Эффективность солнечной панели. Эффективная солнечная батарея своими руками

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Одним из преимуществ собственного дома является возможность его модификации. В том числе и источниками альтернативной энергии. Солнечные батареи для частного дома – наилучший на данный момент способ обеспечить себя экологичным электричеством.

С чего начать

Подсчет затрат электроэнергии. Для установления необходимой мощности системы солнечных панелей, нужно подсчитать, сколько электричества вы расходуете. Очень многое в этом вопросе зависит от того, используется ли частный дом постоянно или только как дача в определенные сезоны года. Для подсчета возьмите квитанции по оплате за электроэнергию за год и установите общее количество киловатт, затраченных за этот период, затем разделите на 12 (количество месяцев) – вы получите среднемесячный расход электроэнергии.

Расчет среднемесячного расхода потребляемого электричества

Как показывает опыт и отзывы реальных потребителей, в средней полосе России полученный результат необходимо умножить на коэффициент 16, чтобы получить необходимую мощность батарей в Ваттах.

Рассмотрим пример. За год вы потратили 1625 кВт, делим эту цифру на 12 месяцев и умножаем на коэффициент 16 – получается, 2166 Ватт. Т.е. система солнечных батарей будет обеспечивать такой дом, если ее мощность будет не менее 2200 Ватт/час

Где крепить?

Крыша. Закрепление солнечных батарей на крыше – очевидное, но не всегда лучшее решение для частного дома. Направленный на юг скат крыши действительно обеспечивает наилучший результат из стационарных способов крепления солнечных батарей, но на этом варианты не ограничиваются.

При таком закреплении скат крыши должен быть на ЮГ

Стены. Если стена «смотрит» на юг – она отлично подходит для размещения на ней солнечных батарей. Понаблюдайте, не падает ли на стену тень от деревьев, хозяйственных построек, забора, иных объектов. Не размещайте солнечные панели в этих местах.

Желательно также использовать южную стену

Не стоит ставить панели на восточной или западной стенах. Таким образом, в самый интенсивный период светового дня вы будете получать на свои панели только косые лучи, что значительно снижает эффективность системы

Свободное размещение. Самый эффективный вариант размещения солнечных батарей, но требует свободной площади во дворе. При свободном размещении солнечных батарей в частном доме их можно закреплять на шарнирах и таким образом, направляя их поверхность к солнцу под 90°.

Такое расположение батарей позволяет получить от них максимум мощности

Что входит в систему

Солнечные панели . О том, как их собрать, мы писали в (откроется в новом окне). Вы можете купить готовый комплект солнечных батарей для дома, но для экономии средств можно приобрести поликристаллические фотоэлементы и собрать солнечные батареи для своего дома своими руками.

Инвертор. Солнечные батареи вырабатывают постоянный ток, близкий к 12 или 24 вольтам (в зависимости от подключения), инвертор преобразует его в переменный 220 В и 50 Гц, от которого можно питать все бытовые приборы.

Аккумулятор. Даже их система. Солнечная энергия вырабатывается не постоянно. В пиковые часы её может быть переизбыток, а с наступлением сумерек её выработка прекращается вовсе. Аккумуляторы накапливают электричество в течении светового дня и отдают его вечером/ночью. Как выбирать аккумулятор для солнечной электростанции написано в (откроется в новом окне).

Контроллер. Обеспечивает полный заряд аккумуляторной батареи и защищает её от перезарядки и закипания. О том, какой контроллер выбрать мы писали в (откроется в новом окне).

Выгодны ли солнечные батареи для частного дома

В западных странах мода на солнечную энергетику продиктована больше заботой об экологии, чем поиском экономической выгоды. У нас реалии несколько иные.

При сохранении нынешних цен на поставляемое электричество, система из солнечных батарей, собранная своими руками для одного частного дома и семьи из 4 х человек, полностью окупается за 4-5 лет. При этом срок службы фотоэлементов – составляет 20-25 лет, а вот аккумуляторы придется менять через 5-7 лет в зависимости от качества батарей.

Пока нигде в мире (и Россия не исключение) не наблюдается снижения цен на поставляемое электричество, поэтому за срок службы фотоэлементов в солнечной панели, система успеет окупиться как минимум 4-5 раз.

Видео. Как рассчитать необходимое количество солнечных батарей для дома

В ролике наглядно показан порядок расчета площади солнечных батарей для частного дома. Полезно для тех, кто хочет учесть все расходы на сооружение системы автономного солнечного электроснабжения уже на этапе планирования.

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;


Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:


Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.


Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно ).

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

Солнечные батареи – это уникальная система, позволяющая преобразовывать солнечные лучи в электрическую и тепловую энергию. Растущий спрос на гелиопродукцию, на сегодня, обуславливается ее быстрой окупаемостью и долговечностью, доступностью теплоносителя. Но, какое напряжение способны вырабатывать солнечные батареи? О том, насколько эффективны гелиосистемы, и от чего зависит коэффициент их полезного действия – читайте в статье.

Солнечные батареи с высоким КПД: виды преобразователей

КПД солнечный батарей – это величина, которая равняется отношению мощности электроэнергии к мощности падающих на панель устройства солнечных лучей. Современные солнечные батареи обладают КПД в диапазоне от 10 до 45%. Такая большая разница обуславливается различиями между материалами изготовления и конструкцией пластин батарей.

Так, пластины солнечных батарей могут быть:

  • Тонкопленочными;
  • Многопереходными.

Солнечные батареи последнего типа, на сегодня, являются наиболее дорогими, но и наиболее продуктивными. Это связано с тем, что каждый переход в пластине поглощает волны с определенной длиной. Таким образом, устройство охватывает весь спектр солнечных лучей. Максимальный КПД батарей с многопереходными панелями, полученный в лабораторных условиях, составляет 43,5%.

Энергетики с уверенностью заявляют, что через несколько лет этот показатель возрастет до 50%. КПД тонкопленочных пластин зависит, в большей степени, от материала их изготовления.

Так, тонкопленочные солнечные батареи делятся на такие виды:

  • Кремниевые;
  • Кадмиевые.

Наиболее популярными солнечными батареями, которые можно использовать в бытовых целях, считаются установки с кремниевыми пленочными пластинами. Объем таких устройств на рынке составляет 80%. Их КПД достаточно низкий – всего 10%, но они отличаются доступностью и надежностью. На несколько процентов показатель полезного действия выше у кадмиевых пластин. Пленки с частицами селенида, меди, индия и галлия имеют более высокий КПД, который равняется 15%.

От чего зависит эффективность солнечных батарей

На КПД фотоэлектрических преобразователей влияет масса факторов. Так, как было отмечено выше, количество вырабатываемой энергии зависит от структуры панели преобразователя, материала их изготовления.


Кроме того, эффективность солнечных преобразователей зависит от:

  • Силы солнечного излучения. Так, при снижении солнечной активности, мощность гелиоустановок снижается. Чтобы батареи обеспечивали потребителя энергией и в ночное время, их снабжают специальными аккумуляторами.
  • Температуры воздуха. Так, солнечные батареи с охлаждающими устройствами являются более продуктивными: нагрев панелей негативно сказывается на их способности преобразовывать энергию в ток. Так, в морозную ясную погоду КПД гелиобатарей выше, нежели в солнечную и жаркую.
  • Угла наклона устройства и падения солнечных лучей. Для обеспечения максимальной эффективности, панель солнечной батареи должна быть направлена строго под солнечное излучение. Наиболее эффективными считаются модели, уровень наклона которых можно менять относительно расположения Солнца.
  • Погодных условий. На практике отмечено, что в районах с пасмурной, дождливой погодой эффективность солнечных преобразователей значительно ниже, нежели в солнечных регионах.

Кроме того, на эффективность солнечных преобразователей влияет и уровень их чистоты. Для того, чтобы устройство могло работать продуктивно, его пластины должны потреблять как можно больше солнечного излучения. Сделать это можно лишь в том случае, если приборы чистые.

Скопление на экране снега, пыли и грязи может уменьшить КПД устройства на 7%.

Мыть экраны рекомендуется 1-4 раза в год в зависимости от степени загрязнений. При этом, для очистки можно использовать шланг с насадкой. Технический осмотр преобразовательных элементов следует проводить раз в 3-4 месяца.

Мощность солнечных батарей на квадратный метр

Как было замечено выше, в среднем, один квадратный метр фотоэлектрических преобразователей обеспечивает выработку 13-18% от мощности попадающих на него солнечных лучей. То есть, при самых благоприятных условиях, с квадратного метра солнечных батарей можно получить 130-180 Вт.

Мощность гелиосистем можно увеличивать, наращивая панели и увеличивая площадь фотоэлектрических преобразователей.

Получить большую мощность можно и, установив панели с более высоким КПД. Тем не менее, достаточно низкий (в сравнении, например, с индукционными преобразователями) коэффициент полезного действия доступных солнечных батарей является главной преградой на пути к их широкому использованию. Увеличение мощности и КПД гелиосистем является первостепенными задачами современной энергетики.

Самые эффективные солнечные батареи: рейтинг

Наиболее эффективные солнечные преобразователи, на сегодня, производит фирма Sharp. Трехслойные, мощные, концентрирующие солнечные панели имеют эффективность в 44,4%. Стоимость их невероятно высока, поэтому они нашли применение лишь в авиационно-космической промышленности.


Наиболее доступными и эффективными являются современные солнечные батареи от компаний:

  • Panasonic Eco Solutions;
  • First Solar;
  • MiaSole;
  • JinkoSolar;
  • Trina Solar;
  • Yingli Green;
  • ReneSola;
  • Canadian Solar.

Компания Sun Power производят самые надежные солнечные преобразователи с КПД в 21,5%. Продукция этой компании пользуется абсолютной популярностью на коммерческих и производственных объектах, уступая, разве что, устройствам от Q-Cells.

КПД солнечных батарей (видео)

Современные солнечные батареи, как экологически чистые устройства преобразования энергии с неиссякаемым теплоносителем, набирают всю большую популярность. Уже сегодня девайсы с фотоэлектрическими преобразователями используют для бытовых целей (зарядки телефонов, планшетов). Эффективность солнечных установок пока уступает альтернативным способам получения энергии. Но, повышение КПД преобразователей – это первостепенная задача современной энергетики.

Достигнуть впечатляющих для сегмента фотоэлектрических элементов успехов удалось стартапу Инновационного парка EPFL в Германии.

Согласно опубликованной пресс-службой учебного заведения информации, команде студентов Института Фраунгофера во главе с руководителем проекта Лораном Кулотом удалось модернизировать применяемые в космической сфере технологии, существенно удешевив производство и повысив эффективность солнечных батарей. Показатели КПД прототипа будущей массовой фотоэлектрической панели, которую создатели рассчитывают превратить в серийный продукт после разрешения технологических вопросов и поиска инвесторов, вдвое превышают стандартные для отрасли. Напомним, что КПД имеющихся в продаже солнечных батарей в большинстве случаев достигает 15-20%, что является пределом для применяемых сегодня технологий «улавливания» солнечных лучей с последующим преобразованием этой энергии в электрическую. Полученные в ходе тестирования панели-прототипа результаты показали эффективность выработки электроэнергии на уровне 36,4%, что в случае перехода на массовый выпуск источников преобразования энергии Солнца в электричество позволит достичь выдающегося показателя — 30-32%.

Создатели принципиально нового и сверхэффективного типа солнечной батареи рассказали о примененной ими методике повышения КПД батареи, для чего специалисты EPFL воспользовались оптическими линзами. Применяемые в космосе панели для преобразования солнечной энергии в электрическую изготавливаются с применением сверхдорогих материалов, помогающих улучшить свойства «улавливания» лучей Солнца в специальных мини-ячейках. Немецкие специалисты из независимой лаборатории Института Фраунгофера применили этот же принцип, максимально уменьшив площадь очень дорогого слоя высокопроизводительных ячеек. Вместо «растянутого» на всю площадь панели слоя фотоэлементов из дорогостоящих материалов разработчики взяли маленький кусочек высокопроизводительных ячеек, сконцентрировав на нем весь поступающий на поверхность элемента солнечный свет. Верхний слой поверхности батареи состоит из микроскопических линз, установленных на механической основе, при помощи маленьких сервомоторов смещающей фокусируемый свет точно на фотоподложку в зависимости от расположения земного светила.

Такая методика обеспечивает максимальную эффективность преобразования энергии на протяжении всего светового дня при сохранении низкой стоимости производства. Цена выпуска вдвое более эффективных солнечных элементов после налаживания серийного производства основанных на разработанных специалистами EPFL принципах батарей превысит себестоимость имеющихся на рынке только панелей на 10-15% при стопроцентном наращивании показателя КПД. Говорить о сроках выпуска перспективной разработки в массовых масштабах создатели очень дешевого в сравнении с выпускающимися для применения в космосе образцами решения говорят пока неохотно, ссылаясь на необходимости отработки технологического базиса для налаживания крупносерийного выпуска недорогих в изготовлении, но крайне эффективных солнечных панелей с КПД 36%. Ожидается, что первые мелкосерийные образцы таких элементов появятся не раньше, чем через 2-3 года, когда себестоимость выпуска фотоэлектрических панелей сможет установить новый ценовой рекорд. Сегодня приобретение и установка подобных батарей на загородных участках для вырабатывания электрической энергии «из воздуха» обходится многократно дороже подключения к электросетям — окупать дорогостоящую покупку приходится в буквальном смысле десятилетия.

По этой причине активно продвигаемые на Западе «солнечные плантации» из сотен и тысяч отдельных фотоэлементов продолжают субсидироваться за счет государственных программ стимулирования сферы альтернативной энергетики. Только за счет вложения миллиардов долларов и евро в развитие этой области Европе и США удалось добиться внушительных и внушающих оптимизм экономических показателей, на бумаге выглядящих настоящим прорывом в сфере получения экологически чистой электроэнергии. На деле каждый выработанный из Солнца Киловатт обходится значительно дороже, чем разведка, добыча и последующее извлечение из недр земли углеводородов, продолжающих составлять основу общемировой энергетики. Единственной альтернативой «бесплатной» электроэнергии остается атомная энергетика, категорически вычеркнутая Евросоюзом и большинством других мировых держав из списка доступных источников электричества. Причиной становится опасность повторения трагических событий 1986-го и 2011 годов в советском Чернобыле и японской Фукусиме, когда на эксплуатируемых СССР и Японией соответственно атомных электростанциях фиксировались радиационные аварии предельного по Международной шкале ядерных событий седьмого уровня.

Именно поэтому Запад продолжает рассматривать солнечную энергетику в качестве самого перспективного направления при формировании базы для создания «энергетического задела» будущим поколениям, которым очень скоро придется столкнуться с полным отсутствием легкоизвлекаемых запасов углеводородов — нефти, газа и угля. Уже сегодня запасы расположенных на доступной для современных буровых установок глубине энергетических ресурсов эксперты называют «близкими к истощению», что вынуждает ученых и исследователей энергично перебирать новые варианты для сохранения текущего уровня потребления электричества мировой промышленностью. Потенциально выгодными с технологической точки зрения пока остаются только два направления — ядерная энергетика и фотоэлементы, преобразующие «добирающийся» по поверхности планеты свет галактического светила в нужную для жизнедеятельности человека электрическую энергию. Искусственный отказ от атома оставляет западным державам, в первую очередь Евросоюзу и Соединенным Штатам Америки, только один путь для дальнейшего развития и модернизации собственной энергетики.

По мнению главного операционного директора стартапа EPFL Флориана Герлиха, созданные немецкими специалистами батареи позволят снизить цену за вырабатываемый Киловатт-час электроэнергии для потребителей до приемлемого уровня, когда покупка дорогой солнечной панели даже без привлечения государственных субсидий окупится после непродолжительной эксплуатации. Увеличение КПД до 36% — многообещающий прорыв, способный «встряхнуть» мировую энергетическую систему в рамках общемирового проекта по поиску наиболее выгодных с финансовой точки зрения и показателей экологичности способов получения электричества. На последнее, например, активно «переезжают» выпускаемые крупнейшими автоконцернами автомобили, доля которых с установленными под капотом электродвигателями к 2030-2035 годам достигнет, по предварительным подсчетам экспертов, серьезных 10-12% в масштабе всего автопарка на планете. Активное содействие этому окажут и разработки ученых, на протяжении последних десятилетий продолжающих биться за каждый процент эффективности выработки электроэнергии, добиваясь достижения предельно допустимых значений в гонке за «бесплатными» киловаттами.