Гоноровский И. С

Из предыдущего видно, сколь разнообразным преобразованиям подвергается сигнал в процессе передачи по каналу связи. Некоторые из этих процессов являются обязательными для большинства радиотехнических систем независимо от их назначения, а также от характера передаваемых сообщений. Перечислим эти фундаментальные процессы и попутно отметим их основные черты применительно к обобщенной схеме радиотехнического канала, представленной на рис. 1.1.

Преобразование исходного сообщения в электрический сигнал и кодирование . При передаче речи и музыки такое преобразование осуществляется с помощью микрофона, при передаче изображений (телевидение) - с помощью передающих трубок (например, суперортикона). При передаче письменного сообщения (радиотелеграфия) сначала осуществляют кодирование, заключающееся в том, что каждая буква текста заменяется комбинацией стандартных символов (например, точек, тире и пауз в коде Морзе), которые затем преобразуют в стандартные электрические сигналы (например, импульсы разной длительности или разной полярности).

Следует отметить, что схема на рис. 1.1 соответствует случаю, когда информация вводится "в начале" канала связи, т. е. непосредственно в передатчике. Несколько иначе обстоит дело, например, в радиолокационном канале, где информация о цели (дальность, высота, скорость и т. д.) вводится в результате отражения радиоволны от цели в свободном пространстве.

Генерация высокочастотных колебаний . Высокочастотный генератор является источником колебаний несущей частоты. В зависимости от назначения радиоканала связи мощность колебаний изменяется от тысячных долей ватта до миллионов ватт. Естественно, что конструктивные формы и размеры этих генераторов различны - от простейшего малогабаритного элемента до грандиозного технического сооружения.

Основными характеристиками высокочастотного генератора являются частота и диапазонность (возможность быстрой перестройки с одной рабочей частоты на другую), мощность и коэффициент полезного действия. Особенно важное значение имеет стабильность частоты колебаний. Радиотехника в этом отношении находится в исключительном положении. Условия распространения радиоволн и широкий спектр частот сигналов диктуют применение очень высоких несущих частот. Условия же обработки сигналов на фоне помех и необходимость ослабления взаимных помех между различными радиоканалами заставляют добиваться максимально возможного уменьшения абсолютных изменений частоты. Это приводит к чрезвычайно жестким требованиям к относительной стабильности частоты.

Управление колебаниями (модуляция) . Процесс модуляции заключается в изменении одного или нескольких параметров высокочастотного колебания по закону передаваемого сообщения. Частоты модулирующего сигнала, как правило, малы по сравнению с несущей частотой генератора, Для осуществления модуляции используются различные приемы, обычно основанные на изменении потенциала электродов электронных приборов, входящих в схему радиопередающего устройства. Основная характеристика процесса модуляции - степень соответствия между изменением параметра высокочастотного колебания и модулирующим сигналом.

Усиление слабых сигналов в приемнике . Антенна приемника улавливает ничтожную долю энергии, излучаемой антенной передатчика, В зависимости от расстояния между передающей и приемной станциями, от степени направленности излучения антенн и условий распространения радиоволн мощность на входе приемника 10 -10 ... 10 -14 Вт. На выходе же приемника для надежной регистрации сигнала требуется мощность порядка милливатт, единиц ватт и более. Отсюда видно, что усиление в приемнике должно достигать 10 7 ... 10 14 по мощности или 10 4 ... 10 7 по напряжению.

В современных приемниках уверенная регистрация сигнала обеспечивается при напряжениях на входе порядка микровольта. Решение этой сложной задачи оказывается возможным благодаря достижениям современной электроники. Большую роль играют также специальные методы построения схем приемников, обеспечивающие большое усиление при сохранении устойчивости работы приемника. К таким методам относится преобразование (понижение) частоты колебания в тракте приемника, осуществляемое так, что при этом сохраняется структура передаваемого сигнала (в схеме на рис. 1.1 процесс преобразования частоты не обозначен). Помимо приемных устройств, процесс преобразования частоты широко используется в различных радиотехнических и радиоизмерительных устройствах.

Проблема усиления в приемнике неотделима от проблемы выделения сигнала на фоне помех. Поэтому одним из основных параметров приемника является избирательность, под которой подразумевается способность выделять полезные сигналы из совокупности сигнала и посторонних воздействий (помех), отличающихся от сигнала частотой. Частотная избирательность осуществляется с помощью резонансных колебательных цепей.

Выделение сообщения из высокочастотного колебания (детектирование и декодирование) . Детектирование является процессом, обратным по отношению к модуляции. В результате детектирования должно быть получено напряжение (ток), изменяющееся во времени так же, как изменяется один из параметров (амплитуда, частота или фаза) модулированного колебания. Иными словами, должно быть восстановлено передаваемое сообщение. Детектор, как правило, включается на выходе приемника, следовательно, к нему подводится модулированное колебание, уже усиленное предыдущими ступенями приемника. Основное требование к детектору - точное воспроизведение формы сигнала.

После детектирования осуществляется декодирование сигнала, т. е. процесс, обратный кодированию. В ряде радиотехнических каналов кодирование и декодирование не используются.

Помимо перечисленных процессов, так или иначе связанных с преобразованием частотных спектров, в радиотехнических устройствах широкое применение находит усиление колебаний без трансформации частоты, осуществляемое в различных усилителях. К таким усилителям относятся:

Низкочастотные усилители управляющих сигналов, используемые перед модулятором передатчика, а также на выходе приемника;

Усилители коротких импульсов, применяемые в телевизионной и радиолокационной технике, а также в импульсных системах радиосвязи;

Высокочастотные усилители большой мощности, используемые в радиопередающих устройствах;

Высокочастотные усилители слабых сигналов, применяемые в радиоприемных и измерительных устройствах.

Кроме упомянутых процессов, присущих, как уже отмечалось, любой радиотехнической линии, в ряде специальных случаев широко применяются многие другие процессы: умножение и деление частоты, генерация коротких импульсов, различные виды импульсной модуляции и т. д.

Министерством образования

Республики Беларусь

· Регистрационный № ТД-I.008/тип.

·

·

·

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАДИОТЕХНИКИ

по специальностям 1Радиоинформатика,

СОСТАВИТЕЛЬ:

Доцент кафедры радиотехнических устройств Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент

РЕЦЕНЗЕНТЫ:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

«Теоретические основы радиотехники» - это одна из дисциплин, определяющая своим содержанием профессиональную подготовку инженеров по специальностям 1Радиоинформатика,Радиоэлектронная защита информации. Цель дисциплины состоит в изучении теоретических основ современной радиотехники, связанных с анализом радиотехнических сигналов и устройств, использовании полученных знаний в качестве основы при изучении последующих радиотехнических дисциплин.

Дисциплина «Теоретические основы радиотехники» предусматривает изучение теории детерминированных и случайных радиосигналов, принципов их получения и преобразования в радиотехнических устройствах, методов анализа линейных, нелинейных и параметрических цепей, схемного построения типовых устройств канала связи и других информационных систем , вопросов оптимальной и цифровой обработки сигналов. В дисциплине используются современные математические методы решения задач анализа радиотехнических сигналов и цепей. Задача дисциплины - сформировать такой объем теоретических и физических знаний, которые обеспечат понимание и последующее изучение основных проблем синтеза и анализа сложных радиотехнических систем, оценки их качества по различным критериям.

Типовая программа по дисциплине «Теоретические основы радиотехники» рассчитана на объем 170 учебных часов. Примерное распределение учебных часов по видам занятий: лекций - 102 часа, лабораторных и практических занятий - 68 часов.

В результате изучения дисциплины студенты должны

знать:

Математические модели сигналов, методы описания и анализа их свойств;

Методы анализа линейных, нелинейных и параметрических цепей;

Схемное построение и принципы работы типовых устройств радиотехнического канала связи;

Основные положения статистического анализа случайных сигналов;

Методы анализа процессов линейного и нелинейного преобразований случайных сигналов;

Элементы теории оптимальной линейной фильтрации;

Основы теории цифровой обработки сигналов;

уметь:

Классифицировать радиотехнические сигналы и устройства в системе различных показателей;

Решать задачи анализа сигналов и их преобразований с применением современного математического аппарата и ЭВМ;

Анализировать процесс функционирования радиотехнических устройств в различных режимах;

Синтезировать схемы оптимальных и цифровых фильтров;

Проводить экспериментальный анализ сигналов и процессов их обработки с использованием натурного моделирования и моделирования на ЭВМ, оформлять результаты экспериментов и формулировать соответствующие выводы;

приобрести навыки:

Решения задач спектрального и корреляционного анализа радиотехнических сигналов;

Применения ЭВМ для расчета спектральных и временных характеристик сигналов и основных параметров процесса их преобразований;

Проведения экспериментальных исследований радиотехнических сигналов и цепей.

Перечень дисциплин, на которых базируется дисциплина «Теоретические основы радиотехники»: высшая математика, теория вероятностей, физика, основы электротехники , электронные приборы, основы теории цепей.


ВВЕДЕНИЕ

Тематика дисциплины «Теоретические основы радиотехники», необходимость и особенности ее изучения, место в системе подготовки специалистов по радиоинформатике. Основные задачи радиотехники и области ее применения, тенденции развития. Назначение радиотехнических информационных систем, их структура, классификация, принципы функционирования. Классификация сигналов. Проблема помехоустойчивости. Развитие радиоэлектронной промышленности в Республике Беларусь.

Раздел 1. РАДИОТЕХНИЧЕСКИЕ СИГНАЛЫ

Тема 1.1. АНАЛИЗ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Математические модели и основные характеристики детерминированных сигналов. Векторное представление сигналов. Ортогональные сигналы и обобщенный ряд Фурье. Погрешность аппроксимации рядом Фурье.

Понятие спектра сигнала, необходимость его использования. Гармонический спектральный анализ и синтез периодических сигналов. Тригонометрическое и комплексное представление спектра периодического сигнала. Распределение мощности в спектре периодического сигнала.

Спектральный анализ непериодических сигналов. Основные свойства преобразования Фурье. Распределение энергии в спектре непериодического сигнала. Соотношение между длительностью сигнала и шириной его спектра. Связь между спектрами периодического и непериодического сигналов. Спектры испытательных сигналов: сигналов, описываемых дельта функцией и единичной функцией, гармонического сигнала.

Корреляционный анализ детерминированных сигналов. Связь между корреляционной и спектральной характеристиками сигнала. Дискретизация и восстановление сигналов по теореме отсчетов (теореме Котельникова). Ряд Котельникова. Принципы временного уплотнения каналов связи.

Тема 1.2. МОДУЛИРОВАННЫЕ СИГНАЛЫ

Необходимость применения модулированных колебаний. Виды модуляции. Сигналы с амплитудной модуляцией. Векторное представление и спектры сигналов с амплитудной модуляцией. Энергетические соотношения. Балансная и однополосная амплитудные модуляции.

Угловая модуляция. Сигналы с частотной (ЧМ) и фазовой (ФМ) модуляциями. Векторное представление и спектры сигналов с ЧМ и ФМ. Энергетические соотношения. Сравнительный анализ амплитудной, частотной и фазовой модуляций. Радиоимпульс с частотной модуляцией, его свойства и основные характеристики.

Сигналы с импульсной, амплитудно-импульсной и импульсно-кодовой (цифровой) модуляциями. Методы модуляции, используемые для передачи дискретных данных по каналам связи вычислительных сетей.

Обобщенное представление модулированных колебаний в виде узкополосных сигналов. Огибающая, частота и фаза узкополосного сигнала. Аналитический сигнал и его свойства.

Раздел 2. ПРЕОБРАЗОВАНИЯ СИГНАЛОВ В ЛИНЕЙНЫХ РАДИОТЕХНИЧЕСКИХ ЦЕПЯХ

Тема 2.1. ЛИНЕЙНЫЕ РАДИОТЕХНИЧЕСКИЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ

Классификация линейных цепей. Основные свойства и характеристики линейных цепей, методы их расчета и способы экспериментального определения. Устройства дифференцирования и интегрирования сигналов, их характеристики. Фильтры. Активные линейные цепи. Усилительные устройства, классификация и принцип работы.

Линейные радиотехнические цепи с обратной связью. Влияние обратной связи на характеристики устройств. Устойчивость линейных цепей с обратной связью. Критерии устойчивости Гурвица, Найквиста, Михайлова.

Тема 2.2. ПРОХОЖДЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ ЧЕРЕЗ ЛИНЕЙНЫЕ ЦЕПИ

Постановка задачи и методы анализа линейных цепей. Временной и спектральный методы анализа, их сравнительная характеристика. Прохождение сигналов через дифференцирующую и интегрирующую цепи.

Особенности анализа прохождения широкополосных и узкополосных сигналов через узкополосные цепи. Упрощенный спектральный метод. Упрощенный временной метод (метод огибающей). Анализ прохождения сигналов с амплитудной и частотной модуляциями через резонансный усилитель.

Раздел 3. ПРЕОБРАЗОВАНИЯ СИГНАЛОВ В НЕЛИНЕЙНЫХ И ПАРАМЕТРИЧЕСКИХ РАДИОТЕХНИЧЕСКИХ ЦЕПЯХ

Тема 3.1. НЕЛИНЕЙНЫЕ РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И МЕТОДЫ ИХ АНАЛИЗА

Нелинейные радиотехнические цепи, их свойства и основные характеристики. Методы аппроксимации характеристик нелинейных элементов. Преобразование спектра сигнала в цепи с нелинейным элементом при степенной и кусочно-линейной аппроксимации характеристик. Метод угла отсечки.

Метод фазовой плоскости. Фазовые траектории, особые точки, изоклины, предельные циклы. Анализ нелинейных устройств методом фазовой плоскости.

Тема 3.2. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ

Нелинейное резонансное усиление сигналов, режимы работы и параметры усилителей. Умножение частоты. Синтез идеального умножителя частоты. Резонансные и параметрические умножители частоты.

Получение амплитудно-модулированных колебаний. Амплитудные модуляторы на основе резонансных усилителей и аналоговых перемножителях напряжений. Балансный модулятор. Выпрямление колебаний. Принципы построения и функционирования выпрямителей. Детектирование сигналов с амплитудной модуляцией. Линейный и квадратичный детекторы. Синхронное детектирование.

Получение сигналов с угловой модуляцией. Частотные и фазовые модуляторы. Принцип работы цифрового частотного модулятора. Детектирование сигналов с угловой модуляцией. Частотное и фазовое детектирование.

Преобразование частоты. Балансные преобразователи частоты .

Принципы построения модуляторов и демодуляторов (модемов), используемых в каналах связи вычислительных сетей.

Тема 3.3. АВТОКОЛЕБАТЕЛЬНЫЕ СИСТЕМЫ

Структурная схема автогенератора. Необходимость положительной обратной связи. Возникновение колебаний и стационарный режим работы автогенератора. Баланс амплитуд и баланс фаз. "Мягкий" и "жесткий" режимы самовозбуждения. Квазилинейный метод анализа стационарного режима. Определение амплитуды и частоты генерируемых колебаний в стационарном режиме.

Схемы автогенераторов. LC и RC автогенераторы. Трехточечные автогенераторы с индуктивной и емкостной связями. Автогенераторы на приборах с отрицательным дифференциальным сопротивлением. Стабилизация частоты в автогенераторах.

Релаксационные автогенераторы. Мультивибраторы, одновибраторы.

Тема 3.4. ПАРАМЕТРИЧЕСКИЕ УСТРОЙСТВА

Особенности и разновидности параметрических цепей. Энергетические соотношения в цепи с нелинейной емкостью. Уравнения Мэнли-Роу.

Дифференциальное уравнение цепи с переменной емкостью. Уравнение Матье. Усиление сигналов в параметрических цепях. Одноконтурный и двухконтурный параметрические усилители. Параметрическое возбуждение колебаний. Емкостной и индуктивный параметроны.

Раздел 4. ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Тема 4.1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ СИГНАЛОВ

Случайные сигналы и помехи в системах связи и управления. Вероятностно-статистический подход к описанию физических явлений в радиотехнике. Случайный процесс как модель случайного сигнала. Одномерные и многомерные законы распределения вероятностей случайных процессов. Числовые характеристики. Корреляционная функция как мера статистических связей. Понятие статистической зависимости случайных процессов.

Стационарные и нестационарные случайные процессы. Эргодические случайные процессы. Статистические характеристики стационарных и эргодических случайных процессов.

Спектральная плотность мощности случайного сигнала. Теорема Винера-Хинчина. Соотношение между шириной спектра и интервалом корреляции. Некоторые модели случайных сигналов: нормальный (гауссовский) шум, белый шум, узкополосный случайный процесс, их вероятностные характеристики.

Тема 4.2. ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Постановка задачи анализа линейных цепей при воздействии случайных сигналов. Спектральная плотность мощности и корреляционная функция случайного сигнала на выходе линейной цепи. Числовые характеристики. Определение законов распределения случайных сигналов на выходе линейной цепи. Эффект нормализации случайных сигналов в узкополосных цепях.

Характеристики собственных шумов линейных цепей. Дифференцирование и интегрирование случайных процессов.

Тема 4.3. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Постановка задачи анализа нелинейных цепей при воздействии случайных сигналов. Методы определения законов распределения вероятностей случайных сигналов на выходе нелинейной безынерционной цепи. Спектральная плотность мощности и корреляционная функция выходного сигнала. Определение числовых характеристик.

Преобразование сигнала и шума в приемном тракте. Характеристики огибающей и фазы узкополосного случайного процесса. Воздействие узкополосного нормального шума на линейный и квадратичный амплитудные детекторы. Совместное воздействие гармонического колебания и нормального шума на амплитудный детектор. Помехоустойчивость амплитудных детекторов. Воздействие сигнала и нормального шума на частотный детектор.

Тема 4.4. ПРИНЦИПЫ ОПТИМАЛЬНОЙ ЛИНЕЙНОЙ ФИЛЬТРАЦИИ

Постановка задачи оптимальной линейной фильтрации сигналов на фоне помех. Коэффициент передачи согласованного фильтра и отношение сигнала к шуму на его выходе. Импульсная характеристика согласованного фильтра. Физическая осуществимость. Сигнал и помеха на выходе согласованного фильтра. Синтез согласованных фильтров для некоторых типовых сигналов. Формирование сигнала, сопряженного с заданным фильтром. Согласованная фильтрация заданного сигнала при "небелом" шуме.

Сущность корреляционного приема. Структурная схема корреляционного приемника. Квазиоптимальные фильтры.

Раздел 5. ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Тема 5.1. ПРИНЦИПЫ ДИСКРЕТНОЙ ФИЛЬТРАЦИИ

Проблемы цифровой обработки сигналов. Общая структура цифрового фильтра. Спектр дискретизированного сигнала. Дискретное преобразование Фурье. Быстрое преобразование Фурье. Общие сведения о дискретном z - преобразовании. Дискретная свертка сигналов.

Тема 5.2. ЦИФРОВЫЕ ФИЛЬТРЫ

Принцип действия цифрового фильтра. Передаточная функция цифрового фильтра. Нерекурсивные и рекурсивные цифровые фильтры. Канонические схемы рекурсивных фильтров. Методы синтез цифровых фильтров.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

1. Спектральный анализ периодических сигналов.

2. Спектральный анализ непериодических сигналов.

3. Корреляционный анализ сигналов.

4. Дискретизация и восстановление сигналов по теореме отсчетов (теореме Котельникова).

5. Прохождение сигналов через линейные устройства.

6. Нелинейные преобразования сигналов.

7. Расчет параметров амплитудно-модулированных колебаний.

8. Расчет параметров сигналов с частотной и фазовой модуляциями.

9. Расчет амплитуды и частоты колебаний, формируемых автогенераторами.

10. Расчет характеристик параметрических усилителей.

11. Расчет числовых характеристик стационарных и эргодических случайных сигналов.

12. Линейные преобразования случайных сигналов.

13. Нелинейные преобразования случайных сигналов.

14. Синтез согласованных фильтров для различных сигналов.

15. Синтез цифровых фильтров.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ РАБОТ

1. Исследование спектров периодических и непериодических сигналов.

2. Исследование спектров сигналов с амплитудной, частотной и фазовой модуляциями.

3. Корреляционный анализ детерминированных сигналов.

4. Исследование процессов дискретизации сигналов по теореме отсчетов.

5. Исследование прохождения сигналов через линейные устройства.

6. Исследование прохождения сигналов через нелинейные устройства.

7. Исследование процессов амплитудной модуляции.

8. Исследование процессов выпрямления и детектирования АМ колебаний.

9. Исследование генераторов гармонических колебаний.

10. Исследование законов распределения случайных сигналов.

11. Исследование прохождения случайных сигналов через линейные устройства.

12. Исследование прохождения случайных сигналов через нелинейные устройства.

13. Корреляционный анализ случайных сигналов.

14. Синтез и исследование цифровых фильтров.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ КУРСОВЫХ РАБОТ

1. Расчет прохождения сигналов сложной формы через линейные цепи спектральным методом.

2. Расчет прохождения сигналов сложной формы через линейные цепи временным методом.

3. Расчет временных и спектральных характеристик сигналов на выходе нелинейных устройств.

4. Расчет статистических характеристик случайных сигналов на выходе линейного устройства.

5. Расчет статистических характеристик случайных сигналов на выходе нелинейного устройства.

ЛИТЕРАТУРА

ОСНОВНАЯ

1. Нефедов радиоэлектроники и связи: Учебник для вузов. - М.: Высшая школа, 2002.

2. Гоноровский цепи и сигналы: Учебник для вузов. - М.: Радио и связь, 1986.

3. , Ушаков основы радиотехники: Учебное пособие для вузов. - М.: Высшая школа, 2002.

4. Баскаков цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 2000.

5. Радиотехнические цепи и сигналы. , и др./Под ред. - Радио и связь, 1990.

ДОПОЛНИТЕЛЬНАЯ

1. Манаев радиоэлектроники. - М.: Радио и связь, 1990.

2. Хемминг фильтры: Пер. с англ. М:. Сов. радио. 1980.

3. Каяцкас радиоэлектроники. - М:. Высшая школа, 1988.

4. , Нефедов. - М.:МИРЭА, 1997.

5. Левин основы статистической радиотехники. - М.: Радио и связь, 1989.

6. Прокинс Дж. Цифровая связь. - М.: Радио и связь, 1999.

7. Битус цепи и сигналы. Часть 1 и 3. - Мн.: БГУИР, 1999 .

8. Радиотехнические цепи и сигналы. Примеры и задачи: Учебное пособие для вузов. / Под ред. - М: Радио и связь, 1989 .

9. Баскаков цепи и сигналы: Руководство к решению задач: Учебное пособие для вузов. - М: Высшая школа, 2002.

При проведении лекций в аудиториях, оборудованных системой учебного ТВ, обеспечивается их компьютерное сопровождение. Лабораторные и практические занятия проводятся в компьютерных классах с использованием персональных ЭВМ. Для этого имеются соответствующее программное обеспечение , созданное сотрудниками БГУИР, и пакеты прикладных программ типа Mathcad, Matlab и др.

УТВЕРЖДЕНА

Министерством образования

Республики Беларусь

16.01.2006

Регистрационный № ТД-I.009/тип.

ЭЛЕКТРОННЫЕ , СВЕРХВЫСОКОЧАСТОТНЫЕ

И КВАНТОВЫЕ ПРИБОРЫ

Учебная программа для высших учебных заведений

по специальностям 1 –Радиотехника, 1 –Радиоэлектронные системы, 1 –Радиоинформатика, 1 –Радиоэлектронная защита информации

СОСТАВИТЕЛИ:

, заведующий кафедрой электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

,

, старший преподаватель кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»;

, доцент кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

, доцент кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

Под общей редакцией:

РЕЦЕНЗЕНТЫ:

Кафедра электроники Военной Академии Республики Беларусь (протокол от 01.01.2001.);

, начальник отдела научно-исследовательский приборостроительный институт», кандидат технических наук

Кафедрой электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол от 01.01.2001.);

Научно-методическим советом Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол от 01.01.2001.)

СОГЛАСОВАНА :

Председателем Учебно-методическим объединением вузов Республики Беларусь по образованию в области информатики и радиоэлектроники;

Начальником Управлением высшего и среднего специального образования Министерства образования Республики Беларусь;

Первым проректором Государственным учреждением образования «Республиканский институт высшей школы»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Типовая программа «Электронные, сверхвысокочастотные и квантовые приборы» разработана для специальностей 1 –Радиотехника, 1 –Радиоэлектронные системы, 1 –Радиоинформатика, 1 –Радиоэлектронная защита информации высших учебных заведений и обеспечивает базовую подготовку студентов, необходимую для успешного изучения специальных дисциплин и последующего решения производственных и исследовательских задач в соответствии с образовательными стандартами. Целью изучения дисциплины является подготовка студентов к решению задач, связанных с рациональным выбором электронных приборов, их режимов работы и схем включения в различных устройствах.

Изучение дисциплины «Электронные, сверхвысокочастотные и квантовые приборы» должно опираться на содержание следующих дисциплин: «Высшая математика» (дифференциальное и интегральное исчисление, дифференциальные уравнения, функции комплексной переменной); «Физика» (электричество, магнетизм, электромагнитные волны, квантовая физика, физика твердого тела), «Электротехника» (теория линейных и нелинейных электрических цепей).

Программа составлена в соответствии с требованиями образовательных стандартов и рассчитана на объем 86 учебных часов. Примерное распределение учебных часов по видам занятий: лекций – 52 часа, лабораторных занятий – 34 часа.

В результате изучения курса «Электронные, сверхвысокочастотные и квантовые приборы» студент должен:

знать:

– физические основы явлений, принципы действия, устройство, параметры, характеристики электронных, сверхвысокочастотных и квантовых приборов и элементов микроэлектроники и их различных моделей, используемых при анализе и синтезе радиоэлектронных устройств;

– современное состояние и перспективы развития электронных, сверхвысокочастотных и квантовых приборов;

уметь:

– использовать полученные знания для правильного выбора электронного прибора и задания его рабочего режима по постоянному току;

– находить параметры приборов по их характеристикам;

– определять влияние режимов и условий эксплуатации на параметры приборов;

приобрести навыки работы:

– с электронными приборами и аппаратурой, используемой для исследования характеристик и измерения параметров приборов;

Раздел 1. ЭЛЕКТРОННЫЕ ПРИБОРЫ

ВВЕДЕНИЕ

Определение термина «Электронные приборы». Классификация электронных приборов по характеру рабочей среды (вакуум , разреженный газ, твердое тело), принципу действия и диапазону рабочих частот. Основные свойства и особенности электронных приборов.

Краткий исторический очерк развития отечественной и зарубежной электронной техники. Роль электронных приборов в радиоэлектронике, телекоммуникационных системах, вычислительных комплексах и других областях науки и техники. Значение курса как одной из базовых дисциплин по радиотехническим специальностям.

Тема 1. ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУПРОВОДНИКОВОЙ ЭЛЕКТРОНИКИ

Свойства полупроводников. Основные материалы полупроводниковой электроники (кремний, германий, арсенид галлия, нитрид галлия), их основные электрофизические параметры. Процессы образования свободных носителей заряда.

Концентрация свободных носителей в собственном и примесном полупроводниках, ее зависимость от температуры. Время жизни и диффузионная длина носителей. Уровень Ферми, его зависимость от температуры и концентрации примесей.

Кинетические процессы в полупроводниках. Тепловое движение и его средняя скорость. Дрейфовое движение, подвижность носителей заряда и ее зависимость от температуры и концентрации примесей. Плотность дрейфового тока, удельная проводимость полупроводников и ее зависимость от температуры и концентрации примесей. Движение носителей в сильных электрических полях, зависимость дрейфовой скорости от напряженности электрического поля. Диффузионное движение носителей, коэффициент диффузии, плотность диффузионного тока. Соотношение Эйнштейна. Появление электрического поля в полупроводнике при неравномерном распределении примесей.

Физические процессы у поверхности полупроводника. Поверхностные энергетические состояния, особенности движения носителей вблизи поверхности, поверхностная рекомбинация. Полупроводник во внешнем электрическом поле, длина экранирования. Обедненный, обогащенный и инверсионный слои.

Контактные явления в полупроводниках. Физические процессы в электронно-дырочном переходе. Образование обедненного слоя, условие равновесия. Уравнение Пуассона. Энергетическая диаграмма, распределение потенциала, напряженности электрического поля и объемного заряда в переходе. Высота потенциального барьера и ширина перехода.

Электронно-дырочный переход при подаче внешнего напряжения. Инжекция и экстракция носителей заряда. Особенности несимметричного перехода.

Вольт-амперная характеристика (ВАХ) идеализированного электронно-дырочного перехода. Распределение неравновесных носителей. Тепловой ток, его зависимость от ширины запрещенной зоны, концентрации примесей и температуры. Математическая модель и параметры идеализированного p-n-перехода: статическое и дифференциальное сопротивление, барьерная и диффузионная емкости перехода, их зависимость от приложенного напряжения. Пробой p-n-перехода. Виды пробоя.

Контакт металл-полупроводник. Выпрямляющий и невыпрямляющий (омический) контакты.

Гетеропереходы. Энергетические диаграммы. Особенности физических процессов. Особенности ВАХ.

Тема 2. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Классификация полупроводниковых диодов по технологии изготовления, мощности, частоте и функциональному применению: выпрямительные, стабилитроны, варикапы, импульсные диоды, диоды с накоплением заряда, диоды Шотки, туннельные и обращенные диоды. Принцип работы, характеристики, параметры, схемы включения. Система обозначения полупроводниковых диодов. Влияние температуры на ВАХ.

Тема 3. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Устройство биполярного транзистора (БТ). Схемы включения. Основные режимы: активный, отсечки, насыщения, инверсный. Принцип действия транзистора: физические процессы в эмиттерном переходе, базе и коллекторном переходе; распределение неосновных носителей в базе при различных режимах. Эффект модуляции ширины базы. Токи в транзисторе; коэффициенты передачи тока в схемах с общей базой (ОБ) и общим эмиттером (ОЭ).

Физические параметры транзистора: коэффициент передачи тока, дифференциальные сопротивления и емкости переходов, объемные сопротивления областей.

Статические характеристики транзистора. Модель идеализированного транзистора (модель Эберса-Молла). Характеристики реального транзистора в схемах с ОБ и ОЭ. Влияние температуры на характеристики транзистора.

Транзистор как линейный четырехполюсник. Понятие малого сигнала. Системы Z-, Y-, H - параметров и схемы замещения транзистора. Связь H-параметров с физическими параметрами транзистора. Определение H-параметров по статическим характеристикам. Зависимость H-параметров от режима работы и температуры. Т - и П-образные эквивалентные схемы транзисторов.

Работа транзистора с нагрузкой. Построение нагрузочной прямой. Принцип усиления.

Особенности работы транзистора на высоких частотах. Физические процессы, определяющие частотные параметры транзистора. Предельная и граничная частоты, эквивалентная схема транзистора на высоких частотах. Способы повышения рабочей частоты БТ.

Работа транзистора в импульсном режиме. Физические процессы накопления и рассасывания носителей заряда. Импульсные параметры транзистора.

Разновидности и перспективы развития БТ.

Тема 4. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор (ПТ) с управляющим p-n-переходом. Устройство, схемы включения. Принцип действия, физические процессы, влияние напряжений электродов на ширину p-n-перехода и форму канала. Статические характеристики, области отсечки, насыщения и пробоя p-n-перехода.

ПТ с барьером Шотки. Устройство, принцип действия. Характеристики и параметры.

ПТ с изолированным затвором. МДП-транзисторы со встроенным и индуцированным каналами. Устройство, схемы включения. Режимы обеднения и обогащения в транзисторе со встроенным каналом и его статические характеристики.

ПТ как линейный четырехполюсник. Система у-параметров полевых транзисторов и их связь с физическими параметрами. Влияние температуры на характеристики и параметры ПТ.

Работа ПТ на высоких частотах и в импульсном режиме. Факторы, определяющие частотные свойства. Предельная частота. Эквивалентная схема на высоких частотах. Области применения ПТ. Сравнение полевых и биполярных транзисторов. Перспективы развития и применения ПТ.

Тема 5. ПЕРЕКЛЮЧАЮЩИЕ ПРИБОРЫ

Устройство, принцип действия, ВАХ, разновидности тиристоров , диодные тиристоры, триодные тиристоры, симисторы, области применения. Параметры и система обозначения переключающих приборов.

· Тема 6. ЭЛЕМЕНТЫ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Общие сведения о микроэлектронике. Классификация компонентов электронной аппаратуры и элементов гибридных микросхем. Пассивные дискретные компоненты электронных устройств (резисторы, конденсаторы, индуктивности). Назначение, физические основы работы, параметры, системы обозначения. Пассивные элементы интегральных микросхем: резисторы, конденсаторы. Биполярные транзисторы в интегральном исполнении, транзисторы с барьером Шотки, многоэмиттерные транзисторы. Диоды полупроводниковых ИМС. Биполярные транзисторы с инжекционным питанием. Полупроводниковые приборы с зарядовой связью (ПЗС). Применение ПЗС. Параметры элементов ПЗС.

· Тема 7. КОМПОНЕНТЫ ОПТОЭЛЕКТРОНИКИ

Определение оптического диапазона электромагнитных колебаний. Классификация оптоэлектронных полупроводниковых приборов. Электролюминесценция. Основные типы полупроводниковых излучателей: некогерентные и когерентные полупроводниковые излучатели. Светодиоды, устройство, принцип действия, характеристики, параметры. Основные материалы, применяемые для изготовления светодиодов. Достижения в разработке светодиодов.

Полупроводниковые приемники излучения: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Принцип работы, характеристики, параметры.

Устройство оптронов, основные типы оптронов: резисторные, диодные, транзисторные и тиристорные. Классификация, принцип действия, входные и выходные параметры оптронов.

Тема 10. ЭЛЕКТРОННО-УПРАВЛЯЕМЫЕ ЛАМПЫ

Электронная эмиссия. Виды эмиссии. Катоды электровакуумных приборов, основные типы катодов. Прохождение тока в вакууме, ток переноса, ток смещения, полный ток. Понятие о наведенном токе.

Вакуумный диод. Принцип действия. Понятие об объемном заряде. Режим насыщения и режим ограничения тока объемным зарядом. Идеализированная и реальная анодные характеристики диода. Статические параметры. Основные типы диодов, области применения.

Трехэлектродная лампа. Устройство, роль сетки в триоде. Понятие о действующем напряжении и проницаемости сетки. Токораспределение в триоде. Статические характеристики триода. Статические параметры и определение их по характеристикам. Междуэлектродные емкости. Режим работы триода с нагрузкой, нагрузочные характеристики, параметры режима работы с нагрузкой.

Тетроды и пентоды. Роль сеток. Действующее напряжение. Токораспределение. Статические характеристики и параметры многоэлектродных ламп; междуэлектродные емкости. Эквивалентные схемы электронных ламп на низких и высоких частотах.

Мощные генераторные и модуляторные лампы.

Особенности работы электронных ламп со статическим управлением электронным потоком в диапазоне сверхвысоких частот (СВЧ). Понятие о полном токе. Влияние инерционных свойств электронного потока на работу электронных ламп. Влияние на параметры ламп диапазона СВЧ междуэлектродных емкостей и индуктивностей выводов. Особенности конструкции электронных ламп диапазона СВЧ. Мощные электронные лампы СВЧ диапазона. Области применения электронных ламп диапазона СВЧ.

Тема 11. ПРИБОРЫ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Классификация приборов для отображения информации.

Типы электронно-лучевых приборов. Устройство и принцип действия электронно-лучевых приборов. Элементы электронной оптики. Системы фокусировки и отклонения в электронно-лучевых трубках. Типы экранов электронно-лучевых трубок. Параметры экранов.

Типы электронно-лучевых трубок: осциллографические, трубки индикаторных устройств, кинескопы, трубки дисплеев, запоминающие трубки.

Полупроводниковые индикаторы.

Жидкокристаллические индикаторы. Основные параметры, характеризующие жидкие кристаллы. Устройство ЖКИ в проходящем и отраженном свете. Возможность отображения цвета в ЖКИ. ЖК мониторы, устройство и их основные параметры.

Вакуумные накаливаемые индикаторы (ВНИ), вакуумные люминесцентные индикаторы (ВЛИ): одноразрядные, многоразрядные, сегментные ВЛИ, электролюминесцентные индикаторы (ЭЛИ): устройство и принцип действия.

Газоразрядные индикаторы (ГРИ). Основные положения теории тлеющего разряда с холодным катодом. Дискретные газоразрядные индикаторы. Типы и основные параметры ГРИ. Устройство и принцип действия газоразрядных индикаторных панелей.

Основные радиотехнические процессы – это процессы преобразования сигналов, содержащих и переносящих сообщения. Основные процессы примерно одинаковы (подобны) для всех радиоэлектронных систем, независимо от того, к какому классу и к какому поколению техники эти системы относятся, независимо от структуры и предназначения этих систем.

13. Излучение высокочастотных радиосигналов и распространение радиоволн

13.1. Радиосигналы и электромагнитные волны

В соответствии с законом электромагнитной индукции, в контуре, охватывающем изменяющееся магнитное поле, возникает ЭДС, которая возбуждает ток в этом контуре. Проводник здесь не играет существенной роли. Он лишь позволяет обнаружить индуцированный ток. Истинная сущность явления индукции, как установил Дж.К.Максвелл, заключается в том, что в пространстве, где изменяется магнитное поле, возникает изменяющееся во времени электрическое поле. Это изменяющееся во времени электрическое поле Максвелл назвал током электрического смещения.

В отличие от поля неподвижных зарядов, силовые линии изменяющегося во времени электрического поля (тока электрического смещения) могут быть замкнуты так же, как и силовые линии магнитного поля. Поэтому между электрическими и магнитными полями существует тесная связь и взаимодействие. Она устанавливается следующими законами.

1. Переменное во времени электрическое поле в любой точке пространства создает изменяющееся магнитное поле. Силовые линии магнитного поля охватывают силовые линии создавшего его электрического поля рис. 13.1, а ). В каждой точке пространства вектор напряженности электрического поляЕ и вектор напряженности магнитного поляН ортогональны друг другу.

2. Переменное во времени магнитное поле в любой точке пространства создает изменяющееся электрическое поле. Силовые линии электрического поля охватывают силовые линии переменного магнитного поля рис.3.1. б ). В каждой точке рассматриваемого пространства вектор напряженности магнитного поляН и вектор напряженности электрического поляЕ взаимно перпендикулярны.

3. Переменное электрическое поле и неразрывно связанное с ним переменное магнитное поля вместе образуют электромагнитное поле.

Рис. 13.1. Первый а ) и второйб ) законы электромагнитного поля (законы Максвелла)

Перенос волной электромагнитной энергии в пространстве характеризуется вектором П , равным векторному произведению напряженностей электрического и магнитного полей:

.

Направление вектора П совпадает с направлением распространения волны, а модуль численно равен количеству энергии, которую волна переносит в единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны. Понятие о потоке энергии любого вида было впервые введено Н.А. Умовым в 1874 г. Формула для вектораП была получена на основании уравнений электромагнитного поля Пойнтингом в 1884 г. Поэтому векторП, модуль которого равен плотности потока мощности волны, именуют вектором Умова – Пойнтинга.

Важнейшая особенность электромагнитного поля состоит в том, что оно перемещается в пространстве во все стороны от точки, в которой возникло. Поле может существовать и после того, как источник электромагнитного возмущения перестал действовать. Изменяющиеся электрические и магнитные поля, переходя от точки к точке пространства, распространяются в вакууме со скоростью света (310 8 м/с).

Процесс распространения периодически изменяющегося электромагнитного поля – волновой. Электромагнитные волны излученного поля, встречая на своем пути проводники, возбуждают в них ЭДС той же частоты, что и частота создающего наведенную ЭДС электромагнитного поля. Часть энергии, которую переносят электромагнитные волны, передается токам, возникающим в проводниках.

Расстояние, на которое перемещается фронт волны за время, равное одному периоду электромагнитного колебания, называют длиной волны

.

Радиоволны, тепловое и ультрафиолетовое излучение, свет, рентгеновское и -излучение – это все волны электромагнитной природы, но разной длины. И все эти волны используются разными радиоэлектронными системами. Шкала электромагнитных волн, упорядоченных по частотеf , длине волны, и по названию диапазона представлена на рис. 4.2.

Знание условий распространения электромагнитного поля очень важно для определения дальности и зоны действия радиоэлектронных систем, опасных расстояний, на которых возможен несанкционированный доступ технических средств разведки к информации, содержащейся в перехватываемых сигналах. Если возможно, пространство, в пределах которого существует опасность перехвата, контролируется чтобы исключить присутствие технических средств разведки. В иных случаях приходится принимать другие меры для защиты информации, переносимой сигналами информативными для разведки электромагнитными полями.

Условия распространения электромагнитных полей существенно зависит от частоты (длины волны). Распространение радиоволн существенно отличается от распространения ИК излучения, видимого света и более жестких излучений.

Скорость распространения радиоволн в свободном пространстве в вакууме равна скорости света. Полная энергия, переносимая радиоволной, остается постоянной, а плотность потока энергии убывает с увеличением расстояния г от источника обратно пропорционально r 2 . Распространение радиоволн в других средах происходит с фазовой скоростью, отличающейся отс и сопровождается поглощением электромагнитной энергии. Оба эффекта объясняются возбуждением колебаний электронов и ионов среды пор действием электрического поля волны. Если напряженность поля |Е| гармонической волны мала по сравнению с напряженностью поля, действующего на заряды в самой среде (например, на электрон в атоме), то колебания происходят также по гармоническому закону с частотойпришедшей волны. Колеблющиеся электроны излучают вторичные радиоволны той же частоты, но с другими амплитудами и фазами. В результате сложения вторичных волн с приходящей формируется результирующая волна с новой амплитудой и фазой. Сдвиг фаз между первичной и переизлученными волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн.

Амплитуда электрического (и, разумеется, магнитного) поля волны убывает с расстоянием по закону

,

а фаза волны изменяется как

где показатель поглощения, аn – показатель преломления, зависящие от диэлектрической проницаемости среды, ее проводимостио и частоты волны:

,

Среда ведет себя как диэлектрик, если
и как проводник, если
. В первом случае
, поглощение мало, во втором
.

В среде, где изависят от частоты, наблюдается дисперсия волн. Вид частотной зависимостииопределяется структурой среды. Дисперсия радиоволн особенно существенна в тех случаях, когда частота волны близка к характерным собственным частотам среды, например, при распространении радиоволн в ионосферной и космической плазме.

При распространении радиоволн в средах, не содержащих свободных электронов (в тропосфере, в толще Земли), происходит смещение связанных электронов в атомах и молекулах среды в сторону, противоположную полю волны Е , при этомn >1, а фазовая скоростьv ф <с (радиосигнал, несущий энергию, распространяется с групповой скоростьюv гр <с ). В плазме поле волны вызывает смещение свободных электронов в направленииЕ , при этомn <1 иv ф <с .

В однородных средах радиоволны распространяются прямолинейно, подобно световым лучам. Процесс распространение радиоволн в этом случае подчиняется законам геометрической оптики. Учитывая сферичность Земли, дальность прямой видимости можно оценить на основе простых геометрических построений соотношением

,

где h прд иh прм – высоты расположения передающей и приемной антенн в метрах;R– дальность прямой видимости в километрах.

Однако реальные среды неоднородны. В них n , а следовательно, иv ф различны в разных участках среды, что приводит к искривлению траектории радиоволны. Происходит рефракция (преломление) радиоволн. С учетом нормальной рефракции радиоволн максимальная дальность определяется более точным, чем, соотношением

Если п зависит от одной координаты, например высотыh (плоскослоистая среда), то при прохождении волны через каждый плоский слой луч, падающий в неоднородную среду в точке сn 0 =1 под углом 0 в пространстве искривляетсятак, что в произвольной точке средыh соблюдается соотношение:

.

Если п убывает при увеличенииh, то в результате рефракции луч, по мере распространения, отклоняется от вертикали и на некоторой высотеh m становится параллельным горизонтальной плоскости, а затем распространяется вниз. Максимальная высотаh m , на которую луч может углубиться в неоднородную плоскослоистую среду, зависит от угла падения 0 . Этот угол можно определить из условия:

В область h >h m лучи не проникают и, согласно приближению геометрической оптики, волновое поле в этой области должно быть равно 0. В действительности вблизи плоскостиh =h m волновое поле возрастает, а приh>h m убывает экспоненциально. Нарушение законов геометрической оптики при распространение радиоволн связано с дифракцией волн вследствие которой радиоволны могут проникать в область геометрической тени. На границе области геометрической тени o6pазуется сложное распределение волновых полей. Дифракция радиоволн возникает при наличии на их пути препятствий (непрозрачных или полупрозрачных тел). Дифракция особенно существенна в тех случаях, когда размеры препятствий сравнимы длиной волны.

Если распространение радиоволн происходит вблизи резкой границы (в масштабе ) между двумя средами с различными электрическими свойствами (например, атмосфера поверхность Земли или тропосфера – нижняя граница ионосферы для достаточно длинных волн), то при падении радиоволн на резкую границу образуются отраженная и преломленная (прошедшая) радиоволны.

В неоднородных средах возможно волноводное распространение радиоволн, при котором происходит локализация потока энергии между определенными поверхностями, за счет чего волновые поля между ними убывают с расстоянием медленнее, чем в однородной среде. Так образуются атмосферные волноводы.

В среде, содержащей случайные локальные неоднородности, вторичные волны излучаются беспорядочно в различных направлениях. Рассеянные волны частично уносят энергию исходной волны, что приводит к ее ослаблению. При рассеянии на неоднородностях размеромl <<рассеянные волны распространяются почти изотропно. В случае рассеяния на крупномасштабных прозрачных неоднородностях рассеянные волны распространяются правлениях, близких к направлению исходной волны. Приl возникает сильное резонансное рассеяние.

Влияние поверхности Земли на распространение радиоволн зависит от расположения относительно нее передатчика и приемника. Распространение радиоволн – процесс, захватывающий большую область пространства, но наиболее существенную роль в распространении радиоволн играет область, ограниченная поверхностью, имеющей форму эллипсоида рассеяния, в фокусах которого расстоянииr расположены передатчик и приемник.

Если высоты h 1 иh 2 , на которых итожены антенны передатчика и приемника над поверхностью Земли, велики по сравнению с длиной волны, то она не влияет на распространение радиоволн. При понижении обеих или одной из конечных точек радиотрассы будут наблюдаться близкое к зеркальному отражение от поверхности Земли. При этом радиоволна в точке приема определяется интерференцией прямой и отраженной волн. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля в зоне приема. Особенно характерна такая картина для метровых и более коротких радиоволн. Качество радиосвязи в этом случае определяется проводимостьюпочвы. Почвы, образующие поверхностный - слой земной коры, а также воды морей и океанов обладают значит, электропроводностью. Но так какп изависят от частоты, то для сантиметровых волн все виды земной поверхности имеют свойства диэлектрика. Для метровых и более длинных волн Земля – проводник, в который волны проникают на глубину
( 0 – длина волны в вакууме). Поэтому для подземной и подводной радиосвязи используются в основном длинные и сверхдлинные волны.

Выпуклость земной поверхности ограничивает расстояние, на котором из точки приема виден передатчик (область прямой видимости). Однако радиоволны могут проникать в область тени на большее расстояние
(R з - радиус Земли), огибая Землю, в результате дифракции. Практически в эту область за счет дифракции могут проникать только километровые и более длинные волны. За горизонтом поле растет с увеличением высотыh 1 , на которую поднят излучатель, и быстро (почти экспоненциально) уменьшается при удалении от него.

Влияние рельефа земной поверхности на распространение радиоволн зависит от высоты неровностей h, их горизонтальной протяженностиl , длины волныи углападения волны на поверхность. Если неровности достаточно малы и пологи, так чтоkh cos<1(
волновое число) и выполняется критерий Рэлея: k 2 l 2 cos<1, то они слабо влияют на распространение радиоволн. Влияние неровностей зависит, также от поляризации волн. Например, для горизонтально поляризованных волн оно меньше, чем для волн, поляризованных вертикально. Когда не ровности не малы и не пологи, энергия радиоволны может рассеиваться (радиоволна отражается от них). Высокие горы и холмы сh> образуют затененные области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отраженных волн: вершина горы служит естественным ретранслятором.

Фазовая скорость радиоволн, распространяющихся вдоль земной поверхности (земных волн) вблизи излучателя, зависит от ее электрических свойств. Однако на расстоянии в несколько от излучателяv ф c. Если радиоволны распространяются над электрически неоднородной поверхностью, например, сначала над сушей, а затем над морем, то при пересечении береговой линии резко изменяется амплитуда и направление распространения радиоволн (наблюдается береговая рефракция).

Распространение радиоволн в тропосфере. Тропосфера – область в которой температура воздуха обычно убывает с высотойh. Высота тропопаузы над земным шаром не одинакова: она больше над экватором, чем над полюсами, а в средних широтах, где существует система сильных западных ветров, меняется скачкообразно. Тропосфера состоит из смеси газов и паров воды; ее проводимость для радиоволн сбольше нескольких сантиметров пренебрежимо мала. Тропосфера обладает свойствами, близкими к вакууму, так как у поверхности Земли коэффициент преломления
и фазовая скорость лишь немного меньшес . С увеличением высоты плотность воздуха падает, а поэтому ип уменьшаются, еще более приближаясь к единице. Это приводит к отклонению траекторий радиолучей к Земле. Такая нормальная тропосферная рефракция способствует распространение радиоволн за пределы прямой видимости, так как за счет рефракции волны могут огибать выпуклость Земли. Практически этот эффект может играть роль только для УКВ. Для более длинных волн преобладает отгибание выпуклости Земли за счет дифракции.

Метеорологические условия могут ослаблять или усиливать рефракцию по сравнению с нормальной, так как плотность воздуха зависит от давления, температуры и влажности. Обычно в тропосфере давление газов и температура с высотой уменьшаются, а давление водяного пара увеличивается. Однако при некоторых метеорологических условиях (например, при движении нагретого над сушей воздуха над морем) температура воздуха с высотой увеличивается (температурная инверсия). Особенно велики отклонения летом на высоте 2…3 км. В этих условиях часто образуются температурные инверсии и облачные слои и преломление радиоволн в тропосфере может стать столь сильным, что вышедшая под небольшим углом к горизонту радиоволна на некоторой высоте изменит направление и вернется обратно к Земле. В пространстве, ограниченном снизу земной поверхностью, а сверху – рефрагирующим слоем тропосферы, волна может распространяться на очень большие расстояния (волноводное распространение). В тропосферных волноводах, как правило, могут распространяться волны с <1 м.

Поглощение радиоволн в тропосфере пренебрежимо мало для всех радиоволн вплоть до сантиметрового диапазона. Поглощение сантиметровых и более коротких волн резко увеличивается, когда частота колебаний совпадает с одной из собственных частот колебаний молекул воздуха (резонансное поглощение). Молекулы получают от приходящей волны энергию, которая превращается в теплоту и только частично передается вторичным волнам. Известен ряд линий резонансного поглощения в тропосфере: =1,35 см, 1,5 см, 0,75 см (поглощение в парах воды) и=0,5 см, 0,25 см (поглощение в кислороде). Между резонансными линиями лежат области более слабого поглощения (окна прозрачности).

Ослабление радиоволн может быть также вызвано рассеянием на неоднородностях, возникающих при турбулентном движении воздушных масс. Рассеяние резко увеличивается, когда в воздухе присутствуют капельные неоднородности в виде дождя, снега, тумана. Почти изотропное рассеяние Рэлея на мелкомасштабных неоднородностях делает возможной радиосвязь на расстояниях, значительно превышающих прямую видимость. Таким образом, тропосфера существенно влияет на распространение УКВ. Для декаметровых и более длинных волн тропосфера практически прозрачна и на их распространение влияет земная поверхность и более высокие слои атмосферы (ионосфера).

Распространение радиоволн в ионосфере. Ионосферу образуют верхние слои земной атмосферы, в которой газы частично (до 1%) ионизированы под влиянием ультрафиолетового, рентгеновского и корпускулярного солнечного излучения. Ионосфера электрически нейтральна, она содержит равное количество положит, и отрицательно заряженных частиц, т.е. является плазмой.

Достаточно большая ионизация, оказывающая влияние на распространение радиоволн, начинается на высоте 60 км (слой D), увеличивается до высоты 300…400 км, образуя слоиЕ, F 1 , F 2 , и затем медленно убывает. В главном максимуме концентрация электроновN достигает 10 2 м -3 . ЗависимостьN от высоты меняется со временем суток, года, с солнечной активностью, а также с широтой и долготой.

В зависимости от частоты основную роль в распространении радиоволн играют те или другие виды собственных колебаний. Поэтому электрические свойства различны для разных участков радиодиапазона. При высоких частотах ионы не успевают следовать за изменениями поля, и в распространении радиоволн принимают участие только электроны. Вынужденные колебания свободных электронов ионосферы исходят в противофазе с действующей силой и вызывают поляризацию плазмы в сторону, противоположную электрическому полю волны Е . Поэтому диэлектрическая проницаемость ионосферы<1. Она уменьшается с уменьшением частоты:
. Учет соударений электронов с атомами и ионами дает более точные формулы для диэлектрической проницаемости и проводимости ионосферы:

,

где - эффективная частота соударений.

Для декаметровых и более коротких волн в большей части ионосферы     и показатели преломленияn и поглощенияприближаются к значениям:

.

Поскольку для ионосферы n >1, то фазовая скорость распространение радиоволн
, а групповая скорость
.

Поглощение в ионосфере пропорционально , так как чем больше столкновений, тем большая часть энергии, получаемой электроном переходит в тепло. Поэтому поглощение больше в нижних областях ионосферы (слойD), где выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и могут распространяться на большие расстояния.

Рефракция радиоволн в ионосфере. В ионосфере могут распространяться только радиоволны с частотой 0 . При 0 показатель преломленияn становится чисто мнимым, и электромагнитное поле экспоненциально убывает вглубь плазмы. Радиоволна с частотой, падающая на ионосферу вертикально, отражается от уровня, на котором 0 иn =0. В нижней части ионосферы электронная концентрация и 0 увеличиваются с высотой, поэтому с увеличениемизлученная с Земли волна все глубже проникает в ионосферу. Максимальная частота радиоволны, которая отражается от слоя ионосферы при вертикальном падении, называется критической частотой слоя:

.

Критическая частота слоя F 2 (главного максимума) изменяется в течение суток и года в широких пределах (от 3…5 до 10 МГц). Для волн с кр показатель преломления не обращается в ноль и падающая вертикально волна проходит через ионосферу, не отражаясь.

При наклонном падении волны на ионосферу происходит рефракция, как в тропосфере. В нижней части ионосферы фазовая скорость увеличивается с высотой (вместе с увеличением электронной концентрацииN). Поэтому траектория луча отклоняется по направлению к Земле. Радиоволна, падающая на ионосферу под углом 0 , поворачивает к Земле на высотеh, для которой выполнено условие= кр. Максимальная частота волны, отражающейся от ионосферы при падении под углом 0 , называется максимальной применимой частотой max =
. Волны с< max отражаясь от ионосферы, возвращаются на Землю. Этот эффект что используется для дальней радиосвязи и загоризонтной радиолокации. Вследствие сферичности Земли величина угла 0 ограничена и дальность связи при однократном отражении от ионосферы не превосходит 3500…4000 км. Связь на большие расстояния осуществляется за счет нескольких последовательных отражений от ионосферы и Земли (скачков). Возможны и более сложные, волноводные траектории, возникающие за счет горизонтального градиентаN или рассеяния на неоднородностях ионосферы при распространении радиоволн с частотой> max . В результате рассеяния угол падения луча на слойF 2 оказывается больше, чем при обычном распространении. Луч испытывает ряд последовательных отражений от слояF 2 , пока не попадет в область с таким градиентомN, который вызовет отражение части энергии назад к Земле.

Влияние магнитного поля Земли с напряженностью Н 0 сводится к тому, что на электрон, движущийся со скоростьюv , действует сила Лоренца
, под влиянием которой он вращается по окружности в плоскости, перпендикулярной Н 0, с гироскопической частотой Н. Траектория каждой заряженной частицы винтовая линия с осью вдоль Н 0. Действие силы Лоренца приводит к изменению характера вынужденных колебаний электронов под действием электрического поля волны, а следовательно, к изменению электрических свойств среды. В результате электрические свойства ионосферы становятся зависимыми от направления распространения радиоволн и описываются не скалярной величиной, а тензором диэлектрической проницаемости ij . Падающая на такую среду волна испытывает двойное лучепреломление, т. е. расщепляется на две волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. Если направление распространения радиоволн перпендикулярноН 0 , то падающую волну можно представить себе в виде суммы двух линейно поляризованных волн сЕ Н 0 иЕ||Н 0 . Для первой "необыкновенной" волны характер вынужденного движения электронов под действием поля волны изменяется (появляется компонента ускорения, перпендикулярнаяЕ ) и поэтому изменяетсяп. Для второй "обыкновенной" волны вынужденное движение остается таким же, как и без поляН 0 .

Основная часть энергии низкочастотных (НЧ) и очень низкочастотных (ОНЧ) радиоволн практически не проникает в ионосферу. Волны отражаются от ее нижней границы (днем – вследствие сильной рефракции в D-слое, ночью – отE-слоя, как от границы двух сред с разными электрическими свойствами). Распространение этих волн хорошо описывается моделью, согласно которой однородные и изотропные Земля и ионосфера образуют приземный волновод с резкими сферическими стенками. В этом волноводе и происходит распространение радиоволн. Такая модель объясняет наблюдаемое убывание поля с расстоянием и возрастание амплитуды поля с высотой. Последнее связано со скольжением волн вдоль вогнутой поверхности волновода, приводящим к своеобразной фокусировке поля. Амплитуда радиоволн значительно возрастает в антиподной по отношению к источнику точке Земли. Это объясняется сложением радиоволн, огибающих Землю по всем направлениям и сходящихся на противоположной стороне.

Влияние магнитного поля Земли обусловливает ряд особенностей распространения НЧ волн в ионосфере: сверхдлинные волны могут выходить из приземного волновода за пределы ионосферы, распространяясь вдоль силовых линий геомагнитного поля между сопряженными точками А иВ Земли.

Нелинейные эффекты при распространении радиоволн в ионосфере проявляются уже для радиоволн сравнительно небольшой интенсивности и связаны с нарушением линейной зависимости поляризации среды от электрического поля волны. "Нагревная" нелинейность играет основную роль, когда характерные размеры возмущенного электрическим полем области плазмы во много раз больше длины свободного пробега электронов. Поскольку длина свободного пробега электронов в плазме значительна, электрон успевает получить от поля заметную энергию за время одного пробега. Передача энергии при столкновениях от электрона к ионам атомам и молекулам затруднена из-за большого различия в их массах. В результате электроны плазмы сильно "разогреваются" уже в сравнительно слабом электрическом поле, что изменяет эффективную частоту соударений. По этомуиплазмы становятся зависящими от напряженности электрического поля Е волны и распространение радиоволн приобретает нелинейный характер.

Нелинейные эффекты могут проявляться как самовоздействие волны и как взаимодействие волн между собой. Самовоздействие мощной волны приводит к изменению ее поглощения и глубины модуляции. Поглощение мощной радиоволны нелинейно зависит от ее амплитуды. Частота соударений с увеличением температуры (энергии электронов) может как расти (в нижних слоях, где основную роль играют соударения с нейтральными частицами), так и убывать (при соударении с ионами). В первом случае поглощение резко возрастает с увеличением мощности волны (насыщение поля в плазме). Во втором случае поглощение падает (этот эффект называется просветлением плазмы для мощной радиоволны). Из-за нелинейного изменения поглощения амплитуда волны нелинейно зависит от амплитуды падающего поля, поэтому ее модуляция искажается (автомодуляция и демодуляция волны). Изменение коэффициента преломленияn в поле мощной волны приводит к искажению траектории луча. При распространении узконаправленных пучков радиоволн этот эффект может привести к самофокусировке пучка аналогично самофокусировке света и к образованию волноводногоканала в плазме.

Взаимодействие волн в условиях нелинейности приводит к нарушению принципа суперпозиции. В частности, если мощная волна с частотой 1 модулирована по амплитуде, то благодаря изменению поглощения эта модуляция может передаться другой волне с частотой 2 ,проходящей в той же области ионосферы. Это явление называется кроссмодуляцией.

Распространение радиоволн в условиях космического пространства имеет особенности за счет того, что из космического пространства к Земле приходит широкий спектр электромагнитных воли, которые на пути из космоса должны пройти через ионосферу и тропосферу. Через атмосферу Земли без заметного затухания распространяются волны двух основных частотных диапазонов: "радиоокно" соответствует диапазону от ионосферной критической частоты до частот сильного поглощения аэрозолями и газами атмосферы (10 МГц…20 ГГц), "оптическое окно" охватывает диапазон видимого и ИК излучения (1 ТГц…10 3 ТГц). Атмосфера также частично прозрачна в диапазоне низких частот до 300 кГц, где распространяются свистящие атмосферики, и магнитогидродинамические волны.

Распространение радиоволн разных диапазонов. Радиоволныочень низких (3…30 кГц) и низких (30…300 кГц)частот огибают земную поверхность вследствие волноводного распространения и дифракции, сравнительно слабо проникают в ионосферу и мало ею поглощаются. Отличаются высокой фазовой стабильностью и способностью равномерно покрывать большие площади, включая полярные районы. Это обусловливает возможность их использования для устойчивой дальней и сверхдальней радиосвязи и радионавигации, несмотря на высокий уровень атмосферных помех. Полоса частот от 150 кГц до 300 кГц используется для радиовещания. Трудности применения частотного диапазона очень низких связаны с громоздкостью антенных систем с высоким уровнем атмосферных помех, с относительной ограниченностью скорости передачи информации. Медленные колебания волн очень низких частот нельзя модулировать быстрыми процессами, несущими информацию с высокой скоростью. Как писал по этому поводу Н.Винер, "Нельзя сыграть джигу на нижнем регистре оргна".

Средние волны (300 кГц…3000 кГц) днем распространяются вдоль поверхности Земли (земная или прямая волна). Отраженная от ионосферы волна практически отсутствует, поскольку волны сильно поглощаются в слоеD ионосферы. Ночью из-за отсутствия солнечного излучения слойD исчезает, появляется ионосферная волна, отраженная от слояЕ . Пи этом дальность распространения и, соответственно, приема возрастает. Сложение прямой и отраженной волн влечет за собой сильную изменчивость поля в точке приема. Поэтому ионосферная волна – источник помех для многих служб, использующих распространение земной волны.

Короткие волны (3 МГц…30 МГц) слабо поглощаютсяD- иЕ- слоями и отражаются от слояF , когда их частоты< max . В результате отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах. Особенность радиосвязи в этом диапазоне – наличие замираний (фединга) сигнала из-за изменений условий отражения от ионосферы и интерференционных эффектов. Коротковолновые линии связи подвержены влиянию атмосферных помех. Ионосферные бури вызывают прерывание связи.

Для очень высоких частот и УКВ (30…1000 МГц) характерно преобладание распространения радиоволн внутри тропосферы и проникновение сквозь ионосферу. Роль земной волны падает. Поля помех в низкочастотной части этого диапазона все еще могут определяться отражениями от ионосферы, и до частоты 60 МГц ионосферное рассеяние продолжает играть о заметную роль. Все виды распространения радиоволн, за исключением тропосферного рассеяния, позволяют передавать сигналы с шириной полосы частот в несколько МГц.

Волны УВЧи СВЧ (1000 МГц…10 000 МГц) распространяются в основном в пределах прямой видимости и характеризуются низким уровнем шумов. В этом диапазоне при распространении радиоволн играют роль известные области максимального поглощения и частоты излучения химических элементов (например, линии резонансного поглощения молекулами водорода вблизи частоты 1,42 ГГц).

Волны СВЧ (>10 ГГц) распространяются только в пределах прямой видимости. Потери в этом диапазоне несколько выше, чем на более низких частотах, причем на их величину сильно влияет количество осадков. Рост потерь на этих частотах частично компенсируется возрастанием эффективности антенных систем. Схема, иллюстрирующая особенности распространения радиоволн различных диапазоном, иллюстрируется рис. 13.3.

Рис. 13.3. Распространение электромагнитных волн в приземном пространстве

Несмотря на то, что исторически излучения оптического диапазона волн начали использоваться человечеством гораздо раньше, чем любые другие электромагнитные поля, распространение через атмосферу оптических волн наименее всего изучено по сравнению с распространением любых волн радиодиапазона. Объясняется это более сложной картиной явлений распространения, а также и тем, что более широкое изучение этих явлений началось лишь в последнее время, после изобретения и начала широкого всестороннего применения оптических квантовых генераторов – лазеров.

Три основные явления обуславливают закономерности распространения оптических волн через атмосферу: поглощение, рассеяние и турбулентность. Первые два определяют среднее затухание электромагнитного поля при фиксированных атмосферных условиях и сравнительно медленные изменения поля (медленные замирания), при изменении метеорологических условий. Третье явление - турбулентность вызывает быстрые изменения поля (быстрые замирания), наблюдающиеся при любой погоде. Кроме этого, из-за турбулентности наблюдается эффект многолучевости, когда структура пришедшего на прием луча может существенно измениться по сравнению со структурой луча на выходе передающего устройства.

Чтобы передать информацию от источника к потребителю, необходимо совершить ряд преобразований, которые и называются радиотехническими процессами.

1. Преобразование сообщения в электриче-

скую функцию. Это действие происходит в уст- ройствах, называемых преобразователями. Например, преобразование звукового давления p(t) в электрический ток i(t) происходит при по-

Рис. 1.1. Преобразователь

мощи микрофона, а преобразование изображения в потенциал – при помощи телевизионной пере-

дающей трубки. Полученный таким способом сигнал b(t) называется первич-

ным. Обозначение преобразователя представлено на рис. 1.1.

2. Генерирование гармонических колебаний. Данное преобразование про-

исходит в устройствах, называемых генераторами. В них мощность источника постоянного тока P0 преобразуется в мощность P1 гармонических колебаний.

Интересно отметить, что вся история развития радиотехники и связи – это ис- тория освоения все более высокочастотных диапазонов волн, включая и опти- ческий диапазон. Разработано множество генераторов, начиная от ламповых генераторов до оптических квантовых генераторов (ОКГ). Основное требова- ние, предъявляемое к таким генераторам, – высокая стабильность частоты.

3. Модуляция. Без этого процесса невозможно

было бы передавать сообщения, обычно состоящие из совокупности низкочастотных колебаний, на большие расстояния. С позиции курса «Теория электрических цепей» модулятор является шести-

полюсником, на входы которого подается первич-

ный сигнал b(t) и высокочастотное гармоническое

Рис. 1.2. Модулятор

колебание u(t) (рис. 1.2.). В результате возникает высокочастотный сигнал s(t),

один из параметров которого изменяется по закону b(t).

4. Детектирование. Данный процесс является

S(t) b(t)

Рис. 1.3. Детектор

Рис. 1.4. Усилитель

обратным процессу модуляции, с помощью которо- го выделяется передаваемое сообщение. Устройст- во, выполняющее такое преобразование, называется детектором, тип которого должен соответствовать способу модуляции (рис. 1.3).

5. Усиление. Назначение этого процесса –

увеличение мощности принимаемого сигнала с со- хранением его формы. Устройство, осуществляющее этот радиотехнический процесс, называется усили- телем (рис. 1.4).

Кроме перечисленных процессов в РЭА исполь-

зуются и другие: преобразование частоты, умноже-

ние и деление частоты, выпрямление и т. д. Но только пять вышеперечислен- ных радиотехнических процессов являются основными, т. к. именно они опре- деляют возможность передачи сообщений от источника к потребителю.

Каналом связи называется комплекс радиотехнических устройств, при

помощи которых передается и принимается информация, плюс среда между ними (рис. 1.5). В канал связи включены устройства, осуществляющие все ос- новные радиотехнические процессы, а также передающая и приемная антенны. В этом случае информация передается через свободное пространство, волновое сопротивление которого равно 377 Ом (радиоканал). Если сигнал передается по кабелю, то волновое сопротивление линии связи определяется типом кабеля, а вместо антенн применяются специальные согласующие устройства (проводной канал).

Комплекс устройств, с помощью которых формируется сигнал, и излу- чающая антенна (или согласующее устройство) образуют радиопередающее устройство (передатчик).

Приемная антенна (согласующее устройство) и устройства обработки сиг-

нала составляют радиоприемное устройство (приемник). Физическая среда, по

которой распространяется сигнал, называется линией связи. Таким образом, в зависимости от типа среды каналы связи могут быть проводными и беспровод- ными (радиоканалами).

7

Рис. 1.5. Структурная схема канала связи:

1 – источник сообщения, 2 – преобразователь, 3 – модулятор, 4 – автогенератор,

5 – усилитель радиосигнала, 6 – передающая антенна (согласующее устройство),

7 – линия связи, 8 – приемная антенна (согласующее устройство),

9 – частотно-избирательное устройство, 10 – усилитель радиосигнала, 11 – детектор,

12 – усилитель видеосигнала, 13 – получатель сообщения

В случае передачи нескольких сигналов по одной линии связи осуществля- ется так называемая многоканальная связь (рис. 1.6). При этом возникают проблемы с разделением каналов. В настоящее время широко применяются частотный, временной и адресный методы разделения каналов. Суть частот- ного метода заключается в том, что каждому сигналу отводится своя опреде- ленная полоса частот и выделение сигнала при этом производится специальны- ми фильтрами. Преимущество частотного метода – большое быстродействие, т. к. информация передается параллельным способом. Недостатком частотного метода является широкая полоса частот, необходимая для организации связи. При временном методе каждый сигнал передается по одной и той же полосе частот, но в разные интервалы времени. Данный метод предполагает наличие специального временного распределительного и синхронизирующего уст- ройств, что усложняет канал связи. При экономном использовании полосы час- тот, получаем проигрыш в быстродействии. В адресных системах связи каналы различаются по форме передаваемых сигналов.

В зависимости от вида организации связи возможны различные режимы связи. Если передача сообщений осуществляется в одном направлении от ис-

точника к получателю, то такой режим называется симплексным, например, передача данных с автоматической метеостанции. Режим связи, при котором обеспечивается возможность одновременной передачи сообщений в прямом и

обратном направлениях, называется дуплексным. Классический пример – теле- фонная связь. Режим связи, при котором обмен информацией осуществляется поочередно, называется полудуплексным, например, работа диктора в телеви-

зионной студии и журналиста на месте события.

Σ Линия св.

Рис. 1.6. Структурная схема многоканальной системы связи:

ИсN – источники сообщений, KN – каналы связи, Σ – сумматор,

ФN – фильтры приемного устройства, ДN – детекторы, АN – получатели сообщений

В реальных каналах связи по различным причинам возможно случайное воздействие на сигнал, которое называется помехой n(t). В результате такого воздействия ухудшается достоверность воспроизведения сообщения. Если входной сигнал приемного устройства z(t) является суммой полезного сигнала s(t) и помехи n(t), то помеха называется аддитивной, т. е. z(t) = s(t) + n(t). В случае представления входного сигнала в виде z(t) = k(t) · s(t), помеха назы- вается мультипликативной. В реальных каналах связи действуют как адди- тивные, так и мультипликативные помехи различного происхождения. Если же в канале связи помехи отсутствуют, то такой канал связи является идеальным каналом.

Основные радиотехнические процессы


  1. Преобразование исходного сообщения в электрический сигнал.

  2. Генерация высокочастотных колебаний.

  3. Управление колебаниями (модуляция).

  4. Усиление слабых сигналов в приемнике.

  5. Выделение сообщения из высокочастотного колебания (детектирование и декодирование).

Радиотехнические цепи и методы

их анализа

Классификация цепей

И элементы, используемые для осуществления перечисленных преобразований сигналов и колебаний, можно разбить на следующие основные классы:

Линейные цепи с постоянными параметрами;

Линейные цепи с переменными параметрами;

Нелинейные цепи.
^ Линейные цепи с постоянными параметрами

Можно исходить из следующих определений:


  1. Цепь является линейной, если входящие в нее элементы не зависят от внешней силы (напряжения, тока), действующей на цепь.

  2. Линейная цепь подчиняется принципу суперпозиции (наложения).
,

Где L - оператор, характеризующий воздействие цепи на входной сигнал.

При действии на линейную цепь нескольких внешних сил поведение цепи (ток, напряжение) можно определить путем наложения (суперпозиции) решений, найденных для каждой из сил в отдельности.

Иначе: в линейной цепи сумма эффектов от отдельных воздействий совпадает с эффектом от суммы воздействий.


  1. При любом сколь угодно сложном воздействии в линейной цепи с постоянными параметрами не возникает колебаний новых частот.

^ Линейные цепи с переменными параметрами

Имеются в виду цепи, один или несколько параметров которых изменяются во времени (но не зависят от входного сигнала). Подобные цепи часто называются линейными параметрическими .

Свойства 1 и 2 из предыдущего пункта справедливы и для этих цепей. Однако даже простейшее гармоническое воздействие создает в линейной цепи с переменными параметрами сложное колебание, имеющее спектр частот.
^ Нелинейные цепи

Радиотехническая цепь является нелинейной, если в ее состав входят один или несколько элементов, параметры которых зависят от уровня входного сигнала. Простейший нелинейный элемент - диод.

Основные свойства нелинейных цепей:


  1. К нелинейным цепям (и элементам) принцип суперпозиции неприменим .

  2. Важным свойством нелинейной цепи является преобразование спектра сигнала.

^ Классификация сигналов

С информационной точки зрения сигналы можно разделить на детерминированные и случайные.

Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью единица.

К случайным относят сигналы, мгновенные значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами - шумами. Полезные случайные сигналы, а также помехи часто объединяют термином случайные колебания или случайные процессы .

Сигналы в канале радиосвязи часто подразделяют на управляющие сигналы и на радиосигналы ; под первыми понимают модулирующие, а под вторыми - модулированные колебания.

Применяемые в современной радиоэлектронике сигналы можно разделить на следующие классы:

Произвольные по величине и непрерывные по времени (аналоговые);

Произвольные по величине и дискретные по времени (дискретные);

Квантованные по величине и непрерывные по времени (квантованные);

Квантованные по величине и дискретные по времени (цифровые).
^ Характеристики детерминированных

сигналов

Энергетические характеристики

Основными энергетическими характеристиками вещественного сигнала s(t) являются его мощность и энергия.

Мгновенная мощность определяется как квадрат мгновенного значения s(t):

Энергия сигнала на интервале t 2 , t 1 определяется как интеграл от мгновенной мощности:

.

Отношение

Имеет смысл средней на интервале t 2 , t 1 мощности сигнала.
^ Представление произвольного сигнала

в виде суммы элементарных колебаний

Для теории сигналов и их обработки важное значение имеет разложение заданной функции f(x) по различным ортогональным системам функций j n (x). Любой сигнал может быть представлен в виде обобщенного ряда Фурье:

,

Где С i - весовые коэффициенты,

J i - ортогональные функции разложения (базисные функции).

Для базисный функций должно выполняться условие:

Если сигнал определен на интервале от t 1 до t 2 , то

Норма базисной функции.

Если функция не ортонормированная, то ее можно таким образом привести. С увеличением n уменьшается C n .

Предположим, что задано множество базисных функций {j n }. При задании множества базисных функций и при фиксированном количестве слагаемых в обобщенном ряде Фурье, ряд Фурье дает аппроксимацию исходной функции, имеющую минимальную среднеквадратичную ошибку в определении исходной функции. Обобщенный ряд Фурье дает

Такой ряд дает минимум в среднем ошибки (погрешности).

Имеется 2 задачи разложения сигнала на простейшие функции:


  1. ^ Точное разложение на простейшие ортогональные функции (аналитическая модель сигнала, анализ поведения сигнала).
Эта задача реализуется на тригонометрических базисных функциях, так как они имеют простейшую форму и являются единственными функциями, сохраняющими свою форму при прохождении через линейные цепи; при использовании этих функций можно применять символический метод ().

  1. ^ Аппроксимация сигналов процессов и характеристик , когда требуется свести к минимуму число членов обобщенного ряда. К ним относятся: полиномы Чебышева, Эрмита, Лежандра.

^ Гармонический анализ периодических сигналов

При разложении периодического сигнала s(t) в ряд Фурье по тригонометрическим функциям в качестве ортогональной системы берут

Интервал ортогональности определяется нормой функции

Среднее значение функции за период.

- основная формула для

определения ряда Фурье

Модуль - четная функция, фаза - нечетная функция.

Рассмотрим пару для к-го члена

- разложение ряда Фурье


^ Примеры спектров периодических сигналов


  1. Прямоугольное колебание . Подобное колебание, часто называемое меандром (Меандр - греческое слово, обозначающее “орнамент”), находит особенно широкое применение в измерительной технике.
^ Гармонический анализ непериодических сигналов



Пусть сигнал s(t) задан в виде некоторой функции, отличной от нуля в промежутке (t 1 ,t 2). Этот сигнал должен быть интегрируем.

Возьмем бесконечный отрезок времени Т, включающий в себя промежуток (t 1 ,t 2). Тогда . Спектр непериодического сигнала является сплошным. Заданный сигнал можно представить в виде ряда Фурье , где

На основании этого получим:

Поскольку Т®µ, то сумму можно заменить интегрированием, а W 1 на dW и nW 1 на W. Таким образом мы прейдем к двойному интегралу Фурье

,





где - спектральная плотность сигнала. Когда интервал (t 1 ,t 2) не уточнен интеграл имеет бесконечные пределы. Это есть обратное и прямое преобразование Фурье, соответственно.

Если сравнить выражения для огибающей сплошного спектра (модуль спектральной плотности) непериодического сигнала и огибающей линейчатого спектра периодического сигнала, то будет видно, что они совпадают по форме, но отличаются масштабом .

Следовательно, спектральная плотность S(W) обладает всеми основными свойствами комплексного ряда Фурье. Т. е. можно записать , где

, а .

Модуль спектральной плотности является нечетной функцией и его можно рассматривать как амплитудно-частотную характеристику. Аргумент - нечетная функция рассматриваемая как фазо-частотная характеристика.

На основании этого сигнал можно выразить следующим образом

Из четности модуля и нечетности фазы следует, что подынтегральная функция в первом случая является четной, а во втором - нечетной относительно W. следовательно второй интеграл равен нулю (нечетная функция в четных пределах) и окончательно .

Отметим, что при W=0 выражение для спектральной плотности равно площади под кривой s(t)

.
^ Свойства преобразования Фурье

Сдвиг сигнала во времени

Пусть сигнал s 1 (t) произвольной формы обладает спектральной плотностью S 1 (W). При задержке этого сигнала на время t 0 получим новую функцию времени s 2 (t)=s 1 (t-t 0). Спектральная плотность сигнала s 2 (t) будет следующая . Введем новую переменную . Отсюда .

Любому сигналу соответствует своя спектральная плотность. Сдвиг сигнала по оси времени приводит к изменению его фазы, а модуль этого сигнала не зависит от положения сигнала на оси времени.

^ Изменение масштаба времени



Пусть сигнал s 1 (t) подвергается сжатию во времени. Новый сигнал s 2 (t) связан с исходным соотношением .

Длительность импульса s 2 (t) в n раз меньше, чем исходного. Спектральная плотность сжатого импульса . Введем новую переменную . Получим .

При сжатии сигнала в n раз во столько же раз расширяется его спектр. Модуль спектральной плотности при этом уменьшатся в n раз. При растяжении сигнала во времени имеют место сужение спектра и увеличение модуля спектральной плотности.

^ Смещение спектра колебаний

Домножим сигнал s(t) на гармонический сигнал cos(w 0 t+q 0). Спектр такого сигнала

Разобьем его на 2 интеграла .

Полученное соотношение можно записать в следующей форме

Таким образом умножение функции s(t) на гармоническое колебание приводит к расщеплению спектра на 2 части, смещенные на ±w 0 .

^ Дифференцирование и интегрирование сигнала

Пусть дан сигнал s 1 (t) со спектральной плотностью S 1 (W). Дифференцирование этого сигнала дает соотношение . Интегрирование же приводит к выражению .

^ Сложение сигналов

При сложении сигналов s 1 (t) и s 2 (t) обладающих спектрами S 1 (W) и S 2 (W) суммарному сигналу s 1 (t)+s 2 (t) соответствует спектр S 1 (W)+S 2 (W) (т. к. преобразование Фурье является линейной операцией).

^ Произведение двух сигналов

Пусть . Такому сигналу соответствует спектр

Представим функции в виде интегралов Фурье .

Подставляя второй интеграл в выражение для S(W) получим

Следовательно .

Т. е. спектр произведения двух функций времени равен свертке их спектров (с коэффициентом 1/2p).

Если , то спектр сигнала будет .

^ Взаимная обратимость частоты и времени

в преобразовании Фурье


  1. Пусть s(t) - четная функция относительно времени.
Тогда . Так как второй интеграл от нечетной функции в симметричных пределах равен нулю. Т. е. функция S(W) является вещественной и четной относительно W.

Если предположить, что s(t) - четная функция. Запишем s(t) в виде . Произведем замену W на t и t на W, получим .

Если спектр имеет форму какого сигнала, то тогда сигнал соответствующий этому спектру повторяет форму спектра подобного сигнала.
^ Распределение энергии в спектре непериодического сигнала

Рассмотрим выражение , в котором f(t)=g(t)=s(t). В этом случае данный интеграл равен . Это соотношение носит название равенства Парсеваля.

Энергетический расчет полосы пропускания: , где , а .
^ Примеры спектров непериодических сигналов

Прямоугольный импульс



Определяется выражением

Найдем спектральную плотность



.
При удлинении (растягивании) импульса расстояние между нулями сокращается, значение S(0) при этом увеличивается. Модуль функции можно рассматривать как АЧХ, а аргумент как ФЧХ спектра прямоугольного импульса. Каждая перемена знака учитывает приращение фазы на p.

При отсчете времени не от середины импульса, а от фронта ФЧХ спектра импульса должна быть дополнена слагаемым , учитывающим сдвиг импульса на время (результирующая ФЧХ показана пунктиром).

Колоколообразный (гауссовский) импульс

Определяется выражением . Постоянная а имеет смысл половины длительности импульса, определяемой на уровне е -1/2 от амплитуды импульса. Таким образом, полная длительность импульса .

Спектральная плотность сигнала.



Для удобства дополним показатель степени до квадрата суммы , где величина d определяется из условия , откуда . Таким образом, выражение для спектральной плотности можно привести к виду .

Переходя к новой переменной получим . Учитывая, что входящий в это выражение интеграл равен , окончательно получим , где .

Ширина спектра импульса

Гауссовский импульс и его спектр выражаются одинаковыми функциями и обладают свойством симметрии. Для него соотношение длительности импульса и полосы пропускания является оптимальным, т. е. при данной длительности импульса гауссовский импульс имеет минимальную полосу пропускания.

дельта-импульс (единичный импульс)



Сигнал задан соотношением . Ее можно получить из вышеперечисленных импульсов путем устремления t и к нулю.

Известно, что , следовательно спектр такого сигнала будет постоянным (это есть площадь импульса, равная единице).

Для создания такого импульса необходимы все гармоники.

Экспоненциальный импульс



Сигнал вида , c>0.

Спектр сигнала находится следующим образом

Запишем сигнал в другой форме .

Если , то . Это означает, что мы получим единичный скачек. При получаем следующее выражение для спектра сигнала .




Отсюда модуль


Радиосигналы
Модуляция

Пусть дан сигнал , в нем A(t) является амплитудной модуляцией, w(t) - частотная модуляция, j(t) - фазовая модуляция. Две последние образуют угловую модуляцию. Частота w должна быть велика по сравнению с наивысшей частотой спектра сигнала W (ширины спектра занимаемой сообщением).

Модулированное колебание имеет спектр, структура которого зависит как от спектра передаваемого сообщения, так и от вида модуляции.

Возможно существование нескольких видов модуляции: непрерывная, импульсная, кодоимпульсная.
^ Амплитудная модуляция



Общее выражение для амплитудно-модулированного колебания выглядит следующим образом

Характер огибающей A(t) определяется видом передаваемого сообщения.

Если сигнал сообщения , то огибающую модулированного колебания можно представить в виде . Где W - частота модуляции, g - начальная фаза огибающей, k - коэффициент пропорциональности, DА m - абсолютное изменение амплитуды. Отношение - коэффициент модуляции. Исходя из этого можно записать . Тогда амплитудно-модулированное колебание запишется в следующем виде .

При неискаженной модуляции (М£1) амплитуда колебания изменяется в пределах от до .

Максимальному значению соответствует пиковая мощность . Средняя же за период модуляции мощность .

Мощность для передачи амплитудно-модулированного сигнала больше чем для передачи простого сигнала.

Спектр амплитудно-модулированного сигнала

Пусть модулированное колебание определяется выражением

Преобразуем это выражение



Первое слагаемое - исходное немодулированное колебание. Второе и третье - колебания появляющиеся в процессе модуляции Частоты этих колебаний (w 0 ±W) называются боковыми частотами модуляции. Ширина спектра 2W.

В случая когда сигнал есть сумма , где , а . Причем , где .

Отсюда получим





Каждая из составляющих спектра модулирующего сигнала независимо друг от друга образуют две боковых частоты (левую и правую). Ширина спектра в этом случае 2W 2 =2W max 2 максимальных частоты модулирующего сигнала.

На векторной диаграмме ось времени вращается по часовой стрелке с угловой частотой w 0 (отсчет ведется от горизонтальной оси) . Амплитуды и фазы боковых лепестков всегда равны между собой, поэтому результирующий их вектор DF будет всегда направлен по линии OD. Итоговый вектор OFизменяется только по амплитуде не меняя своего углового положения.

Пусть имеется сигнал Запишем в другом виде .

Сигналу соответствует спектр , где , а S A - спектральная плотность огибающей. Отсюда следует окончательное выражение для спектра

Это объясняется стробирующим действием d-функции, т. е. все составляющие равны нулю кроме частот w±w н (это те значения при которых d-функция равна нулю). Даже если спектр не дискретный, то все равно имеются боковые составляющие.
^ Частотная модуляция

Пусть есть колебание с частотной модуляцией . Однако частота - это производная от фазы. Если изменить фазу, то текущая частота тоже изменится.

Частотная модуляция

,

Где представляет собой амплитуду частотного отклонения. Для краткости в дальнейшем будем называть девиацией частоты или просто девиацией .

Где w 0 t - текущее изменение фазы; - индекс угловой модуляции.

Предположим , где .

,

Где m - коэффициент модуляции.

Таким образом, гармоническая модуляция фазы с индексом эквивалентна частотной модуляции с девиацией .

При гармоническом модулирующем сигнале различие между ЧМ и ФМ можно выявить, только изменяя частоту модуляции.

При ЧМ девиация W .

При ФМ величина пропорциональна амплитуде модулирующего напряжения и не зависит от частоты модуляции W .

Для монохроматического модулирующего сигнала фазовая и частотная модуляции неразличимы.
^ Спектр сигнала при угловой модуляции

Пусть задано колебание

Имеются два амплитудно-модулированных сигнала. Такие составляющие, которые отличаются на называются квадратурными составляющими.

Пусть . Это совпадает с . Здесь q 0 =0, g=0.

Cos и sin - функции периодические и разлагаются в ряд Фурье

J(m) - Бесселева функция 1 рода.

Спектр при угловой модуляции бесконечно большой, в отличие от спектра при амплитудной модуляции.

При угловой модуляции спектр частотно-модулированного колебания даже при модуляции 1 частотой состоит из бесчисленного количества гармоник, группирующихся около несущей частоты.

Недостатки: спектр очень широкий.

Достоинства: наиболее помехоустойчивая.

Рассмотрим случай, когда m << 1.

Если m очень мал, то в спектре присутствуют только 2 боковые частоты.



Ширина спектра (m << 1) будет равна 2W.

Если m=0,5¸1, то появляется вторая пара боковых частот w±2W. Ширина спектра равна 4W.

Если m=1¸2, то появляются третья и четвертая гармоники w±3W, w±4W.

Ширина спектра при m очень больших

ШС=2mW=2w д

Если коэффициент модуляции значительно меньше единицы, то такая модуляция называется быстрой , тогда w д << W.

Если m >> 1, то это медленная модуляция, тогда w д >> W.
^ Спектр радиоимпульса с частотно-модулированным

заполнением



, где

Где ,

Основной параметр линейно-частоно модулированного сигнала (ЛЧМ) или база сигнала ЛЧМ.

B может быть и положительной и отрицательной.

Предположим, что b>0

Спектр сигнала представляет собой 2 компоненты:

1 - всплеск около частоты w о;

2 - всплеск около частоты -w о.

При определении спектральной плотности в области положительных частот второе слагаемое можно отбросить.

Дополним экспоненту до полного квадрата

, где С(х) и S(х) - интегралы Френеля

Модуль спектральной плотности ЛЧМ сигнала

Фаза спектральной плотности ЛЧМ сигнала



Чем больше m, тем ближе форма спектра к прямоугольной с шириной спектра . Зависимость фазы является квадратичной.

При m стремящемся к большим значениям форма АЧХ стремится к прямоугольной, а фаза состоит из двух частей:

1). дает параболу

2). стремится к

При большом m и :

Тогда значение модуля: .
Смешанная амплитудно-частотная модуляция

Спектральная плотность косинусного квадратурного колебания при =0 будет

При определении спектра синусного квадратурного колебания фазовый угол следует приравнять -90°. Следовательно,

Таким образом, окончательно спектральная плотность колебания определяется выражением

Переходя к переменной , получаем

.

Структура спектра сигнала при смешанной амплитудно-частотной модуляции зависит от соотношения и вида функций А(t) и q(t).

При частотной модуляции фазы нечетных гармоник изменяются на 180°. Одновременная модуляция и по частоте, и по амплитуде при некоторых соотношениях А(t) и q(t) приводит к нарушению симметричности спектра на только по фазе, но и по амплитуде.

Если q(t) является нечетной функцией от t, то при любых А(t) спектр выходного сигнала является несимметричным.

Пусть А(t) - четная функция, тогда А с (t) - четная, А s (t) - нечетная, является чисто вещественным, симметричным относительно W, четным, а - чисто мнимым, несимметричным относительно W и нечетным.

С учетом множителя j спектр выходного колебания является вещественным.. В результате спектр получился несимметричным, но по отношению к w=0 он является симметричным. Такой же результат можно получить и при нечетной функции А(t). В этом случае спектр является чисто мнимым и нечетным.

Для симметричности выходного спектра требуется четность q(t) при условии, что А(t) было либо четным, либо нечетным относительно t. Если А(t) является суммой четных и нечетных функций, то выходной спектр несимметричен при любых условиях.

Фаза у ЛЧМ четная и амплитуда четная.

Причем

Выходной спектр получился симметричным.


  1. А(t) = четная функция + нечетная функция, а q(t) - четная функция.
Предположим, что , где .

Спектр получился несимметричным.
Узкополосный сигнал

Под ним понимается любой сигнал, у которого полоса частот, занимаемая сигналом значительно меньше несущей частоты: .

Где А s (t) - синфазная амплитуда, В s (t) - квадратурная амплитуда.

Комплексная амплитуда узкополосного сигнала .

,

Где - оператор вращения.

Простейшее колебание можно представить в форме , где . В этом выражении огибающая А(t) в отличие от А о является функцией времени, которую можно определить из условия сохранения заданной функции а(t)

Из этого выражения видно, что новая функция А(t) по существу не является “огибающей” в общепринятом смысле, так как она может пересекать кривую а(t) (вместо касания в точках, где А(t) имеет максимальное значение). То есть мы не верно определили огибающую и частоту. Существует метод мгновенной частоты - метод Гильберта для определения частоты.

Если сигнал , то тогда

Полная фаза сигнала , а мгновенная частота

Физическая огибающая .

Предположим, что выбрали опорную частоту не w о, а w о +Dw, тогда

, где .

Первое

Модуль комплексной огибающей равен физической огибающей и постоянен, не зависит от выбора частоты.

Второе свойство комплексной огибающей:

Модуль сигнала s(t) всегда меньше или равен u s (t). Равенство наступает тогда, когда cos w o t = 1. В эти моменты производная сигнала и производная огибающей равны.

Физическая огибающая совпадает с максимальным значением амплитуды сигнала.



Зная комплексную огибающую можно найти ее спектр, а через него сам сигнал.

,

.

Зная G(w) найдем U s (t).

Помножим на (-b-jt) и получим вещественную и мнимую части соответственно , . Отсюда амплитуда будет .
^ Аналитический сигнал

Пусть есть сигнал s(t) определяемый как . Разделим его на две составляющие .

В том выражении –– аналитический сигнал. Если ввести переменную то . То есть мы получили . Реальный сигнал есть , сигнал сопряженный по Гильберту . Аналитический сигнал есть .

, –– прямое и обратное преобразование Гильберта.
Определение несущей и огибающей по методу Гильберта

Амплитуда сигнала , его фаза . Значение мгновенной частоты .

Пример: . .

–– точное определение огибающей. Использование метода Гильберта позволяет давать однозначные и абсолютно достоверные значения огибающей и мгновенной частоты сигнала.

–– любой сигнал можно разложить в ряд Фурье.

–– сопряженный по Гильберту сигнал.

Если сигнал представлен не рядом Фурье, а интегралом Фурье, то справедливы следующие соотношения , .
^ Свойства аналитического сигнала


  1. Произведение аналитического сигнала z s (t) на сопряженный ему сигнал z s * (t) равно квадрату огибающей исходного (физического) сигнала s(t).


Иначе , где .
Преобразование Гильберта для узкополосного процесса

Пусть , тогда сопряженный по Гильберту сигнал .

Исходя из этого получим

Свойства преобразований Гильберта

––преобразование Гильберта, где Н() – оператор преобразования.



Пример . Сигнал s(t) – идеальный низкочастотный сигнал.

Частотные и временные характеристики

радиотехнических цепей



Пусть имеется линейный активный четырехполюсник.

1. Передаточная функция . Характеризует изменение сигнала на выходе относительно сигнала на входе. Модуль называют амплитудно-частотной характеристикой или просто частотной характеристикой. Аргумент –– фазо-частотная характеристика или просто фазовая.

2. Импульсная характеристика –– реакция цепи на единичный импульс. Характеризует изменение сигнала во времени. Связь с передаточной функцией осуществляется через обратное и прямое преобразование Фурье (соответственно) . Или же через преобразование Лапласа .

3. Переходная функция –– реакция цепи на единичный скачек. Это есть накопление сигнала за время t.
^ Апериодический усилитель



Схема замещения простейшего апериодического усилителя. Усилительный прибор представлен в виде источника тока SE 1 с внутренней проводимостью G i =1/R i . Емкость С включает в себя межэлектродную емкость активного элемента и емкость внешней цепи, шунтирующей нагрузочный резистор R н.
Передаточная функция такого усилителя

,



где S –– крутизна активного элемента, Е 1 – напряжение на входе.

Максимальный коэффициент усиления (при ) . Отсюда , где – время задержки.

Модуль передаточной характеристики –– АЧХ. Т. е. этот усилитель пропускает сигнал только в определенной полосе частот. ФЧХ –– .