Бухгалтерские расчеты двоично десятичная система счисления. Представление чисел в двоичном коде

Двоично-десятичная система счисления получила большое распространение в современных компьютерах ввиду легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде записываются последовательно друг за другом.

Двоично-десятичная система не экономична с точки зрения реализации технического построения машины (примерно на 20 % увеличивается потребное оборудование), но очень удобна при подготовке задач и при программировании. В двоично-десятичной системе счисления основанием системы счисления является число десять, но каждая из 10 десятичных цифр (0, 1, ..., 9) изображается при помощи двоичных цифр, то есть кодируется двоичными цифрами. Для представления одной десятичной цифры используются четыре двоичных. Здесь имеется, конечно, избыточность, поскольку четыре двоичных цифры (или двоичная тетрада) могут изобразить не 10, а 16 чисел, но это уже издержки производства в угоду удобства программирования. Существует целый ряд двоично-кодированных десятичных систем представления чисел, отличающихся тем, что определенным сочетаниям нулей и единиц внутри одной тетрады поставлены в соответствие те или иные значения десятичных цифр 1 .

В наиболее часто используемой естественной двоично-кодированной десятичной системе счисления веса двоичных разрядов внутри тетрады естественны, то есть 8, 4, 2, 1 (табл. 3.1).

Таблица 3.1. Таблица двоичных кодов десятичных и шестнадцатеричных цифр

Цифра Код Цифра Код
A
B
C
D
E
F

Например, десятичное число 9703 в двоично-десятичной системе выглядит так: 1001011100000011.

18 вопрос. ос. Логические основы работы ЭВМ. Операции алгебры логики

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают & , дизъюнкцию - || , а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

19 вопрос. Основные правила алгебры логики

Обычная запись этих законов в формальной логике:

20 вопрос. Таблица истинности

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности , в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

21 Вопрос. Логические элементы. Их названия и обозначения на схема

Как же использовать полученные нами знания из области математической логики для конструирования электронных устройств? Нам известно, что О и 1 в логике не просто цифры, а обозначение состояний какого-то предмета нашего мира, условно называемых "ложь" и "истина". Таким предметом, имеющим два фиксированных состояния, может быть электрический ток. Устройства, фиксирующие два устойчивых состояния, называются бистабильными (например, выключатель, реле). Если вы помните, первые вычислительные машины были релейными. Позднее были созданы новые устройства управления электричеством - электронные схемы , состоящие из набора полупроводниковых элементов. Такие электронные схемы, которые преобразовывают сигналы только двух фиксированных напряжений электрического тока (бистабильные) , стали называть логическими элементами.

Логический элемент компьютера - это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и другие (называемые также вентилями ), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния - “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий - значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Примером смешанной системы счисления является двоично-десятичная система . В двоично-десятичной системе счисления для изображения каждой десятичной цифры отводится 4 двоичных разряда, поскольку максимальная десятичная цифра 9 кодируется как 1001 2 . Например,

925 10 = 1001 0010 0101 2-10 .

Здесь последовательные четверки (тетрады) двоичных разрядов изображают цифры 9, 2 и 5 десятичной записи соответственно.

Хотя в двоично-десятичной записи используются только цифры 0 и 1, эта запись отличается от двоичного изображения данного числа. Например, двоичный код 1001 0010 0101 соответствует десятичному числу 2341, а не 925.

В случае если P=Q l (l – целое положительное число), запись любого числа в смешанной системе счисления тождественно совпадает с изображением этого числа в системе счисления с основанием Q. Примерами такой смешанной системы счисления являются двоично-восьмеричная и двоично-шестнадцатеричная.

Например,

A2 16 = 1010 0010 2 = 1010 0010 2-16

ПРЕДСТАВЛЕНИЕ ОТРИЦАТЕЛЬНЫХ ЧИСЕЛ В ФОРМАТЕ С ФИКСИРОВАННОЙ ЗАПЯТОЙ (ТОЧКОЙ)

В компьютерах в целях упрощения выполнения арифметических операций применяются специальные двоичные коды для представления отрицательных чисел: обратный и дополнительный. При помощи этих кодов упрощается определение знака результата операции при алгебраическом сложении. Операция вычитания (или алгебраического сложения) сводится к арифметическому сложению операндов, облегчается выработка признаков переполнения разрядной сетки. В результате упрощаются устройства компьютера, выполняющих арифметические операции.

Известно, что одним из способов выполнения операции вычитания является замена знака вычитаемого на противоположный и прибавление его к уменьшаемому:

А - В = А + (- В)

Этим операцию арифметического вычитания заменяют операцией алгебраического сложения, которую можно выполнить при помощи двоичных сумматоров.

Для машинного представления отрицательных чисел используют коды прямой, дополнительный, обратный . Упрощенное определение этих кодов может быть дано следующим образом. Если число А в обычном двоичном коде - прямом двоичном коде, изобразить как

[A] пр = 0.an an-1 an-2.....a1 a0,

тогда число -А в этом же коде представляется как

[-A]пр = 1.an an-1 an-2.....a1 a0,

а в обратном (инверсном) коде это число будет иметь вид:

[-A]об = 1.an an-1 an-2.....a1 a0,

ai = 1, если ai = 0,

ai = 0, если ai = 1,

a i - цифра i -того разряда двоичного числа. Следовательно, при переходе от прямого кода к обратному все цифры разрядов матиссы числа инвертируются.

Тогда число -A в дополнительном коде изображается в виде

[-A]доп = [-A]об + 1

Таким образом, для получения дополнительного кода отрицательных чисел нужно сначала инвертировать цифровую часть исходного числа, в результате чего получается его обратный код, а затем добавить единицу в младший разряд цифровой части числа.

Дополнительный код некоторого числа получается его заменой на новое число, дополняющее его до числа, равного весу разряда, следующего за самым старшим разрядом разрядной сетки, используемой для представления мантиссы числа в формате с фиксированной запятой. Поэтому такой код числа называется дополнительным.

Представим, что мы имеем только два разряда для представления чисел в десятичной системе счисления. Тогда максимальное число, которое можно изобразить будет 99, а вес третьего несуществующего старшего разряда будет 10 2 , т.е. 100. В таком случае для числа 20 дополнительным будет число 80, которое дополняет 20 до 100 (100 - 20 = 80). Следовательно по определению вычитание

можно заменить на сложение:

Здесь старшая единица выходит за пределы выделенной разрядной сетки, в которой остается только число 30, т.е. результат вычитания из 50 числа 20.

А теперь рассмотрим похожий пример для чисел, представленных 4-х разрядным двоичным кодом. Найдем дополнительное число для 0010 2 = 210. Надо из 0000 вычесть 0010, получим 1110, которое и является дополнительным кодом 2. Разряд, изображенный в квадратных скобках на самом деле не существует. Но так как у нас 4-х разрядная сетка, то выполнить такое вычитание в принципе невозможно, а тем более мы стараемся избавиться от вычитания. Поэтому дополнительный код числа получают способом, описанным ранее, т.е. сначала получают обратный код числа, а затем прибавляют к нему 1. Проделав все это с нашим числом (2), нетрудно убедиться, что получится аналогичный ответ.

Подчеркнем, что дополнительный и обратный коды используются только для представления отрицательных двоичных чисел в форме с фиксированной запятой . Положительные числа в этих кодах не меняют своего изображения и представляются как в прямом коде.

Таким образом, цифровые разряды отрицательного числа в прямом коде остаются неизменными, а в знаковой части записывается единица.

Рассмотрим простые примеры.

Семерка в прямом коде представляется так:

пр = 0.0001112

Число -7 в прямом коде:

[-7]пр = 1.0001112,

а в обратном коде будет иметь вид

[-7]об = 1.1110002,

т.е. единицы заменяются нулями, а нули единицами. То же число в дополнительном коде будет:

[-7]доп = 1.1110012.

Рассмотрим еще раз как процедура вычитания, при помощи представления вычитаемого в дополнительном коде, сводится к процедуре сложения. Вычтем из 10 число 7: 10 - 7 = 3. Если оба операнда представлены в прямом коде, то процедура вычитания выполняется так:

-1.000111

А если вычитаемое, т.е. -7, представить в дополнительном коде, то процедура вычитания сводится к процедуре сложения:

+ 1.111001

1 0.000011 = 310.

В настоящее время в компьютерах для представления отрицательных чисел в формате с фиксированной запятой обычно используется дополнительный код.

Формой представления чисел в цифровых автоматах называется совокупность правил, позволяющих установить взаимное соответствие между записью числа и его количественным эквивалентом.

Машинное (автоматное) изображение числа это есть представление числа в разрядной сетке цифрового автомата . Условное обозначение машинного изображения числа, например, A будем представлять как [A] .

Из-за ограниченной длины машинных слов, множество чисел, которые можно представить в машине конечное. Сравнение различных форм представления чисел в компьютерах обычно производится на основе оценки диапазона и точности представления числа .

В повседневной практике наиболее распространенной является форма представления чисел в виде последовательности цифр, разделенной запятой на целую и дробную части. Числа, представленные в такой форме, называются числами с естественной запятой или числами в естественной форме . В естественной форме число записывается в естественном натуральном виде, например 12560 - целое число, 0,003572 - правильная дробь, 4,89760 - неправильная дробь.

При представлении чисел в такой форме обязательно требуется для каждого числа указание о положении его запятой в разрядной сетке, выделенной для представления числа в машине, что требует дополнительных аппаратных затрат достаточно большого объема. Поэтому в компьютерах получили распространение две другие формы представления: с фиксированной и плавающей запятой (точкой) .

Необходимость в указании положения запятой отпадает, если место запятой в разрядной сетки машины заранее фиксировано раз и навсегда. Такая форма представления чисел называется представлением с фиксированной запятой (точкой) .

Так как числа бывают положительные и отрицательные, то формат (разрядная сетка) машинного изображения разбивается на знаковую часть и поле числа . В поле числа размещается само изображение числа, которое мы будем условно называть мантиссой числа. Для кодирования знака числа используется самый старший разряд разрядной сетки, отведенной для изображения двоичного числа, а остальные разряды отводятся под мантиссу числа. Положение запятой в разрядной сетке строго фиксируется, обычно или правее самого младшего разряда мантиссы, или левее самого старшего. В первом случае число представляется как целое, во втором - как правильная дробь . В настоящее время в подавляющем большинстве в компьютерах в формате с фиксированной точкой представляются целые числа.

В знаковую часть записывается информация о знаке числа. Принято, что знак положительного числа "+" изображается символом 0, а знак отрицательного числа "-" изображается символом 1.

Например, в двоичном коде, используя 6-разрядную сетку, число 7 в форме с фиксированной запятой можно представить в виде:

где цифра левее точки это знак числа, а пять цифр правее точки - мантисса числа в прямом коде. Здесь подразумевается, что запятая фиксирована правее младшего разряда , а точка в изображении числа в данном случае просто разделяет знаковый бит от мантиссы числа.

В дальнейшем часто будет использоваться в примерах такой вид представления числа в машинной форме. Можно использовать и другую форму представления числа в машинной форме:

где знаковый разряд выделяется квадратными скобками.

Количество разрядов в разрядной сетке, отведенное для изображения мантиссы числа, определяет диапазон и точность представления числа с фиксированной запятой. Максимальное по абсолютной величине двоичное число изображается единицами во всех разрядах, исключая знаковый, т.е. для целого числа

|A|max = (2 (n -1) - 1),

где n - полная длина разрядной сетки. В случае 16-разрядной сетки

|A| max = (2 (16-1) - 1) = 32767 10 ,

т.е. диапазон представления целых чисел в этом случае будет от +3276710 до -3276710 .

Для случая, когда запятая фиксируется правее младшего разряда мантиссы, т.е. для целых чисел, числа, у которых модуль больше, чем

(2 (n-1) - 1) и меньше единицы не представляются в форме с фиксированной запятой. Числа, по абсолютной величине меньше единицы младшего разряда разрядной сетки, называются в этом случае машинным нулем.Отрицательный ноль запрещен.

В некоторых случаях, когда можно оперировать только модулями чисел, вся разрядная сетка, включая самый старший разряд, отводится для представления числа, что позволяет расширить диапазон изображения чисел.

Двоично-десятичная система счисления

Двоично-десятичная система счисления получила большое распространение в современных компьютерах из-за легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде записываются последовательно друг за другом.

Двоично-десятичная система не экономична с точки зрения реализации технического построения машины (примерно на 20 % увеличивается требуемое оборудование), но очень удобна при подготовке задач и при программировании. В двоично-десятичной системе счисления основанием системы счисления является число 10, но каждая десятичная цифра (0, 1, ..., 9) изображается, то есть кодируется, двоичными цифрами. Для представления одной десятичной цифры используются четыре двоичных. Здесь, конечно, имеется избыточность, поскольку 4 двоичных цифры (или двоичная тетрада) могут изобразить не 10, а 16 чисел, но это уже издержки производства в угоду удобству программирования. Существует целый ряд двоично-кодированных десятичных систем представления чисел, отличающихся тем, что определенным сочетаниям нулей и единиц внутри одной тетрады поставлены в соответствие те или иные значения десятичных цифр.
Размещено на реф.рф
В наиболее часто используемой естественной двоично-кодированной десятичной системе счисления веса двоичных разрядов внутри тетрады естественны, то есть 8, 4, 2, 1 (табл. 6).

Таблица 6

Двоично-десятичная счисления

Например, десятичное число 5673 в двоично-десятичном представлении имеет вид 01010110011100011.

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо ᴇᴦο записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики˸

При переводе удобно пользоваться таблицей степеней двойки˸

Таблица 7.

Степени числа 2

n (степень)

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо ᴇᴦο записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики˸

При переводе удобно пользоваться таблицей степеней восьмерки˸

Таблица 8.

Степени числа 8

n (степень)
8 n

Двоично-десятичная система счисления - понятие и виды. Классификация и особенности категории "Двоично-десятичная система счисления" 2015, 2017-2018.

Эта система имеет основание S = 10, но каждая цифра изображается четырехразрядным двоичным числом, называемым тетрадой. Обычно данная система счисления используется в ЭВМ при вводе и выводе информации. Однако в некоторых типах ЭВМ в АЛУ имеются специальные блоки десятичной арифметики, выполняющие операции над числами в двоично-десятичном коде. Это позволяет в ряде случаев существенно повышать производительность ЭВМ.

Например, в автоматизированной системе обработки данных чисел много, а вычислений мало. В этом случае операции, связанные с переводом чисел из одной системы в другую, существенно превысили бы время выполнения операций по обработке информации.

Перевод чисел из десятичной системы в двоично-десятичную весьма прост и заключается в замене каждой цифры двоичной тетрадой.

Пример.

Записать десятичное число 572.38 (10) в двоично-десятичной системе счисления.

Обратный перевод также прост: необходимо двоично-десятичное число разбить на тетрады от точки влево (для целой части) и вправо (для дробной), дописать необходимое число незначащих нулей, а затем каждую тетраду записать в виде десятичной цифры.

Пример.

Записать двоично-десятичное число 10010.010101 (2-10) в десятичной системе счисления.

Перевод чисел из двоично-десятичной в двоичную систему осуществляется по общим правилам, описанным выше.

2.3. Восьмеричная система счисления

В восьмеричной системе счисления употребляются всего восемь цифр, т.е. эта система счисления имеет основание S = 8. В общем виде восьмеричное число выглядит следующим образом:

где
.

Восьмеричная система счисления не нужна ЭВМ в отличие от двоичной системы. Она удобна как компактная форма записи чисел и используется программистами (например, в текстах программ для более краткой и удобной записи двоичных кодов команд, адресов и операндов). В восьмеричной системе счисления вес каждого разряда кратен восьми или одной восьмой, поэтому восьмиразрядное двоичное число позволяет выразить десятичные величины в пределах 0-255, а восьмеричное охватывает диапазон 0-99999999 (для двоичной это составляет 27 разрядов).

Поскольку 8=2 3 , то каждый восьмеричный символ можно представить трехбитовым двоичным числом. Для перевода числа из двоичной системы счисления в восьмеричную необходимо разбить это число влево (для целой части) и вправо (для дробной) от точки (запятой) на группы по три разряда (триады) и представить каждую группу цифрой в восьмеричной системе счисления. Крайние неполные триады дополняются необходимым количеством незначащих нулей.

Пример.

Двоичное число 10101011111101 (2) записать в восьмеричной системе счисления.

Пример.

Двоичное число 1011.0101 (2) записать в восьмеричной системе счисления.

Перевод из восьмеричной системы счисления в двоичную осуществляется путем представления каждой цифры восьмеричного числа трехразрядным двоичным числом (триадой).

2.4. Шестнадцатеричная система счисления

Эта система счисления имеет основание S = 16. В общем виде шестнадцатеричное число выглядит следующим образом:

где
.

Шестнадцатеричная система счисления позволяет еще короче записывать многоразрядные двоичные числа и, кроме того, сокращать запись 4-разрядного двоичного числа, т.е. полубайта, поскольку 16=2 4 . Шестнадцатеричная система также применяется в текстах программ для более краткой и удобной записи двоичных чисел.

Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить это число влево и вправо от точки на тетрады и представить каждую тетраду цифрой в шестнадцатеричной системе счисления.

Пример.

Двоичное число 10101011111101 (2) записать в шестнадцатеричной системе.

Пример.

Двоичное число 11101.01111 (2) записать в шестнадцатеричной системе.

Для перевода числа из шестнадцатеричной системы счисления в двоичную, необходимо, наоборот, каждую цифру этого числа заменить тетрадой.

В заключение следует отметить, что перевод из одной системы счисления в другую произвольных чисел можно осуществлять по общим правилам, описанным в разделе “Двоичная система счисления”. Однако на практике переводы чисел из де­сятичной системы в рассмотренные системы счисления и обратно осуществляются через двоичную систему счисления.

Кроме того, следует помнить, что шестнадцатеричные и восьмеричные числа – это только способ представления больших двоичных чисел, которыми фактически оперирует процессор. При этом шестнадцатеричная система оказывается предпочтительнее, поскольку в современных ЭВМ процессоры манипулируют словами длиной 4, 8, 16, 32 или 64 бита, т.е. длиной слов, кратной 4. В восьмеричной же системе счисления предпочтительны слова, кратные 3 битам, например слова длиной 12 бит (как в PDP-8 фирмы DEC).

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.