнала.

Экспериментально импульсную характеристику можно определить подавая на вход короткий импульс площадью единица и уменьшая длительность импульса при сохранении площади до тех пор, пока сигнал на выходе перестанет изменяться. Это и будет импульсная характеристика цепи.

Так как независимый параметр, связывающий напряжения на выходе и входе цепи, может быть только один, то между импульсной характеристикой и передаточной функцией имеется связь.

Пусть на вход подается сигнал в виде d-функции со спектральной плотностью . На выходе цепи будет импульсная характеристика , при этом все спектральные составляющие входного сигнала умножаются на передаточную функцию соответствующей частоты: . Таким образом, импульсная характеристика цепи и передаточная функция связаны преобразованием Фурье:

Иногда вводят так называемую переходную характеристику цепи h(t), являющуюся откликом на сигнал, называемый единичным скачком:

I(t) = 1 при t ³ 0

I(t) = 0 при t < 0

при этом , h(t) = 0 при t < 0.

Ввиду связи между передаточной функцией и импульсной характеристикой, на передаточную функцию накладываются ограничения:

· Условие, что g(t) должна быть вещественной, приводит к требованию, что , т. е. модуль передаточной функции (АЧХ) есть четная, а фазовый угол (ФЧХ) – нечетная функция частоты.

· Условие, что при t < 0, g(t) = 0 приводит к критерию Пэли-Винера: .

Например, рассмотрим идеальный фильтр низких частот ФНЧ с передаточной функцией.

Здесь интеграл в критерии Пэли-Винера расходится, как и для любой , обращающейся в нуль на конечном отрезке оси частот.

Импульсная характеристика такого фильтра есть

g(t) не равна нулю при t < 0, тем сильнее, чем меньше время задержки , которое определяет ее угол наклона . Это указывает на нереализуемость идеального ФНЧ, имеющего близкое приближение при достаточно больших .

По определению передаточная функция (ПФ) представляет собой оператор, равный отношению изображений выходной и входной координат при нулевых начальных условиях:

W(p) = R(p) / Q(p)

Назначение сервиса . Объект управления (ОУ) описывается линейным дифференциальным уравнением n порядка. Для колебательного звена n -го порядка определяются:

  1. передаточная функция;
  2. частотные характеристики (амплитудная (АЧХ), фазовая (ФЧХ), логарифмическая (ЛЧХ));
  3. переходная и импульсная переходная (весовая) функции;
  4. графики переходных и частотных характеристик.

Для нахождения передаточной функции онлайн необходимо выбрать тип звена и ввести степень звена.

Пример . Объект управления (ОУ) описывается линейным дифференциальным уравнением третьего порядка:
(2)
1) Передаточная функция ОУ в общем случае может быть представлена в виде отношения
W(iω) = A(ω)e iφ(ω) = U(ω) + iV(ω),
где R(p)и Q(p) – изображения по Лапласу выходной и входной переменных ОУ, соответствующих левой и правой частям уравнения 1. Отсюда, передаточная функция будет иметь вид:
(3)
или
. (4)

2) Определим частотные характеристики ОУ. Известно, что частотная передаточная функция W(ω) может быть представлена в виде:
, (5)
где A(ω) – амплитудная частотная характеристика (АЧХ);
φ(ω) – фазовая частотная характеристика (ФЧХ);
U(ω) – вещественная частотная характеристика (ВЧХ);
V(ω) – мнимая частотная характеристика;
Подставим iω в выражение (3) вместо p . Получим:
(6)
На основе выражений (5) и (6) выделим отдельно амплитудную и фазовую частотные характеристики и подставим численные значения коэффициентов. Исходя из того, что:
A(ω) = |W(iω)|
φ(ω) = arg(W(iω))
(см. комплексные числа). Окончательно получим: (7)

3) Определим логарифмическую амплитудную частотную характеристику (ЛАЧХ).
Известно, что ЛАЧХ определяется из соотношения:
L(ω) = 20lg(A(ω)) (8)
Данная характеристика имеет размерность дБ (децибелы) и показывает изменение отношения мощностей выходной величины к входной. Для удобства ЛАЧХ строят в логарифмическом масштабе.
Фазовая частотная характеристика, построенная в логарифмическом масштабе, будет называться логарифмической фазовой частотной характеристикой (ЛФЧХ).
Примеры построения ЛАЧХ и ЛФЧХ для наших исходных данных приведены на рисунке 1.
Определим импульсную переходную (весовую) функцию. Весовая функция w(t) представляет собой реакцию системы на единичную импульсную функцию, поданную на ее вход. Весовая функция связана с передаточной функцией преобразованием Лапласа.
. (9)
Следовательно, весовую функцию можно найти, применив обратное преобразование Лапласа к передаточной функции.
w(t) = L -1 (10)

Академия России

Кафедра Физики

Лекция

Переходные и импульсные характеристики электрических цепей

Орел 2009

Учебные и воспитательные цели:

Разъяснить слушателям сущность переходной и импульсной характеристик электрических цепей, показать связь между характеристиками, обратить внимание на применение рассматриваемых характеристик для анализа и синтеза ЭЦ, нацелить на качественную подготовку к практическому занятию.

Распределение времени лекции

Вступительная часть……………………………………………………5 мин.

Учебные вопросы:

1. Переходные характеристики электрических цепей………………15 мин.

2. Интегралы Дюамеля………………………………………………...25 мин.

3. Импульсные характеристики электрических цепей. Связь между характеристиками………………………………………….………...25 мин.

4. Интегралы свертки………………………………………………….15 мин.

Заключение……………………………………………………………5 мин.


1. Переходные характеристики электрических цепей

Переходная характеристика цепи (как и импульсная) относится к временным характеристикам цепи, т. е. выражает некоторый переходный процесс при заранее установленных воздействиях и начальных условиях.

Для сравнения электрических цепей по их реакции к этим воздействиям, необходимо цепи поставить в одинаковые условия. Наиболее простыми и удобными являются нулевые начальные условия.

Переходной характеристикой цепи называют отношение реакции цепи на ступенчатое воздействие к величине этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на ступенчатое воздействие;

– величина ступенчатого воздействия [В] или [А].

Так как и делится на величину воздействия (это вещественное число), то фактически – реакция цепи на единичное ступенчатое воздействие.

Если переходная характеристика цепи известна (или может быть вычислена), то из формулы можно найти реакцию этой цепи на ступенчатое воздействие при нулевых НУ

.

Установим связь между операторной передаточной функцией цепи, которая часто известна (или может быть найдена), и переходной характеристикой этой цепи. Для этого используем введенное понятие операторной передаточной функции:

.

Отношение преобразованной по Лапласу реакции цепи к величине воздействия представляет собой операторную переходную характеристику цепи:

Следовательно .

Отсюда находится операторная переходная характеристика цепи по операторной передаточной функции.

Для определения переходной характеристики цепи необходимо применить обратное преобразование Лапласа:

воспользовавшись таблицей соответствий или (предварительно) теоремой разложения.

Пример: определить переходную характеристику для реакции напряжение на емкости в последовательной -цепи (рис. 1):

Здесь реакция на ступенчатое воздействие величиной :

,

откуда переходная характеристика:

.

Переходные характеристики наиболее часто встречающихся цепей найдены и даны в справочной литературе.


2. Интегралы Дюамеля

Переходную характеристику часто используют для нахождения реакции цепи на сложное воздействие. Установим эти соотношения.

Условимся, что воздействие является непрерывной функцией и подводится к цепи в момент времени , а начальные условия – нулевые.

Заданное воздействие можно представить как сумму ступенчатого воздействия приложенного к цепи в момент и бесконечно большого числа бесконечно малых ступенчатых воздействий, непрерывно следующих друг за другом. Одно из таких элементарных воздействий, соответствующих моменту приложения показано на рисунке 2.

Найдем значение реакции цепи в некоторый момент времени .

Ступенчатое воздействие с перепадом к моменту времени обуславливает реакцию, равную произведению перепада на значение переходной характеристики цепи при , т. е. равную:

Бесконечно малое же ступенчатое воздействие с перепадом , обуславливает бесконечно малую реакцию , где есть время, прошедшее от момента приложения воздействия до момента наблюдения. Так как по условию функция непрерывна, то:

В соответствии с принципом наложения реакции будет равна сумме реакций, обусловленных совокупностью воздействий, предшествующих моменту наблюдения , т. е.

.

Обычно в последней формуле заменяют просто на , поскольку найденная формула верна при любых значениях времени :

.

Или, после несложных преобразований:

.

Любое из этих соотношений и решает задачу вычисления реакции линейной электрической цепи на заданное непрерывное воздействие по известной переходной характеристики цепи . Эти соотношения называют интегралами Дюамеля.

3. Импульсные характеристики электрических цепей

Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на импульсное воздействие;

– площадь импульса воздействия.

По известной импульсной характеристике цепи можно найти реакцию цепи на заданное воздействие: .

В качестве функции воздействия часто используется единичное импульсное воздействие называемое также дельта-функцией или функцией Дирака.

Дельта-функция – это функция всюду равная нулю, кроме , а площадь ее равна единице ():

.

К понятию дельта-функция можно прийти, рассматривая предел прямоугольного импульса высотой и длительностью , когда (рис. 3):

Установим связь между передаточной функцией цепи и ее импульсной характеристикой, для чего используем операторный метод.

По определению:

.

Если воздействие (оригинал) рассматривать для наиболее общего случая в виде произведения площади импульса на дельта-функцию, т. е. в виде , то изображение этого воздействия согласно таблицы соответствий имеет вид:

.

Тогда с другой стороны, отношение преобразованной по Лапласу реакции цепи к величине площади импульса воздействия, представляет собой операторную импульсную характеристику цепи:

.

Следовательно, .

Для нахождения импульсной характеристики цепи необходимо применить обратное преобразование Лапласа:

Т. е. фактически .

Обобщая формулы, получим связь между операторной передаточной функцией цепи и операторными переходной и импульсной характеристиками цепи:

Таким образом, зная одну из характеристик цепи, можно определить любые другие.

Произведем тождественное преобразование равенства, прибавив к средней части .

Тогда будем иметь .

Поскольку представляет собой изображение производной переходной характеристики, то исходное равенство можно переписать в виде:

Переходя в область оригиналов, получаем формулу, позволяющую определить импульсную характеристику цепи по известной ее переходной характеристике:

Если , то .

Обратное соотношение между указанными характеристиками имеет вид:

.

По передаточной функции легко установить наличие в составе функции слагаемого .

Если степени числителя и знаменателя одинаковы, то рассматриваемое слагаемое будет присутствовать. Если же функция является правильной дробью, то этого слагаемого не будет.

Пример: определить импульсные характеристики для напряжений и в последовательной -цепи, показанной на рисунке 4.

Определим :

По таблице соответствий перейдем к оригиналу:

.

График этой функции показан на рисунке 5.

Рис. 5

Передаточная функция :

Согласно таблице соответствий имеем:

.

График полученной функции показан на рисунке 6.

Укажем, что такие же выражения можно было получить с помощью соотношений, устанавливающих связь между и .

Импульсная характеристика по физическому смыслу отражает собой процесс свободных колебаний и по этой причине можно утверждать, что в реальных цепях всегда должно выполняться условие:

4. Интегралы свертки (наложения)

Рассмотрим порядок определения реакции линейной электрической цепи на сложное воздействие, если известна импульсная характеристика этой цепи . Будем считать, что воздействие представляет собой кусочно-непрерывную функцию , показанную на рисунке 7.

Пусть требуется найти значение реакции в некоторый момент времени . Решая эту задачу, представим воздействие в виде суммы прямоугольных импульсов бесконечно малой длительности, один из которых, соответствующий моменту времени , показан на рисунке 7. Этот импульс характеризуется длительностью и высотой .

Из ранее рассмотренного материала известно, что реакцию цепи на короткий импульс можно считать равной произведению импульсной характеристики цепи на площадь импульсного воздействия. Следовательно, бесконечно малая составляющая реакции, обусловленная этим импульсным воздействием, в момент времени будет равной:

поскольку площадь импульса равна , а от момента его приложения до момента наблюдения проходит время .

Используя принцип наложения, полную реакцию цепи можно определить как сумму бесконечно большого числа бесконечно малых составляющих , вызванных последовательностью бесконечно малых по площади импульсных воздействий, предшествующих моменту времени .

Таким образом:

.

Эта формула верна для любых значений , поэтому обычно переменную обозначают просто . Тогда:

.

Полученное соотношение называют интегралом свертки или интегралом наложения. Функцию , которая находится в результате вычисления интеграла свертки, называют сверткой и .

Можно найти другую форму интеграла свертки, если в полученном выражении для осуществить замену переменных:

.

Пример: найти напряжение на емкости последовательной -цепи (рис. 8), если на входе действует экспоненциальный импульс вида:

Воспользуемся интегралом свертки:

.

Выражение для было получено ранее.

Следовательно, , и .

Такой же результат можно получить, применив интеграл Дюамеля.

Литература:

Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986. (Учебник)

Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998. (Учебник);

Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974. (Учебник);

Попов В. П. Основы теории цепей – М.: Высшая школа, 2000.(Учебник)

Многолучевой канал связи, как любая линейная система, определяется однозначно своей ИХ во временной области и/или передаточной функцией в частотной области. ИХ канала, и его передаточная функция позволяют определить связь выходного и входного сигналов и их спектров соответственно. Многолучевой канал показан на рис. 2.4.

Рис. 2.4. Многолучевой канал

В многолучевом канале сигнал распространяется по многим путям, и n -ый путь (луч) характеризуется задержкой сигнала t n (t ) и комплексным коэффициентом передачи a n (t ). Если передается сигнал s (t ), то на входе приемника наблюдается сигнал x (t ), представляющий собой сумму сигналов, распространяющихся различными путями. Этот сигнал можно записать следующим образом:

, (2.3.1)

Подавляющее большинство систем связи применяют узкополосные сигналы, которые могут быть представлены в виде (1.1.2). Подставив (1.1.2) в (2.3.1), получим, что

Отсюда следует, что комплексная амплитуда принимаемого низкочастотного сигнала равна

Далее будем предполагать, что за время прохождения сигнала задержки t n (t ) и комплексные коэффициенты передачи a n (t ) для всех лучей остаются неизменными и равными t n и a n .

По определению ИХ линейной системы с фиксированными параметрами является откликом системы на входной d -импульс. Поэтому ИХ канала мы получим, если подадим на вход канала сигнал (1.1.2) с комплексной амплитудой равной . В результате будем иметь, что

Чтобы получить передаточную функцию канала , необходимо взять гармонический сигнал единичной амплитуды частоты f , т.е. подставить в (2.3.1) сигнал . Тогда получим, что

. (2.3.5)

В качестве примера рассмотрим свойства двулучевого канала. Предположим, что имеется прямой сигнал и сигнал, отраженный местным предметом. Прямой сигнал приходит без искажения и имеет задержку на время распространения от передатчика до приемника. Кроме того, его амплитуда уменьшается и зависит от расстояния между передатчиком и приемником. Эти изменения параметров сигнала не имеют принципиального значения для нашего рассмотрения. Поэтому начало отсчета времени совместим с моментом прихода прямого сигнала в приемную антенну, а амплитуду прямого сигнала нормируем так, чтобы она была равна единице. Фазу прямого сигнала примем равной нулю. В этом случае из (2.3.4) получаем, что канал можно характеризовать ИХ



где – комплексный коэффициент отражения сигнала от местного предмета, – разность фаз между первым и вторым сигналами из-за задержки t 2 второго сигнала относительно первого, а 2 – комплексная амплитуда второго сигнала по отношению к первому.

ИХ двулучевого канала изображена на рис. 2.5.

Рис. 2.5. Двулучевой канал: а) на вход приемника приходят прямой s 1 и отраженный s 2
сигналы; б) ИХ двулучевого канала

Заметим, что ИХ канала (2.3.6) не дает информации о направлении прихода второго сигнала. Обычно предполагается, что второй сигнал имеет меньшее значение амплитуды, т.е. .

Передаточную функцию канала найдем из (2.3.5). Получим, что

Коэффициент передачи канала по мощности определяется как квадрат модуля передаточной функции, т.е.

Пример этой функции приведен на рис. 2.6 для |a 2 |=0.8, t 2 =1, arga 2 =p/6. Видно, что коэффициент передачи канала по мощности имеет максимумы и минимумы, то есть гармонические сигналы с некоторыми частотами ослабляются, в то время как с другими частотами усиливаются. Минимумы наблюдаются для частот , где n =0, ±1,¼. Расстояние между минимумами на оси частот не зависит от фазы коэффициента отражения a 2 и равно . Средний коэффициент передачи по мощности равен 1+|a 2 | 2 и показан на рис. 2.6 штриховой линией, минимум равен (1-|a 2 |) 2 , а максимум - (1+|a 2 |) 2 . Если амплитуда прямого сигнала равна амплитуде задержанного сигнала, то может наблюдаться полное пропадание сигнала на входе приемника.

Рис. 2.6. Коэффициент передачи двулучевого канала по мощности

Изменение уровня принимаемого сигнала, вызванное интерференцией сигналов, проходящих в канале различными путями, принято называть замираниями принимаемого сигнала или федингами. Если полоса пропускания приемника , то все спектральные компоненты сигнала в пределах частотной полосы приемника будут испытывать дружные замирания. В этом случае принято говорить, что канал является плоским (flat channel). Если выполняется другое условие , то различные спектральные компоненты сигнала испытывают различные замирания. В этом случае говорят, что канал является частотно селективным (frequency selective channel).

Фаза отраженного сигнала в (2.3.7) может изменяться значительно даже при очень малых изменениях задержки t 2 этого сигнала. В самом деле, изменение фазы на 2p радиан происходит при изменении задержки t 2 на 1/f . Например, если несущая частота f c =900 МГц, то величина 1/f составляет всего 1,1 наносекунд, что соответствует изменению пути распространения сигнала на 33 см, то есть на длину волны. Таким образом, если разность хода между прямым и отраженным сигналами изменится всего на 16.5 см, разность фаз между ними изменится на 180 градусов. Этот пример показывает, что сигнал может испытывать глубокие и быстрые замирания даже при движении абонента со скоростью пешехода.