Что такое частота отказов. Средняя наработка на отказ – это отношение наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки

Различают вероятностные (математические) и статистические показатели надежности. Математические показатели надежности выводятся из теоретических функций распределения вероятностей отказов. Статистические показатели надежности определяются опытным путем при испытаниях объектов на базе статистических данных эксплуатации оборудования.

Надежность является функцией многих факторов, большинство из которых случайны. Отсюда ясно, что для оценки надежности объекта необходимо большое количество критериев.

Критерий надежности – это признак, по которому оценивается надежность объекта.

Критерии и характеристики надежности носят вероятностный характер, поскольку факторы, влияющие на объект, носят случайный характер и требуют статистической оценки.

Количественными характеристиками надежности могут быть:
вероятность безотказной работы;
среднее время безотказной работы;
интенсивность отказов;
частота отказов;
различные коэффициенты надежности.

1. Вероятность безотказной работы

Служит одним из основных показателей при расчетах на надежность.
Вероятность безотказной работы объекта называется вероятность того, что он будет сохранять свои параметры в заданных пределах в течение определенного промежутка времени при определенных условиях эксплуатации.

В дальнейшем полагаем, что эксплуатация объекта происходит непрерывно, продолжительность эксплуатации объекта выражена в единицах времени t и эксплуатация начата в момент времени t=0.
Обозначим P(t) вероятность безотказной работы объекта на отрезке времени . Вероятность, рассматриваемую как функцию верхней границы отрезка времени, называют также функцией надежности.
Вероятностная оценка: P(t) = 1 – Q(t), где Q(t) — вероятность отказа.

Из графика очевидно, что:
1. P(t) – невозрастающая функция времени;
2. 0 ≤ P(t) ≤ 1;
3. P(0)=1; P(∞)=0.

На практике иногда более удобной характеристикой является вероятность неисправной работы объекта или вероятность отказа:
Q(t) = 1 – P(t).
Статистическая характеристика вероятности отказов: Q*(t) = n(t)/N

2. Частота отказов

Частотой отказов называется отношение числа отказавших объектов к их общему числу перед началом испытания при условии что отказавшие объекты не ремонтируются и не заменяются новыми, т.е

a*(t) = n(t)/(NΔt)
где a*(t) — частота отказов;
n(t) – число отказавших объектов в интервале времени от t – t/2 до t+ t/2;
Δt – интервал времени;
N – число объектов, участвующих в испытании.

Частота отказов есть плотность распределения времени работы изделия до его отказа. Вероятностное определение частоты отказов a(t) = -P(t) или a(t) = Q(t).

Таким образом, между частотой отказов, вероятностью безотказной работы и вероятностью отказов при любом законе распределения времени отказов существует однозначная зависимость: Q(t) = ∫ a(t)dt.

Отказ трактуют в теории надежности как случайное событие. В основе теории лежит статистическое истолкование вероятности. Элементы и образованные из них системы рассматривают как массовые объекты, принадлежащие одной генеральной совокупности и работающие в статистически однородных условиях. Когда говорят об объекте, то в сущности имеют в виду наугад взятый объект из генеральной совокупности, представительную выборку из этой совокупности, а часто и всю генеральную совокупность.

Для массовых объектов статистическую оценку вероятности безотказной работы P(t) можно получить, обработав результаты испытаний на надежность достаточно больших выборок. Способ вычисления оценки зависит от плана испытаний.

Пусть испытания выборки из N объектов проведены без замен и восстановлений до отказа последнего объекта. Обозначим продолжительности времени до отказа каждого из объектов t 1 , …, t N . Тогда статистическая оценка:

P*(t) = 1 — 1/N ∑η(t-t k)

где η — единичная функция Хевисайда.

Для вероятности безотказной работы на определенном отрезке удобна оценка P*(t) = /N,
где n(t) – число объектов, отказавших к моменту времени t.

Частота отказов, определяемая при условии замены отказавших изделий исправными, иногда называется средней частотой отказов и обозначается ω(t).

3. Интенсивность отказов

Интенсивностью отказов λ(t) называется отношение числа отказавших объектов в единицу времени к среднему числу объектов, работающих в данный отрезок времени, при условии, что отказавшие объекты не восстанавливаются и не заменяются исправными: λ(t) = n(t)/
где N ср = /2 — среднее число объектов, исправно работавших в интервале времени Δt;
N i – число изделий, работавших в начале интервала Δt;
N i+1 – число объектов, исправно работавших в конце интервала времени Δt.

Ресурсные испытания и наблюдения над большими выборками объектов показывают, что в большинстве случаев интенсивность отказов изменяется во времени немонотонно.

Из кривой зависимости отказов от времени видно, что весь период работы объекта можно условно поделить на 3 периода.
I — й период – приработка.

Приработочные отказы являются, как правило, результатом наличия у объекта дефектов и дефектных элементов, надежность которых значительно ниже требуемого уровня. При увеличении числа элементов в изделии даже при самом строгом контроле не удается полностью исключить возможность попадания в сборку элементов, имеющих те или иные скрытые дефекты. Кроме того, к отказам в этот период могут приводить и ошибки при сборке и монтаже, а также недостаточная освоенность объекта обслуживающим персоналом.

Физическая природа таких отказов носит случайный характер и отличается от внезапных отказов нормального периода эксплуатации тем, что здесь отказы могут иметь место не при повышенных, а и при незначительных нагрузках («выжигание дефектных элементов»).
Снижение величины интенсивности отказов объекта в целом, при постоянном значении этого параметра для каждого из элементов в отдельности, как раз и объясняется «выжиганием» слабых звеньев и их заменой наиболее надежными. Чем круче кривая на этом участке, тем лучше: меньше дефектных элементов останется в изделии за короткий срок.

Чтобы повысить надежность объекта, учитывая возможность приработочных отказов, нужно:
проводить более строгую отбраковку элементов;
проводить испытания объекта на режимах близких к эксплуатационным и использовать при сборке только элементы, прошедшие испытания;
повысить качество сборки и монтажа.

Среднее время приработки определяют при испытаниях. Для особо важных случаев необходимо увеличить срок приработки в несколько раз по сравнению со средним.

II — й период – нормальная эксплуатация
Этот период характеризуется тем, что приработочные отказы уже закончились, а отказы, связанные с износом, еще не наступили. Этот период характеризуется исключительно внезапными отказами нормальных элементов, наработка на отказ которых очень велика.

Сохранение уровня интенсивности отказов на этом этапе характеризуется тем, что отказавший элемент заменяется таким же, с той же вероятностью отказа, а не лучшим, как это происходило на этапе приработки.

Отбраковка и предварительная обкатка элементов, идущих на замену отказавших, имеет для этого этапа еще большее значение.
Наибольшими возможностями в решении этой задачи обладает конструктор. Нередко изменение конструкции или облегчение режимов работы всего одного-двух элементов обеспечивает резкое повышение надежности всего объекта. Второй путь – повышение качества производства и даже чистоты производства и эксплуатации.

III – й период – износ
Период нормальной эксплуатации заканчивается, когда начинают возникать износовые отказы. Наступает третий период в жизни изделия – период износа.

Вероятность возникновения отказов из-за износов с приближением к сроку службы возрастает.

С вероятностной точки зрения отказ системы в данном промежутке времени Δt = t 2 – t 1 определяется как вероятность отказа:

∫a(t) = Q 2 (t) — Q 1 (t)

Интенсивность отказов есть условная вероятность того, что в промежуток времени Δt произойдет отказ при условии, что до этого он не произошел λ(t) = /[ΔtP(t)]
λ(t) = lim /[ΔtP(t)] = / = Q"(t)/P(t) = -P"(t)/P(t)
так как a(t) = -P"(t), то λ(t) = a(t)/P(t).

Эти выражения устанавливают зависимость между вероятностью безотказной работы, частотой и интенсивностью отказов. Если a(t) – невозрастающая функция, то справедливо соотношение:
ω(t) ≥ λ(t) ≥ a(t).

4. Среднее время безотказной работы

Средним временем безотказной работы называется математическое ожидание времени безотказной работы.

Вероятностное определение: среднее время безотказной работы равно площади под кривой вероятности безотказной работы.

Статистическое определение: T* = ∑θ i /N 0
где θ I – время работы i-го объекта до отказа;
N 0 – начальное число объектов.

Очевидно, что параметр Т* не может полностью и удовлетворительно характеризовать надежность систем длительного пользования, так как является характеристикой надежности только до первого отказа. Поэтому надежность систем длительного использования характеризуют средним временем между двумя соседними отказами или наработкой на отказ t ср:
t ср = ∑θ i /n = 1/ω(t),
где n – число отказов за время t;
θ i – время работы объекта между (i-1)-м и i-м отказами.

Наработка на отказ – среднее значение времени между соседними отказами при условии восстановления отказавшего элемента.

Интенсивность отказов - отношение плотности распределения вероятности отказов к вероятности безотказной работы объекта:

где - плотность вероятности отказов и - вероятность безотказной работы .

Простыми словами, интенсивность отказов выражает шанс отказать в ближайший момент времени объекта (например, прибора), который уже проработал без отказов определённое время.

Статистически интенсивность отказов есть отношение числа отказавших образцов техники в единицу времени к среднему числу образцов, исправно работающих на интервале :

Где - среднее число исправно работающих образцов

на интервале .

Соотношение (1) для малых следует непосредственно из формулы вероятности безотказной работы (3)

и формулы плотности распределения безотказной работы (частоты отказов) (4)

На основе определения интенсивности отказов (1) имеет место равенство:

Интегрируя (5), получим:

Интенсивность отказов является основным показателем надёжности элементов сложных систем. Это объясняется следующими обстоятельствами:

  • надёжность многих элементов можно оценить одним числом, т.к. интенсивность отказа элементов - величина постоянная;
  • интенсивность отказов нетрудно получить экспериментально.

Опыт эксплуатации сложных систем показывает, что изменение интенсивности отказов большинства количества объектов описывается - образной кривой.

Время можно условно разделить на три характерных участка: 1. Период приработки. 2. Период нормальной эксплуатации. 3. Период старения объекта.

Период приработки объекта имеет повышенную интенсивность отказов, вызванную приработочными отказами, обусловленными дефектами производства, монтажа и наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем. В период нормальной эксплуатации интенсивность отказов практически остаётся постоянной, при этом отказы носят слуайный характер и появляются внезапно, прежде всего из-за случайных изменений нагрузки, несоблюдения условий эксплуатации, неблагоприятных внешних факторов и т.п. Именно этот период соответствует основному времени эксплуатации объекта. Возрастание интенсивности отказов относится к периоду старения объекта и вызвано увеличением числа отказов из-за износа, старения и других причин, связанных с длительной эксплуатацией. То есть вероятность отказа элемента, дожившего для момента в некотором последующем промежутке времени зависит от значений только на этом промежутке, а следовательно интенсивность отказов - локальный показатель надёжности элемента на данном промежутке времени.

1.1 Вероятность безотказной работы

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации, в пределах заданной наработки не произойдет ни одного отказа.
Вероятность безотказной работы обозначается как P (l ) , которая определяется по формуле (1.1):

где N 0 - число элементов в начале испытания; r (l ) - число отказов элементов к моменту наработки. Следует отметить, что чем больше величина N 0 , тем с большей точностью можно рассчитать вероятность P (l).
В начале эксплуатации исправного локомотива P (0) = 1, так как при пробеге l = 0 вероятность того, что ни один элемент не откажет, принимает максимальное значение - 1. С ростом пробега l вероятность P (l ) будет уменьшаться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность безотказной работы будет стремиться к нулю P (l →∞) = 0. Таким образом в процессе наработки величина вероятности безотказной работы изменяется в пределах от 1 до 0. Характер изменения вероятности безотказной работы в функции пробега показан на рис. 1.1.

Рис.2.1. График изменения вероятности безотказной работы P(l) в зависимости от наработки

Основными достоинствами использования данного показателя при расчетах является два фактора: во-первых, вероятность безотказной работы охватывает все факторы, влияющие на надежность элементов, позволяя достаточно просто судить о его надежности, т.к. чем больше величина P (l ), тем выше надежность; во-вторых, вероятность безотказной работы может быть использована в расчетах надежности сложных систем, состоящих из более чем одного элемента.

1.2 Вероятность отказа

Вероятностью отказа называют вероятность того, что при определенных условиях эксплуатации, в предела х заданной наработки произойдет хотя бы один отказ.
Вероятность отказа обозначается как Q (l ), которая определяется по формуле (1.2):

В начале эксплуатации исправного локомотива Q (0) = 0, так как при пробеге l = 0 вероятность того, что хотя бы один элемент откажет, принимает минимальное значение - 0. С ростом пробега l вероятность отказа Q (l ) будет увеличиваться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность отказа будет стремиться к единице Q (l →∞ ) = 1. Таким образом в процессе наработки величина вероятности отказа изменяется в пределах от 0 до 1. Характер изменения вероятности отказа в функции пробега показан на рис. 1.2. Вероятность безотказной работы и вероятность отказа являются событиями противоположными и несовместимыми.

Рис.2.2. График изменения вероятности отказа Q(l) в зависимости от наработки

1.3 Частота отказов

Частота отказов - это отношение числа элементов в единицу времени или пробега отнесенного к первоначальному числу испытуемых элементов. Другими словами частота отказов является показателем, характеризующим скорость изменения вероятности отказов и вероятности безотказной работы по мере роста длительности работы.
Частота отказов обозначается как и определяется по формуле (1.3):

где - количество отказавших элементов за промежуток пробега .
Данный показатель позволяет судить по его величине о числе элементов, которые откажут на каком-то промежутке времени или пробега, также по его величине можно рассчитать количество требуемых запасных частей.
Характер изменения частоты отказов в функции пробега показан на рис. 1.3.


Рис. 1.3. График изменения частоты отказов в зависимости от наработки

1.4 Интенсивность отказов

Интенсивность отказов представляет собой условную плотность возникновения отказа объекта, определяемую для рассматриваемого момента времени или наработки при условии, что до этого момента отказ не возник. Иначе интенсивность отказов - это отношение числа отказавших элементов в единицу времени или пробега к числу исправно работающих элементов в данный отрезок времени.
Интенсивность отказов обозначается как и определяется по формуле (1.4):

где

Как правило, интенсивность отказов является неубывающей функцией времени. Интенсивность отказов обычно применяется для оценки склонности к отказам в различные моменты работы объектов.
На рис. 1.4. представлен теоретический характер изменения интенсивности отказов в функции пробега.

Рис. 1.4. График изменения интенсивности отказов в зависимости от наработки

На графике изменения интенсивности отказов, изображенном на рис. 1.4. можно выделить три основных этапа отражающих процесс экс-плуатации элемента или объекта в целом.
Первый этап, который также называется этапом приработки, характеризуется увеличением интенсивности отказов в начальный период эксплуатации. Причиной роста интенсивности отказов на данном этапе являются скрытые дефекты производственного характера.
Второй этап, или период нормальной работы, характеризуется стремлением интенсивности отказов к постоянному значению. В течение этого периода могут возникать случайные отказы, в связи с появлением внезапной концентрации нагрузки, превышающей предел прочности элемента.
Третий этап, так называемый период форсированного старения. Характеризуется возникновением износовых отказов. Дальнейшая эксплуатация элемента без его замены становится экономически не рациональной.

1.5 Средняя наработка до отказа

Средняя наработка до отказа - это средний пробег безотказной работы элемента до отказа.
Средняя наработка до отказа обозначается как L 1 и определяется по формуле (1.5):

где l i - наработка до отказа элемента; r i - число отказов.
Средняя наработка до отказа может быть использована для предварительного определения сроков ремонта или замены элемента.

1.6 Среднее значение параметра потока отказов

Среднее значение параметра потока отказов характеризует среднюю плотность вероятности возникновения отказа объекта, определяемая для рассматриваемого момента времени.
Среднее значение параметра потока отказов обозначается как W ср и определяется по формуле (1.6):

1.7 Пример расчета показателей безотказности

Исходные данные.
В течение пробега от 0 до 600 тыс. км., в локомотивном депо произведен сбор информации по отказам ТЭД. При этом количество исправных ТЭД в начале периода эксплуатации составляло N0 = 180 шт. Суммарное количество отказавших ТЭД за анализируемый период составило ∑r(600000) = 60. Интервал пробега принять равным 100 тыс. км. При этом количество отказавших ТЭД по каждому участку составило: 2, 12, 16, 10, 14, 6.

Требуется.
Необходимо рассчитать показатели безотказности и построить их зависимости изменения во времени.

Сначала необходимо заполнить таблицу исходных данных так, как это показано в табл. 1.1.

Таблица 1.1.

Исходные данные к расчету
, тыс. км 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60

Первоначально по уравнению (1.1) определим для каждого участка пробега величину вероятности безотказной работы. Так, для участка от 0 до 100 и от 100 до 200 тыс. км. пробега вероятность безотказной работы составит:

Произведем расчет частоты отказов по уравнению (1.3).

Тогда интенсивность отказов на участке 0-100 тыс.км. будет равна:

Аналогичным образом определим величину интенсивности отказов для интервала 100-200 тыс. км.

По уравнениям (1.5 и 1.6) определим среднюю наработку до отказа и среднее значение параметра потока отказов.

Систематизируем полученные результаты расчета и представим их в виде таблицы (табл. 1.2.).

Таблица 1.2.

Результаты расчета показателей безотказности
, тыс.км. 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60
P(l) 0,989 0,922 0,833 0,778 0,7 0,667
Q(l) 0,011 0,078 0,167 0,222 0,3 0,333
10 -7 , 1/км 1,111 6,667 8,889 5,556 7,778 3,333
10 -7 , 1/км 1,117 6,977 10,127 6,897 10,526 4,878

Приведем характер изменения вероятности безотказной работы ТЭД в зависимости от пробега (рис. 1.5.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности безотказной работы примет максимальное значение - 1.

Рис. 1.5. График изменения вероятности безотказной работы в зависимости от наработки

Приведем характер изменения вероятности отказа ТЭД в зависимости от пробега (рис. 1.6.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности отказа примет минимальное значение - 0.

Рис. 1.6. График изменения вероятности отказа в зависимости от наработки

Приведем характер изменения частоты отказов ТЭД в зависимости от пробега (рис. 1.7.).

Рис. 1.7. График изменения частоты отказов в зависимости от наработки

На рис. 1.8. представлена зависимость изменения интенсивности отказов от наработки.

Рис. 1.8. График изменения интенсивности отказов в зависимости от наработки

2.1 Экспоненциальный закон распределения случайных величин

Экспоненциальный закон достаточно точно описывает надежность узлов при внезапных отказах, имеющих случайный характер. Попытки применить его для других типов и случаев отказов, особенно постепенных, вызванных износом и изменением физико-химических свойств элементов показали его недостаточную приемлемость.

Исходные данные.
В результате испытания десяти топливных насосов высокого давления получены наработки их до отказа: 400, 440, 500, 600, 670, 700, 800, 1200, 1600, 1800 ч. Предполагая, что наработка до отказа топливных насосов подчиняется экспоненциальному закону распределения.

Требуется.
Оценить величину интенсивности отказов, а также рассчитать вероятность безотказной работы за первые 500 ч. и вероятность отказа в промежутке времени между 800 и 900 ч. работы дизеля.

Во-первых, определим величину средней наработки топливных насосов до отказа по уравнению:

Затем рассчитываем величину интенсивности отказов:

Величина вероятности безотказной работы топливных насосов при наработке 500 ч составит:

Вероятность отказа в промежутке между 800 и 900 ч. работы насосов составит:

2.2 Закон распределения Вэйбулла-Гнеденко

Закон распределения Вейбулла-Гнеденко получил широкое распространение и используется применительно к системам, состоящим из рядов элементов, соединенных последовательно с точки зрения обеспечения безотказности системы. Например, системы, обслуживающие дизель-генераторную установку: смазки, охлаждения, питания топливом, воздухом и т.д.

Исходные данные.
Время простоя тепловозов в неплановых ремонтах по вине вспомогательного оборудования подчиняется закону распределения Вейбулла-Гнеденко с параметрами b=2 и a=46.

Требуется.
Необходимо определить вероятность выхода тепловозов из неплановых ремонтов после 24 ч. простоя и время простоя, в течение которого работоспособность будет восстановлена с вероятностью 0,95.

Найдем вероятность восстановления работоспособности локомотива после простоя его в депо в течение суток по уравнению:

Для определения времени восстановления работоспособности локомотива с заданной величиной доверительной вероятности также используем выражение:

2.3 Закон распределения Рэлея

Закон распределения Рэлея используется в основном для анализа работы элементов, имеющих ярко выраженный эффект старения (элементы электрооборудования, различного рода уплотнения, шайбы, прокладки, изготовленные из резиновых или синтетических материалов).

Исходные данные.
Известно, что наработки контакторов до отказа по параметрам старения изоляции катушек можно описать функцией распределения Рэлея с параметром S = 260 тыс.км.

Требуется.
Для величины наработки 120 тыс.км. необходимо определить вероятность безотказной работы, интенсивность отказов и среднюю наработку до первого отказа катушки электромагнитного контактора.

3.1 Основное соединение элементов

Система, состоящая из нескольких независимых элементов, связанных функционально таким образом, что отказ любого из них вызывает отказ системы, отображается расчетной структурной схемой безотказной работы с последовательно соединенными событиями безотказной работы элементов.

Исходные данные.
Нерезервированная система состоит из 5 элементов. Интенсивности их отказов соответственно равны 0,00007; 0,00005; 0,00004; 0,00006; 0,00004 ч-1

Требуется.
Необходимо определить показатели надежности системы: интенсивность отказов, среднее время наработки до отказа, вероятность безотказной работы, частота отказов. Показатели надежности P(l) и a(l) получить в интервале от 0 до 1000 часов с шагом в 100 часов.

Вычислим интенсивность отказа и среднюю наработку до отказа по следующим уравнениям:

Значения вероятности безотказной работы и частоты отказов получим, используя уравнения приведенные к виду:

Результаты расчета P(l) и a(l) на интервале от 0 до 1000 часов работы представим в виде табл. 3.1.

Таблица 3.1.

Результаты расчета вероятности безотказной работы и частоты отказов системы на интервале времени от 0 до 1000 ч.
l , час P(l) a(l) , час -1
0 1 0,00026
100 0,974355 0,000253
200 0,949329 0,000247
300 0,924964 0,00024
400 0,901225 0,000234
500 0,878095 0,000228
600 0,855559 0,000222
700 0,833601 0,000217
800 0,812207 0,000211
900 0,791362 0,000206
1000 0,771052 0,0002

Графическая иллюстрация P(l) и a(l) на участке до средней наработки до отказа представлена на рис. 3.1, 3.2.

Рис. 3.1. Вероятность безотказной работы системы.

Рис. 3.2. Частота отказов системы.

3.2 Резервное соединение элементов

Исходные данные.
На рис. 3.3 и 3.4 показаны две структурные схемы соединения элементов: общего (рис. 3.3) и поэлементного резервирования (рис. 3.4). Вероятности безотказной работы элементов соответственно равны P1(l) = P ’1(l) = 0,95; P2(l) = P’2(l) = 0,9; P3(l) = P ’3(l) = 0,85.

Рис. 3.3. Схема системы с общим резервированием.

Рис. 3.4. Схема системы с поэлементным резервированием.

Вероятность безотказной работы блока из трех элементов без резервирования рассчитаем по выражению:

Вероятность безотказной работы той же системы при общем резервировании (рис. 3.3) составит:

Вероятности безотказной работы каждого из трех блоков при поэлементном резервировании (рис. 3.4) будут равны:

Вероятность безотказной работы системы при поэлементном резервировании составит:

Таким образом, поэлементное резервирование дает более существенное увеличение надежности (вероятность безотказной работы возросла с 0,925 до 0,965, т.е. на 4%).

Исходные данные.
На рис. 3.5 представлена система с комбинированным соединением элементов. При этом вероятности безотказной работы элементов имеют следующие значения: P1=0,8; Р2=0,9; Р3=0,95; Р4=0,97.

Требуется.
Необходимо определить надежность системы. Также необходимо определить надежность этой же системы при условии, что резервные элементы отсутствуют.

Рис.3.5. Схема системы при комбинированном функционировании элементов.

Для расчета в исходной системе необходимо выделить основные блоки. В представленной системе их три (рис. 3.6). Далее рассчитаем надежность каждого блока в отдельности, а затем найдем надежность всей системы.

Рис. 3.6. Сблокированная схема.

Надежность системы без резервирования составит:

Таким образом, система без резервирования является на 28% менее надежной, чем система с резервированием.

КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ НАДЕЖНОСТИ


Критерии и количественные характеристики надежности

Критерием надежности называется признак, по которому можно количественно оценить надежность различных устройств.

К числу наиболее широко применяемых критериев надежности относятся:
- вероятность безотказной работы в течение определенного времени P(t);
- средняя наработка до первого отказа T ср;
- наработка на отказ t ср;


- параметр потока отказов w (t);
- функция готовности K г (t);
- коэффициент готовности K г.

Характеристикой надежности следует называть количественное значение критерия надежности конкретного устройства.

Выбор количественных характеристик надежности зависит от вида объекта.

Критерии надежности невосстанавливаемых объектов

Рассмотрим следующую модель работы устройства.

Пусть в работе (на испытании) находится N 0 элементов и пусть работа считается законченной, если все они отказали. Причем вместо отказавших элементов отремонтированные не ставятся. Тогда критериями надежности данных изделий являются:
- вероятность безотказной работы P(t);
- частота отказов f(t) или a(t);
- интенсивность отказов l (t);
- средняя наработка до первого отказа T ср.

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени или в пределах заданной наработки не произойдет ни одного отказа.

Согласно определению
P(t) = P(T>t),(4.2.1)
где T - время работы элемента от его включения до первого отказа; t- время, в течение которого определяется вероятность безотказной работы.

Вероятность безотказной работы по статистическим данным об отказах оценивается выражением
(t) = / N 0 ,(4.2.2)
где N 0 - число элементов в начале работы (испытаний); n(t) - число отказавших элементов за время t; (t) - статистическая оценка вероятности безотказной работы. При большом числе элементов (изделий) N 0 статистическая оценка (t) практически совпадает с вероятностью безотказной работы P(t). На практике иногда более удобной характеристикой является вероятность отказа Q(t).

Вероятностью отказа называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени возникает хотя бы один отказ. Отказ и безотказная работа являются событиями несовместными и противоположными, поэтому
Q(t)=P(T £ t), (t)=n(t)/N 0 , Q(t)=1-P(t).(4.2.3)

Частотой отказов по статистическим данным называется отношение числа отказавших элементов в единицу времени к первоначальному числу работающих (испытываемых) при условии, что все вышедшие из строя изделия не восстанавливаются.

Согласно определению

(t) = n(D t) / N 0 D t,(4.2.4)
где n(D t) - число отказавших элементов в интервале времени от (t‑D t)/2 до (t+D t)/2.

Частота отказов есть плотность вероятности (или закон распределения) времени работы изделия до первого отказа. Поэтому

P(t) = 1 - Q(t),P(t) = 1 - .(4.2.5)

Интенсивностью отказов по статистическим данным называется отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени.

Согласно определению

(t) = n(D t) / (N ср D t),(4.2.6)
где N ср = (N i + N i+1) / 2 - среднее число исправно работающих элементов в интервале D t; N i - число изделий, исправно работающих в начале интервала D t; N i+1 - число элементов исправно работающих в конце интервала D t.

Вероятностная оценка характеристики l (t) находится из выражения
l (t) = f(t) / P(t).(4.2.7)

Интенсивность отказов и вероятность безотказной работы связаны между собой зависимостью

P(t) = еxp .(4.2.8)

Средней наработкой до первого отказа называется математическое ожидание времени работы элемента до отказа.

Как математическое ожидание, T ср вычисляется через частоту отказов (плотность распределения времени безотказной работы):

M[t] = T cр = .(4.2.9)

Так как t положительно и P(0)=1, а P(¥ )=0, то
T cр = .4.2.10)

По статистическим данным об отказах средняя наработка до первого отказа вычисляется по формуле

.(4.2.11)

где t i - время безотказной работы i-го элемента; N 0 - число исследуемых элементов.

Как видно из формулы (4.2.11), для определения средней наработки до первого отказа необходимо знать моменты выхода из строя всех испытуемых элементов. Поэтому для вычисления средней наработки на отказ пользоваться указанной формулой неудобно. Имея данные о количестве вышедших из строя элементов n i в каждом i-м интервале времени, среднюю наработку до первого отказа лучше определять из уравнения

.(4.2.12)

В выражении (4.2.12) t срi и m находятся по следующим формулам:
t срi = (t i-1 + t i)/2, m = t k /
D t,
где t i-1 - время начала i-го интервала; t i - время конца i-го интервала; t k - время, в течение которого вышли из строя все элементы; D t=t i‑ 1 ‑ t i - интервал времени.

Из выражений для оценки количественных характеристик надежности видно, что все характеристики, кроме средней наработки до первого отказа, являются функциями времени. Конкретные выражения для практической оценки количественныххарактеристик надежности устройств рассмотрены в разделе "Законы распределения отказов".

Рассмотренные критерии надежности позволяют достаточно полно оценить надежность невосстанавливаемых изделий. Они также позволяют оценить надежность восстанавливаемых изделий до первого отказа . Наличие нескольких критериев вовсе не означает, что всегда нужно оценивать надежность элементов по всем критериям.

Наиболее полно надежность изделий характеризуется частотой отказов f(t) или a(t). Это объясняется тем, что частота отказов является плотностью распределения, а поэтому несет в себе всю информацию о случайном явлении - времени безотказной работы.

Средняя наработка до первого отказа является достаточно наглядной характеристикой надежности. Однако применение этого критерия для оценки надежности сложной системы ограничено в тех случаях, когда:

Время работы системы гораздо меньше среднего времени безотказной работы;
- закон распределения времени безотказной работы не однопараметрический и для достаточно полной оценки требуются моменты высших порядков;
- система резервированная;
- интенсивность отказов не постоянная;
- время работы отдельных частей сложной системы разное.

Интенсивность отказов - наиболее удобная характеристика надежности простейших элементов, так как она позволяет более просто вычислять количественные характеристики надежности сложной системы.

Наиболее целесообразным критерием надежности сложной системы является вероятность безотказной работы . Это объясняется следующими особенностями вероятности безотказной работы:
- она входит в качестве сомножителя в другие, более общие характеристики системы, например, в эффективность и стоимость;
- характеризует изменение надежности во времени;
- может быть получена сравнительно просто расчетным путем в процессе проектирования системы и оценена в процессе ее испытания.

Рассмотрим следующую модель работы.

Пусть в работе находится N элементов и пусть отказавшие элементы немедленно заменяются исправными (новыми или отремонтированными). Если не учитывать времени, потребного на восстановление системы, то количественными характеристиками надежности могут быть параметр потока отказов w (t) и наработка на отказ t ср.

Параметром потока отказов
называется отношение числа отказавших изделий в единицу времени к числу испытываемых при условии, что все вышедшие из строя изделия заменяются исправными (новыми или отремонтированными).

Статистическим определением служит выражение
(t) = n(D t) / N D t,(4.2.13)
где n(D t) - число отказавших образцов в интервале времени от t‑D t/2 до t+D t/2; N - число испытываемых элементов; D t - интервал времени.

Параметр потока отказов и частота отказов для ординарных потоков с ограниченным последействием связаны интегральным уравнением Вольтера второго рода
w (t) = f(t)+ .(4.2.14)

По известной f(t) можно найти все количественные характеристики надежности невосстанавливаемых изделий. Поэтому (2.14) является основным уравнением, связывающим количественные характеристики надежности невосстанавливаемых и восстанавливаемых элементов при мгновенном восстановлении.

Уравнение (4.2.14) можно записать в операторной форме:
, .(4.2.15)
Соотношения (4.2.15) позволяют найти одну характеристику через другую, если существуют преобразования Лапласа функций f(s) и w (s) и обратные преобразования выражений (4.2.15).

Параметр потока отказов обладает следующими важными свойствами:
1) для любого момента времени независимо от закона распределения времени безотказной работы параметр потока отказов больше, чем частота отказов, т.е. w (t)>f(t);
2) независимо от вида функций f(t) параметр потока отказов w (t) при t®¥ стремится к 1/T ср. Это важное свойство параметра потока отказов означает, что при длительной эксплуатации ремонтируемого изделия поток его отказов независимо от закона распределения времени безотказной работы становится стационарным. Однако это вовсе не означает, что интенсивность отказов есть величина постоянная;
3) если l (t) - возрастающая функция времени, то l (t)>w (t)>f(t), если l (t) - убывающая функция, то w (t)>l (t)>f(t);
4) при l (t)¹ const параметр потока отказов системы не равен сумме параметров потока отказов элементов, т.е.
w с (t) .(4.2.16)

Это свойство параметра потока отказов позволяет утверждать, что при вычислении количественных характеристик надежности сложной системы нельзя суммировать имеющиеся в настоящее время значения интенсивности отказов элементов, полученных по статистическим данным об отказах изделий в условиях эксплуатации, так как указанные величины являются фактически параметрами потока отказов;

5) при l (t)=l =const параметр потока отказов равен интенсивности отказов w (t)=l (t)=l .

Из рассмотрения свойств интенсивности и параметра потока отказов видно, что эти характеристики различны.

В настоящее время широко используются статистические данные об отказах, полученные в условиях эксплуатации оборудования. При этом они часто обрабатываются таким образом, что приводимые характеристики надежности являются не интенсивностью отказов, а параметром потока отказов w (t). Это вносит ошибки при расчетах надежности. В ряде случаев они могут быть значительными.

Для получения интенсивности отказов элементов из статистических данных об отказах ремонтируемых систем необходимо воспользоваться формулой (4.2.6), для чего необходимо знать предысторию каждого элемента технологической схемы. Это может существенно усложнить методику сбора статистических данных об отказах. Поэтому целесообразно определять l (t) по параметру потока отказов w (t). Методика расчета сводится к следующим вычислительным операциям:
- по статистическим данным об отказах элементов ремонтируемых изделий и по формуле (4.2.13) вычисляется параметр потока отказов и строится гистограмма w i (t);
- гистограмма заменяется кривой, которая аппроксимируется уравнением;
- находится преобразование Лапласа w i (s) функции w i (t);
- по известной w i (s) на основании (4.2.15) записывается преобразование Лапласа f i (s) частоты отказов;
- по известной f i (s) находится обратное преобразование частоты отказов f i (t);
- находится аналитическое выражение для интенсивности отказов по формуле
;(4.2.17)
- строится график l i (t).

Если имеется участок, где l i (t)=l i =const, то постоянное значение интенсивности отказов принимается для оценки вероятности безотказной работы. При этом считается справедливым экспоненциальный закон надежности.

Приведенная методика не может быть применена, если не удается найти по f(s) обратное преобразование частоты отказов f(t). В этом случае приходится применять приближенные методы решения интегрального уравнения (4.2.14).

Наработкой на отказ
называется среднее значение времени между соседними отказами.
Эта характеристика определяется по статистическим данным об отказах по формуле ,(4.2.18)
где t i - время исправной работы элемента между (i-1)-м и i-м отказами; n - число отказов за некоторое время t.

Из формулы (4.2.18) видно, что в данном случае наработка на отказ определяется по данным испытания одного образца изделия. Если на испытании находится N образцов в течение времени t, то наработка на отказ вычисляется по формуле
,(4.2.19)
где t ij - время исправной работы j-го образца изделия между (i-1)-м и i-м отказом; n j - число отказов за время t j-го образца.

Наработка на отказ является достаточно наглядной характеристикой надежности, поэтому она получила широкое распространение на практике.

Параметр потока отказов и наработка на отказ характеризуют надежность восстанавливаемого изделия и не учитывают времени, необходимого на его восстановление. Поэтому они не характеризуют готовности устройства к выполнению своих функций в нужное время. Для этой цели вводятся такие критерии, как коэффициент готовности и коэффициент вынужденного простоя.

Коэффициентом готовности
называется отношение времени исправной работы к сумме времен исправной работы и вынужденных простоев устройства, взятых за один и тот же календарный срок. Эта характеристика по статистическим данным определяется
= t р /(t р + t п),(4.2.20)
где t р - суммарное время исправной работы изделия; t п - суммарное время вынужденного простоя.

Времена t р и t п вычисляются по формулам
; ,(4.2.21)
где t рi - время работы изделия между (i-1)-м и i-м отказом; t пi - время вынужденного простоя после i-го отказа; n - число отказов (ремонтов) изделия.

Для перехода к вероятностной трактовке величины t р и t п заменяются математическими ожиданиями времени между соседними отказами и времени восстановления соответственно. Тогда
K г = t ср / (t ср + t в),(4.2.22)
где t ср - наработка на отказ; t в - среднее время восстановления.

Коэффициентом вынужденного простоя
называется отношение времени вынужденного простоя к сумме времен исправной работы и вынужденных простоев изделия, взятых за один и тот же календарный срок.

Согласно определению
= t р /(t р + t п)(4.2.23)
или, переходя к средним величинам,
K п = t в / (t ср + t в).(4.2.24)
Коэффициент готовности и коэффициент вынужденного простоя связаны между собой зависимостью
K п = 1 - K г.(4.2.25)
При анализе надежности восстанавливаемых систем обычно коэффициент готовности вычисляют по формуле
K г = T ср / (T ср + t в).(4.2.26)
Формула (4.2.26) верна только в том случае, если поток отказов простейший, и тогда t ср = T ср.

Часто коэффициент готовности, вычисленный по формуле (4.2.26), отождествляют с вероятностью того, что в любой момент времени восстанавливаемая система исправна. На самом деле указанные характеристики неравноценны и могут быть отождествлены при определенных допущениях.

Действительно, вероятность возникновения отказа ремонтируемой системы в начале эксплуатации мала. С ростом времени t эта вероятность возрастает. Это означает, что вероятность застать систему в исправном состоянии в начале эксплуатации будет выше, чем после истечения некоторого времени. Между тем на основании формулы (4.2.26) коэффициент готовности не зависит от времени работы.

Для выяснения физического смысла коэффициента готовности K г запишем формулу для вероятности застать систему в исправном состоянии. При этом рассмотрим наиболее простой случай, когда интенсивность отказов l и интенсивность восстановления m есть величины постоянные.

Предполагая, что при t=0 система находится в исправном состоянии (P(0)=1), вероятность застать систему в исправном состоянии определяется из выражений
;
(4.2.27)
,
где l = 1 / T ср; m =1 / t в; K г = Т ср / (Т ср +t в).

Это выражение устанавливает зависимость между коэффициентом готовности системы и вероятностью застать ее в исправном состоянии в любой момент времени t.

Из (4.2.27) видно, что P г (t)® K г при t®¥ , т.е. практически коэффициент готовности имеет смысл вероятности застать изделие в исправном состоянии при установившемся процессе эксплуатации.

В некоторых случаях критериями надежности восстанавливаемых систем могут быть критерии невосстанавливаемых систем , например: вероятность безотказной работы, частота отказов, средняя наработка до первого отказа, интенсивность отказов . Такая необходимость возникает :
- когда имеет смысл оценивать надежность восстанавливаемой системы до первого отказа;
- в случае, когда применяется резервирование с восстановлением отказавших резервных устройств в процессе работы системы, причем отказ всей резервированной системы не допускается.

Критерием надежности называется признак, по которому можно количественно оценить надежность различных устройств. К числу наиболее широко применяемых критериев надежности относятся:

Вероятность безотказной работы в течение определенного времени P (t );

Tср ;

Наработка на отказ tср ;

Частота отказов f (t ) или а (t );

Интенсивность отказов λ(t );

Параметр потока отказов ω(t);

Функция готовности K г(t );

Коэффициент готовности K г.

Характеристикой надежности следует называть количественное значение критерия надежности конкретного устройства. Выбор количественных характеристик надежности зависит от вида объекта.

2.1.2. Критерии надежности невосстанавливаемых объектов

Рассмотрим следующую модель работы устройства. Пусть в работе (на испытании) находится N 0 элементов и работа считается законченной, если все они отказали. Причем вместо отказавших элементов отремонтированные не ставятся. Тогда критериями надежности данных изделий являются:

Вероятность безотказной работы P (t );

Частота отказов f (t ) или a (t );

Интенсивность отказов λ(t );

Средняя наработка до первого отказа Tср .

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени или в пределах заданной наработки не произойдет ни одного отказа.

Согласно определению:

P (t ) = P (T > t ), (4.2.1)

где: T - время работы элемента от его включения до первого отказа;

t - время, в течение которого определяется вероятность безотказной работы.

Вероятность безотказной работы по статистическим данным об отказах оценивается выражением:

где: N 0 - число элементов в начале работы (испытаний);

n (t ) - число отказавших элементов за время t ;

Статистическая оценка вероятности безотказной работы. При большом числе элементов (изделий) N 0 статистическая оценка P (t ) практически совпадает с вероятностью безотказной работы P (t ). На практике иногда более удобной характеристикой является вероятность отказа Q (t ).

Вероятностью отказа называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени возникает хотя бы один отказ. Отказ и безотказная работа являются событиями несовместными и противоположными, поэтому:

Частотой отказов по статистическим данным называется отношение числа отказавших элементов в единицу времени к первоначальному числу работающих (испытываемых) при условии, что все вышедшие из строя изделия не восстанавливаются. Согласно определению:

где: n t ) - число отказавших элементов в интервале времени от (t – Δt ) / 2 до (t + Δt ) / 2.

Частота отказов есть плотность вероятности (или закон распределения) времени работы изделия до первого отказа. Поэтому:

Интенсивностью отказов по статистическим данным называется отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени. Согласно определению

где: - среднее число исправно работающих элементов в интервале Δt ;

Ni - число изделий, исправно работающих в начале интервала Δt ;

Ni +1 - число элементов, исправно работающих в конце интервала Δt .

Вероятностная оценка характеристики λ(t ) находится из выражения:

λ(t ) = f (t ) / P (t ). (4.2.7)

Интенсивность отказов и вероятность безотказной работы связаны между

собой зависимостью:

Средней наработкой до первого отказа называется математическое ожидание времени работы элемента до отказа. Как математическое ожидание, Tср вычисляется через частоту отказов (плотность распределения времени безотказной работы):

Так как t положительно и P (0)=1, а P (∞) = 0, то:

По статистическим данным об отказах средняя наработка до первого отказа вычисляется по формуле

где: t i - время безотказной работы i -го элемента;

N 0 - число исследуемых элементов.

Как видно из формулы (4.2.11), для определения средней наработки до первого отказа необходимо знать моменты выхода из строя всех испытуемых элементов. Поэтому для вычисления средней наработки на отказ пользоваться указанной формулой неудобно. Имея данные о количестве вышедших из строя элементов ni в каждом i -м интервале времени, среднюю наработку до первого отказа лучше определять из уравнения:

В выражении (4.2.12) tсрi и m находятся по следующим формулам:

t cpi = (t i –1 + t i ) / 2, m = t k / Δt ,

где: t i –1 - время начала i -го интервала;

t i - время конца i -го интервала;

t k - время, в течение которого вышли из строя все элементы;

Δt = (t i –1 – t 1) - интервал времени.

Из выражений для оценки количественных характеристик надежности видно, что все характеристики, кроме средней наработки до первого отказа, являются функциями времени. Конкретные выражения для практической оценки количественных характеристик надежности устройств рассмотрены в разделе «Законы распределения отказов».

Рассмотренные критерии надежности позволяют достаточно полно оценить надежность невосстанавливаемых изделий. Они также позволяют оценить надежность восстанавливаемых изделий до первого отказа . Наличие нескольких критериев вовсе не означает, что всегда нужно оценивать надежность элементов по всем критериям.

Наиболее полно надежность изделий характеризуется частотой отказов f (t ) или a (t ). Это объясняется тем, что частота отказов является плотностью распределения, а поэтому несет в себе всю информацию о случайном явлении - времени безотказной работы.

Средняя наработка до первого отказа является достаточно наглядной характеристикой надежности. Однако применение этого критерия для оценки надежности сложной системы ограничено в тех случаях, когда:

Время работы системы гораздо меньше среднего времени безотказной работы;

Закон распределения времени безотказной работы не однопараметрический и для достаточно полной оценки требуются моменты высших порядков;

Система резервированная;

Интенсивность отказов не постоянная;

Время работы отдельных частей сложной системы разное.

Интенсивность отказов - наиболее удобная характеристика надежности простейших элементов, так как она позволяет более просто вычислять количественные характеристики надежности сложной системы.

Наиболее целесообразным критерием надежности сложной системы является вероятность безотказной работы . Это объясняется следующими особенностями вероятности безотказной работы:

Она входит в качестве сомножителя в другие, более общие характеристики системы, например, в эффективность и стоимость;

Характеризует изменение надежности во времени;

Может быть получена сравнительно просто расчетным путем в процессе проектирования системы и оценена в процессе ее испытания.

2.1.3. Критерии надежности восстанавливаемых объектов

Рассмотрим следующую модель работы. Пусть в работе находится N элементов и отказавшие элементы немедленно заменяются исправными (новыми или отремонтированными). Если не учитывать времени, потребного на восстановление системы, то количественными характеристиками надежности могут быть параметр потока отказов ω(t) и наработка на отказ tср .

Параметром потока отказов называется отношение числа отказавших изделий в единицу времени к числу испытываемых при условии, что все вышедшие из строя изделия заменяются исправными (новыми или отремонтированными). Статистическим определением служит выражение:

где: n t ) - число отказавших образцов в интервале времени от t – Δt /2

до t t /2;

N - число испытываемых элементов;

Δt - интервал времени.

Параметр потока отказов и частота отказов для ординарных потоков с ограниченным последействием связаны интегральным уравнением Вольтера второго рода:

По известной f (t ) можно найти все количественные характеристики надежности невосстанавливаемых изделий. Поэтому (4.2.14) является основным уравнением, связывающим количественные характеристики надежности невосстанавливаемых и восстанавливаемых элементов при мгновенном восстановлении.

Уравнение (4.2.14) можно записать в операторной форме:

Соотношения (4.2.15) позволяют найти одну характеристику через другую, если существуют преобразования Лапласа функций f (s ) и ω (s ) и обратные преобразования выражений (4.2.15).

Параметр потока отказов обладает следующими важными свойствами:

1) для любого момента времени, независимо от закона распределения времени безотказной работы, параметр потока отказов больше, чем частота отказов, т. е. ω(t ) > f (t );

2) независимо от вида функций f (t ) параметр потока отказов ω(t ) при t → ∞ стремится к 1/Tср . Это важное свойство параметра потока отказов означает, что при длительной эксплуатации ремонтируемого изделия поток его отказов, независимо от закона распределения времени безотказной работы, становится стационарным. Однако это вовсе не означает, что интенсивность отказов есть величина постоянная;

3) если λ(t ) - возрастающая функция времени, то λ(t ) > ω(t ) > f (t ), если λ(t ) - убывающая функция, то ω(t ) > λ(t ) > f (t );

4) при λ(t ) ≠ const параметр потока отказов системы не равен сумме параметров потока отказов элементов, т. е.:

Это свойство параметра потока отказов позволяет утверждать, что при вычислении количественных характеристик надежности сложной системы нельзя суммировать имеющиеся в настоящее время значения интенсивности отказов элементов, полученных по статистическим данным об отказах изделий в условиях эксплуатации, так как указанные величины являются фактически параметрами потока отказов;

5) при λ(t ) = λ= const параметр потока отказов равен интенсивности отказов

ω(t ) = λ(t ) = λ.

Из рассмотрения свойств интенсивности и параметра потока отказов видно, что эти характеристики различны.

В настоящее время широко используются статистические данные об отказах, полученные в условиях эксплуатации оборудования. При этом они часто обрабатываются таким образом, что приводимые характеристики надежности являются не интенсивностью отказов, а параметром потока отказов ω(t ). Это вносит ошибки при расчетах надежности. В ряде случаев они могут быть значительными.

Для получения интенсивности отказов элементов из статистических данных об отказах ремонтируемых систем необходимо воспользоваться формулой (4.2.6), для чего необходимо знать предысторию каждого элемента технологической схемы. Это может существенно усложнить методику сбора статистических данных об отказах. Поэтому целесообразно определять λ(t ) по параметру потока отказов ω(t ). Методика расчета сводится

к следующим вычислительным операциям:

По статистическим данным об отказах элементов ремонтируемых изделий и по формуле (4.2.13) вычисляется параметр потока отказов и строится гистограмма ω i (t );

Гистограмма заменяется кривой, которая аппроксимируется уравнением;

Находится преобразование Лапласа ω i (s ) функции ω i (t );

По известной ω i (s ) на основании (4.2.15) записывается преобразование Лапласа f i (s ) частоты отказов;

По известной f i (s ) находится обратное преобразование частоты отказов f i (t );

Находится аналитическое выражение для интенсивности отказов по формуле:

Строится график λ i (t ).

Если имеется участок, где λ i (t ) = λ i = const, то постоянное значение интенсивности отказов принимается для оценки вероятности безотказной работы. При этом считается справедливым экспоненциальный закон надежности.

Приведенная методика не может быть применена, если не удается найти по f (s ) обратное преобразование частоты отказов f (t ). В этом случае приходится применять приближенные методы решения интегрального уравнения (4.2.14).

Наработкой на отказ называется среднее значение времени между соседними отказами. Эта характеристика определяется по статистическим данным об отказах по формуле:

где: t i - время исправной работы элемента между (i – 1)-м и i -м отказами;

n - число отказов за некоторое время t .

Из формулы (4.2.18) видно, что в данном случае наработка на отказ определяется по данным испытания одного образца изделия. Если на испытании находится N образцов в течение времени t , то наработка на отказ вычисляется по формуле:

где: t ij - время исправной работы j -го образца изделия между (i – 1)-м и i -м отказом;

n j - число отказов за время tj -го образца.

Наработка на отказ является достаточно наглядной характеристикой надежности, поэтому она получила широкое распространение на практике. Параметр потока отказов и наработка на отказ характеризуют надежность восстанавливаемого изделия и не учитывают времени, необходимого на его восстановление. Поэтому они не характеризуют готовности устройства к выполнению своих функций в нужное время. Для этой цели вводятся такие критерии, как коэффициент готовности и коэффициент вынужденного простоя.

Коэффициентом готовности называется отношение времени исправной работы к сумме времен исправной работы и вынужденных простоев устройства, взятых за один и тот же календарный срок. Эта характеристика по статистическим данным определяется:

где: t р - суммарное время исправной работы изделия;

t п - суммарное время вынужденного простоя.

Времена и tп вычисляются по формулам:

где: t рi - время работы изделия между (i – 1)-м и i -м отказом;

t пi - время вынужденного простоя после i -го отказа;

n - число отказов (ремонтов) изделия.

Для перехода к вероятностной трактовке величины и tп заменяются математическими ожиданиями времени между соседними отказами и времени восстановления соответственно. Тогда:

K r = t cp / (t cp + t в ), (4.2.22)

где: t ср - наработка на отказ;

t в - среднее время восстановления.

Коэффициентом вынужденного простоя называется отношение времени вынужденного простоя к сумме времен исправной работы и вынужденных простоев изделия, взятых за один и тот же календарный срок.

Согласно определению:

K п = t p / (t p + t п ), (4.2.23)

или, переходя к средним величинам:

K п = t в / (t cp + t в ). (4.2.24)

Коэффициент готовности и коэффициент вынужденного простоя связаны между собой зависимостью:

K п = 1– K г . (4.2.25)

При анализе надежности восстанавливаемых систем обычно коэффициент готовности вычисляют по формуле:

K г =T cp / (T cp + t в ). (4.2.26)

Формула (4.2.26) верна только в том случае, если поток отказов простейший, и тогда t ср = T ср .

Часто коэффициент готовности, вычисленный по формуле (4.2.26), отождествляют с вероятностью того, что в любой момент времени восстанавливаемая система исправна. На самом деле указанные характеристики неравноценны и могут быть отождествлены при определенных допущениях.

Действительно, вероятность возникновения отказа ремонтируемой системы в начале эксплуатации мала. С ростом времени t эта вероятность возрастает. Это означает, что вероятность застать систему в исправном состоянии в начале эксплуатации будет выше, чем после истечения некоторого времени. Между тем на основании формулы (4.2.26) коэффициент готовности не зависит от времени работы.

Для выяснения физического смысла коэффициента готовности запишем формулу для вероятности застать систему в исправном состоянии. При этом рассмотрим наиболее простой случай, когда интенсивность отказов λ и интенсивность восстановления μ есть величины постоянные.

Предполагая, что при t = 0 система находится в исправном состоянии (P (0) = 1), вероятность застать систему в исправном состоянии определяется из выражений:

где λ = 1 /T cp ; μ = 1 / t в ; K г =T cp / (T cp + t в ).

Это выражение устанавливает зависимость между коэффициентом готовности системы и вероятностью застать ее в исправном состоянии в любой момент времени t .

Из (4.2.27) видно, что приt → ∞, т. е. практически коэффициент готовности имеет смысл вероятности застать изделие в исправном состоянии при установившемся процессе эксплуатации.

В некоторых случаях критериями надежности восстанавливаемых систем могут быть критерии невосстанавливаемых систем , например: вероятность работы, частота отказов, средняя наработка до первого отказа, интенсивность отказов . Такая необходимость возникает :

Когда имеет смысл оценивать надежность восстанавливаемой системы до первого отказа;

В случае, когда применяется резервирование с восстановлением отказавших резервных устройств в процессе работы системы, причем отказ всей резервированной системы не допускается.