Линейная зависимость строк. Свойства линейно зависимых и линейно независимых столбцов матриц

где – какие-то числа (некоторые из этих чисел или даже все могут быть равны нулю). Это означает наличие следующих равенств между элементами столбцов:

Из (3.3.1) вытекает, что

Если равенство (3.3.3) справедливо тогда и только тогда, когда , то строки называются линейно независимыми. Соотношение (3.3.2) показывает, что если одна из строк линейно выражается через остальные, то строки линейно зависимы.

Легко видеть и обратное: если строки линейно зависимы, то найдется строка, которая будет линейной комбинацией остальных строк.

Пусть, например, в (3.3.3) , тогда .

Определение. Пусть в матрице А выделен некоторый минор r-го порядка и пусть минор (r+1)-го порядка этой же матрицы целиком содержит внутри себя минор . Будем говорить, что в этом случае минор окаймляет минор (или является окаймляющим для ).

Теперь докажем важную лемму.

Лемма об окаймляющих минорах. Если минор порядка r матрицы А= отличен от нуля, а все окаймляющие его миноры равны нулю, то любая строка (столбец) матрицы А является линейной комбинацией ее строк (столбцов), составляющих .

Доказательство. Не нарушая общности рассуждений, будем считать, что отличный от нуля минор r-го порядка стоит в левом верхнем углу матрицы А= :



.

Для первых k строк матрицы А утверждение леммы очевидно: достаточно в линейную комбинацию включить эту же строку с коэффициентом, равным единице, а остальные – с коэффициентами, равными нулю.

Докажем теперь, что и остальные строки матрицы А линейно выражаются через первые k строк. Для этого построим минор (r+1)-го порядка путем добавления к минору k-ой строки () и l -го столбца ():

.

Полученный минор равен нулю при всех k и l. Если , то он равен нулю как содержащий два одинаковых столбца. Если , то полученный минор является окаймляющим минором для и, следовательно, равен нулю по условию леммы.

Разложим минор по элементам последнего l -го столбца:

Полагая , получим:

(3.3.6)

Выражение (3.3.6) означает, что k-я строка матрицы А линейно выражается через первые r строк.

Так как при транспонировании матрицы значения ее миноров не изменяются (ввиду свойства определителей), то все доказанное справедливо и для столбцов. Теорема доказана.

Следствие I. Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов). Действительно, базисный минор матрицы отличен от нуля, а все окаймляющие его миноры равны нулю.

Следствие II. Определитель n-го порядка тогда и только тогда равен нулю, когда он содержит линейно зависимые строки (столбцы). Достаточность линейной зависимости строк (столбцов) для равенства определителя нулю доказана ранее как свойство определителей.

Докажем необходимость. Пусть задана квадратная матрица n-го порядка, единственный минор которой равен нулю. Отсюда следует, что ранг этой матрицы меньше n, т.е. найдется хотя бы одна строка, которая является линейной комбинацией базисных строк этой матрицы.

Докажем еще одну теорему о ранге матрицы.

Теорема. Максимальное число линейно независимых строк матрицы равно максимальному числу ее линейно независимых столбцов и равно рангу этой матрицы.

Доказательство. Пусть ранг матрицы А= равен r. Тогда любые ее k базисных строк являются линейно независимыми, иначе базисный минор был бы равен нулю. С другой стороны, любые r+1 и более строк линейно зависимы. Предположив противное, мы могли бы найти минор порядка более чем r, отличный от нуля по следствию 2 предыдущей леммы. Последнее противоречит тому, что максимальный порядок миноров, отличных от нуля, равен r. Все доказанное для строк справедливо и для столбцов.

В заключение изложим еще один метод нахождения ранга матрицы. Ранг матрицы можно определить, если найти минор максимального порядка, отличный от нуля.

На первый взгляд, это требует вычисления хотя и конечного, но быть может, очень большого числа миноров этой матрицы.

Следующая теорема позволяет, однако, внести в этот значительные упрощения.

Теорема. Если минор матрицы А отличен от нуля, а все окаймляющие его миноры равны нулю, то ранг матрицы равен r.

Доказательство. Достаточно показать, что любая подсистема строк матрицы при S>r будет в условиях теоремы линейно зависимой (отсюда будет следовать, что r – максимальное число линейно независимых строк матрицы или любые ее миноры порядка больше чем k равны нулю).

Предположим противное. Пусть строки линейно независимы. По лемме об окаймляющих минорах каждая из них будет линейно выражаться через строки , в которых стоит минор и которые, ввиду того, что отличен от нуля, линейно независимы:

Теперь рассмотрим следующую линейную комбинацию:

или

Используя (3.3.7) и (3.3.8), получаем

,

что противоречит линейной независимости строк .

Следовательно, наше предположение неверно и, значит, любые S>r строк в условиях теоремы линейно зависимы. Теорема доказана.

Рассмотрим правило вычисления ранга матрицы – метод окаймляющих миноров, основанный на данной теореме.

При вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков. Если уже найден минор r-го порядка , отличный от нуля, то требуется вычислить лишь миноры (r+1)-го порядка, окаймляющие минор . Если они равны нулю, то ранг матрицы равен r. Этот метод применяется и в том случае, если мы не только вычисляем ранг матрицы, но и определяем, какие столбцы (строки) составляют базисный минор матрицы.

Пример. Вычислить методом окаймляющих миноров ранг матрицы

Решение. Минор второго порядка, стоящий в левом верхнем углу матрицы А, отличен от нуля:

.

Однако все окаймляющие его миноры третьего порядка равны нулю:

; ;
; ;
; .

Следовательно, ранг матрицы А равен двум: .

Первая и вторая строки, первый и второй столбцы в данной матрице являются базисными. Остальные строки и столбцы являются их линейными комбинациями. В самом деле, для строк справедливы следующие равенства:

В заключение отметим справедливость следующих свойств:

1) ранг произведения матриц не больше ранга каждого из сомножителей;

2) ранг произведения произвольной матрицы А справа или слева на невырожденную квадратную матрицу Q равен рангу матрицы А.

Многочленные матрицы

Определение. Многочленной матрицей или -матрицей называется прямоугольная матрица, элементы которой являются многочленами от одного переменного с числовыми коэффициентами.

Над -матрицами можно совершать элементарные преобразования. К ним относятся:

Перестановка двух строк (столбцов);

Умножение строки (столбца) на число, отличное от нуля;

Прибавление к одной строке (столбцу) другой строки (столбца), умноженной на любой многочлен .

Две -матрицы и одинаковых размеров называются эквивалентными: , если от матрицы к можно перейти с помощью конечного числа элементарных преобразований.

Пример. Доказать эквивалентность матриц

, .

1. Поменяем местами в матрице первый и второй столбцы:

.

2. Из второй строки вычтем первую, умноженную на ():

.

3. Умножим вторую строку на (–1) и заметим, что

.

4. Вычтем из второго столбца первый, умноженный на , получим

.

Множество всех -матриц данных размеров разбивается на непересекающиеся классы эквивалентных матриц. Матрицы, эквивалентные между собой, образуют один класс, не эквивалентные - другой.

Каждый класс эквивалентных матриц характеризуется канонической, или нормальной, -матрицей данных размеров.

Определение. Канонической, или нормальной, -матрицей размеров называется -матрица, у которой на главной диагонали стоят многочлены , где р - меньшее из чисел m и n (), причем не равные нулю многочлены имеют старшие коэффициенты, равные 1, и каждый следующий многочлен делиться на предыдущий. Все элементы вне главной диагонали равны 0.

Из определения следует, что если среди многочленов имеются многочлены нулевой степени, то они в начале главной диагонали. Если имеются нули, то они стоят в конце главной диагонали.

Матрица предыдущего примера есть каноническая. Матрица

также каноническая.

Каждый класс -матриц содержит единственную каноническую -матрицу, т.е. каждая -матрица эквивалентна единственной канонической матрице, которая называется канонической формой или нормальной формой данной матрицы.

Многочлены, стоящие на главной диагонали канонической формы данной -матрицы, называются инвариантными множителями данной матрицы.

Один из методов вычисления инвариантных множителей состоит в приведении данной -матрицы к канонической форме.

Так, для матрицы предыдущего примера инвариантными множителями являются

Из сказанного следует, что наличие одной и той же совокупности инвариантных множителей является необходимым и достаточным условием эквивалентности -матриц.

Приведение -матриц к каноническому виду сводится к определению инвариантных множителей

, ; ,

где r – ранг -матрицы; - наибольший общий делитель миноров k-го порядка, взятый со старшим коэффициентом, равным 1.

Пример. Пусть дана -матрица

.

Решение. Очевидно, наибольший общий делитель первого порядка , т.е. .

Определим миноры второго порядка:

, и т.д.

Уже этих данных достаточно для того, чтобы сделать вывод: , следовательно, .

Определяем

,

Следовательно, .

Таким образом, канонической формой данной матрицы является следующая -матрица:

.

Матричным многочленом называется выражение вида

где - переменное; - квадратные матрицы порядка n с числовыми элементами.

Если , то S называют степенью матричного многочлена, n – порядком матричного многочлена.

Любую квадратичную -матрицу можно представить в виде матричного многочлена. Справедливо, очевидно, и обратное утверждение, т.е. любой матричный многочлен можно представить в виде некоторой квадратной -матрицы.

Справедливость данных утверждений со всей очевидностью вытекает из свойств операций над матрицами. Остановимся на следующих примерах:

Пример. Представить многочленную матрицу

в виде матричного многочлена можно следующим образом

.

Пример. Матричный многочлен

можно представить в виде следующей многочленной матрицы ( -матрицы)

.

Эта взаимозаменяемость матричных многочленов и многочленных матриц играет существенную роль в математическом аппарате методов факторного и компонентного анализа.

Матричные многочлены одинакового порядка можно складывать, вычитать и умножать аналогично обычным многочленам с числовыми коэффициентами. Следует, однако, помнить, что умножение матричных многочленов, вообще говоря, не коммутативно, т.к. не коммутативно умножение матриц.

Два матричных многочлена называются равными, если равны их коэффициенты, т.е. соответствующие матрицы при одинаковых степенях переменного .

Суммой (разностью) двух матричных многочленов и называется такой матричный многочлен, у которого коэффициент при каждой степени переменного равен сумме (разности) коэффициентов при той же степени в многочленах и .

Чтобы умножить матричный многочлен на матричный многочлен , нужно каждый член матричного многочлена умножить на каждый член матричного многочлена , сложить полученные произведения и привести подобные члены.

Степень матричного многочлена – произведения меньше или равна сумме степеней сомножителей.

Операции над матричными многочленами можно осуществлять с помощью операций над соответствующими -матрицами.

Чтобы сложить (вычесть) матричные многочлены, достаточно сложить (вычесть) соответствующие -матрицы. То же относится к умножению. -матрица произведения матричных многочленов равна произведению -матриц сомножителей.

С другой стороны и можно записать в виде

где В 0 – невырожденная матрица.

При делении на существует однозначно определенное правое частное и правый остаток

где степень R 1 меньше степени , или (деление без остатка), а также левое частное и левый остаток тогда и только тогда, когда, где порядка

Заметим, что строки и столбцы матрицы можно рассматривать как арифметические векторы размеров m и n , соответственно. Таким образом, матрицу размеров можно интерпретировать как совокупностьm n -мерных илиn m -мерных арифметических векторов. По аналогии с геометрическими векторами введем понятия линейной зависимости и линейной независимости строк и столбцов матрицы.

4.8.1. Определение. Строка
называетсялинейной комбинацией строк с коэффициентами
, если для всех элементов этой строки справедливо равенство:

,
.

4.8.2. Определение.

Строки
называютсялинейно зависимыми , если существует их нетривиальная линейная комбинация, равная нулевой строке, т.е. существуют такие не все равные нулю числа


,
.

4.8.3. Определение.

Строки
называютсялинейно независимыми , если только их тривиальная линейная комбинация равна нулевой строке, т.е.

,

4.8.4. Теорема. (Критерий линейной зависимости строк матрицы)

Для того, чтобы строки были линейно зависимыми, необходимо и достаточно, чтобы хотя бы одна из них была линейной комбинацией остальных.

Доказательство:

Необходимость. Пусть строки
линейно зависимы, тогда существует их нетривиальная линейная комбинация, равная нулевой строке:

.

Без ограничения общности предположим, что первый из коэффициентов линейной комбинации отличен от нуля (в противном случае можно перенумеровать строки). Разделив это соотношение на , получим


,

то есть первая строка является линейной комбинацией остальных.

Достаточность. Пусть одна из строк, например, , является линейной комбинацией остальных, тогда

то есть существует нетривиальная линейная комбинация строк
, равная нулевой строке:

а значит, строки
линейно зависимы, что и требовалось доказать.

Замечание.

Аналогичные определения и утверждения могут быть сформулированы и для столбцов матрицы.

§4.9. Ранг матрицы.

4.9.1. Определение. Минором порядка матрицы размера
называется определитель порядка с элементами, расположенными на пересечении некоторых ее строк и столбцов.

4.9.2. Определение. Отличный от нуля минор порядка матрицы размера
называетсябазисным минором , если все миноры матрицы порядка
равны нулю.

Замечание. Матрица может иметь несколько базисных миноров. Очевидно, что все они будут одного порядка. Также возможен случай, когда у матрицы размера
минор порядка отличен от нуля, а миноров порядка
не существует, то есть
.

4.9.3. Определение. Строки (столбцы), образующие базисный минор, называются базисными строками (столбцами).

4.9.4. Определение. Рангом матрицы называется порядок ее базисного минора. Ранг матрицы обозначается
или
.

Замечание.

Отметим, что в силу равноправности строк и столбцов определителя ранг матрицы не меняется при ее транспонировании.

4.9.5. Теорема. (Инвариантность ранга матрицы относительно элементарных преобразований)

Ранг матрицы не меняется при ее элементарных преобразованиях.

Без доказательства.

4.9.6. Теорема. (О базисном миноре).

Базисные строки (столбцы) линейно независимы. Всякая строка (столбец) матрицы может быть представлена в виде линейной комбинации ее базисных строк (столбцов).

Доказательство:

Проведем доказательство для строк. Доказательство утверждения для столбцов может быть проведено по аналогии.

Пусть ранг матрицы размеров
равен, а
− базисный минор. Без ограничения на общность предположим, что базисный минор расположен в левом верхнем углу (в противном случае можно привести матрицу к этому виду с помощью элементарных преобразований):

.

Докажем сначала линейную независимость базисных строк. Доказательство проведем от противного. Предположим, что базисные строки линейно зависимы. Тогда согласно теореме 4.8.4 одна из строк может быть представлена в виде линейной комбинации остальных базисных строк. Следовательно, если вычесть из этой строки указанную линейную комбинацию, то мы получим нулевую строку, а это означает, что минор
равен нулю, что противоречит определению базисного минора. Таким образом, мы получили противоречие, следовательно, линейная независимость базисных строк доказана.

Докажем теперь, что всякая строка матрицы может быть представлена в виде линейной комбинации базисных строк. Если номер рассматриваемой строки от 1 доr , то тогда, очевидно, она может быть представлена в виде линейной комбинации c коэффициентом, равным 1 при строке и нулевыми коэффициентами при остальных строках. Покажем теперь, что если номер строкиот
до
, она может быть представлена в виде линейной комбинации базисных строк. Рассмотрим минор матрицы
, полученный из базисного минора
добавлением строкии произвольного столбца
:

Покажем, что данный минор
от
до
и для любого номера столбцаот 1 до.

Действительно, если номер столбца от 1 доr , то имеем определитель с двумя одинаковыми столбцами, который, очевидно, равен нулю. Если же номер столбца отr +1 до , а номер строкиот
до
, то
является минором исходной матрицы большего порядка, чем базисный минор, а это означает, что он равен нулю из определения базисного минора. Таким образом, доказано, что минор
равен нулю для любого номера строкиот
до
и для любого номера столбцаот 1 до. Разлагая его по последнему столбцу, получим:

Здесь
− соответствующие алгебраические дополнения. Заметим, что
, так как следовательно,
является базисным минором. Следовательно, элементы строкиk могут быть представлены в виде линейной комбинации соответствующих элементов базисных строк с коэффициентами, не зависящими от номера столбца :

Таким образом, мы доказали, что произвольная строка матрицы может быть представлена в виде линейной комбинации ее базисных строк. Теорема доказана.

Лекция 13

4.9.7. Теорема. (О ранге невырожденной квадратной матрицы)

Для того, чтобы квадратная матрица являлась невырожденной, необходимо и достаточно, чтобы ранг матрицы равен размеру этой матрицы.

Доказательство:

Необходимость. Пусть квадратная матрица размераn является невырожденной, тогда
, следовательно, определитель матрицы является базисным минором, т.е.

Достаточность. Пусть
тогда порядок базисного минора равен размеру матрицы, следовательно, базисным минором является определитель матрицы, т.е.
по определению базисного минора.

Следствие.

Для того, чтобы квадратная матрица была невырожденной, необходимо и достаточно, чтобы ее строки были линейно независимыми.

Доказательство:

Необходимость. Так как квадратная матрица является невырожденной, то ее ранг равен размеру матрицы
то есть определитель матрицы является базисным минором. Следовательно, по теореме 4.9.6 о базисном миноре строки матрицы являются линейно независимыми.

Достаточность. Так как все строки матрицы линейно независимы, то ее ранг не меньше размера матрицы, а значит,
следовательно, по предыдущей теореме 4.9.7 матрицаявляется невырожденной.

4.9.8. Метод окаймляющих миноров для нахождения ранга матрицы.

Заметим, что частично этот метод уже был неявно описан в доказательстве теоремы о базисном миноре.

4.9.8.1. Определение. Минор
называетсяокаймляющим по отношению к минору
, если он получен из минора
добавлением одной новой строки и одного нового столбца исходной матрицы.

4.9.8.2. Процедура нахождения ранга матрицы методом окаймляющих миноров.

    Находим какой-либо текущий минор матрицы отличный от нуля.

    Вычисляем все окаймляющие его миноры.

    Если все они равны нулю, то текущий минор является базисным, и ранг матрицы равен порядку текущего минора.

    Если среди окаймляющих миноров находится хотя бы один отличный от нуля, то он полагается текущим и процедура продолжается.

Найдем с помощью метода окаймляющих миноров ранг матрицы

.

Легко указать текущий минор второго порядка, отличный от нуля, например,

.

Вычисляем окаймляющие его миноры:




Следовательно, так как все окаймляющие миноры третьего порядка равны нулю, то минор
является базисным, то есть

Замечание. Из рассмотренного примера видно, что метод является достаточно трудоемким. Поэтому на практике гораздо чаще используется метод элементарных преобразований, речь о котором пойдет ниже.

4.9.9. Нахождение ранга матрицы методом элементарных преобразований.

На основании теоремы 4.9.5 можно утверждать, что ранг матрицы не меняется при элементарных преобразованиях (то есть ранги эквивалентных матриц равны). Поэтому ранг матрицы равен рангу ступенчатой матрицы, полученной из исходной элементарными преобразованиями. Ранг же ступенчатой матрицы, очевидно, равен количеству ее ненулевых строк.

Определим ранг матрицы

методом элементарных преобразований.

Приведем матрицу к ступенчатому виду:

Количество ненулевых строк полученной ступенчатой матрицы равно трем, следовательно,

4.9.10. Ранг системы векторов линейного пространства.

Рассмотрим систему векторов
некоторого линейного пространства. Если она является линейно зависимой, то в ней можно выделить линейно независимую подсистему.

4.9.10.1. Определение. Рангом системы векторов
линейного пространстваназывается максимальное количество линейно независимых векторов этой системы. Ранг системы векторов
обозначается как
.

Замечание. Если система векторов линейно независима, то ее ранг равен количеству векторов системы.

Сформулируем теорему, показывающую связь понятий ранга системы векторов линейного пространства и ранга матрицы.

4.9.10.2. Теорема. (О ранге системы векторов линейного пространства)

Ранг системы векторов линейного пространства равен рангу матрицы, столбцами или строками которой являются координаты векторов в некотором базисе линейного пространства.

Без доказательства.

Следствие.

Для того, чтобы система векторов линейного пространства являлась линейно независимой, необходимо и достаточно, чтобы ранг матрицы, столбцами или строками которой являются координаты векторов в некотором базисе, был равен количеству векторов системы.

Доказательство очевидно.

4.9.10.3. Теорема (О размерности линейной оболочки).

Размерность линейной оболочки векторов
линейного пространстваравна рангу этой системы векторов:

Без доказательства.

где – какие-то числа (некоторые из этих чисел или даже все могут быть равны нулю). Это означает наличие следующих равенств между элементами столбцов:

или , .

Из (3.3.1) вытекает, что

(3.3.2)

где – нулевая строка.

Определение. Строки матрицы А линейно зависимы, если существуют такие числа , не все равные нулю одновременно, что

(3.3.3)

Если равенство (3.3.3) справедливо тогда и только тогда, когда , то строки называются линейно независимыми. Соотношение (3.3.2) показывает, что если одна из строк линейно выражается через остальные, то строки линейно зависимы.

Легко видеть и обратное: если строки линейно зависимы, то найдется строка, которая будет линейной комбинацией остальных строк.

Пусть, например, в (3.3.3) , тогда .

Определение. Пусть в матрице А выделен некоторый минор r -го порядка и пусть минор (r +1)-го порядка этой же матрицы целиком содержит внутри себя минор . Будем говорить, что в этом случае минор окаймляет минор (или является окаймляющим для ).

Теперь докажем важную лемму.

Лемма об окаймляющих минорах. Если минор порядка r матрицы А= отличен от нуля, а все окаймляющие его миноры равны нулю, то любая строка (столбец) матрицы А является линейной комбинацией ее строк (столбцов), составляющих .

Доказательство. Не нарушая общности рассуждений, будем считать, что отличный от нуля минор r -го порядка стоит в левом верхнем углу матрицы А=:

.

Для первых k строк матрицы А утверждение леммы очевидно: достаточно в линейную комбинацию включить эту же строку с коэффициентом, равным единице, а остальные – с коэффициентами, равными нулю.

Докажем теперь, что и остальные строки матрицы А линейно выражаются через первые k строк. Для этого построим минор (r +1)-го порядка путем добавления к минору k -ой строки () и l -го столбца ():

.

Полученный минор равен нулю при всех k и l . Если , то он равен нулю как содержащий два одинаковых столбца. Если , то полученный минор является окаймляющим минором для и, следовательно, равен нулю по условию леммы.

Разложим минор по элементам последнего l -го столбца:

(3.3.4)

где - алгебраические дополнения к элементам . Алгебраические дополнение есть минор матрицы А, поэтому . Разделим (3.3.4) на и выразим через :

(3.3.5)

где , .

Полагая , получим:

(3.3.6)

Выражение (3.3.6) означает, что k -я строка матрицы А линейно выражается через первые r строк.

Так как при транспонировании матрицы значения ее миноров не изменяются (ввиду свойства определителей), то все доказанное справедливо и для столбцов. Теорема доказана.

Следствие I . Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов). Действительно, базисный минор матрицы отличен от нуля, а все окаймляющие его миноры равны нулю.

Следствие II . Определитель n -го порядка тогда и только тогда равен нулю, когда он содержит линейно зависимые строки (столбцы). Достаточность линейной зависимости строк (столбцов) для равенства определителя нулю доказана ранее как свойство определителей.

Докажем необходимость. Пусть задана квадратная матрица n -го порядка, единственный минор которой равен нулю. Отсюда следует, что ранг этой матрицы меньше n , т.е. найдется хотя бы одна строка, которая является линейной комбинацией базисных строк этой матрицы.

Докажем еще одну теорему о ранге матрицы.

Теорема. Максимальное число линейно независимых строк матрицы равно максимальному числу ее линейно независимых столбцов и равно рангу этой матрицы.

Доказательство. Пусть ранг матрицы А= равен r . Тогда любые ее k базисных строк являются линейно независимыми, иначе базисный минор был бы равен нулю. С другой стороны, любые r +1 и более строк линейно зависимы. Предположив противное, мы могли бы найти минор порядка более чем r , отличный от нуля по следствию 2 предыдущей леммы. Последнее противоречит тому, что максимальный порядок миноров, отличных от нуля, равен r . Все доказанное для строк справедливо и для столбцов.

В заключение изложим еще один метод нахождения ранга матрицы. Ранг матрицы можно определить, если найти минор максимального порядка, отличный от нуля.

На первый взгляд, это требует вычисления хотя и конечного, но быть может, очень большого числа миноров этой матрицы.

Следующая теорема позволяет, однако, внести в этот значительные упрощения.

Теорема. Если минор матрицы А отличен от нуля, а все окаймляющие его миноры равны нулю, то ранг матрицы равен r .

Доказательство. Достаточно показать, что любая подсистема строк матрицы при S > r будет в условиях теоремы линейно зависимой (отсюда будет следовать, что r – максимальное число линейно независимых строк матрицы или любые ее миноры порядка больше чем k равны нулю).

Предположим противное. Пусть строки линейно независимы. По лемме об окаймляющих минорах каждая из них будет линейно выражаться через строки , в которых стоит минор и которые, ввиду того, что отличен от нуля, линейно независимы:

(3.3.7)

Рассмотрим матрицу К из коэффициентов линейных выражений (3.3.7):

.

Строки этой матрицы обозначим через . Они будут линейно зависимы, так как ранг матрицы К, т.е. максимальное число ее линейно независимых строк, не превышает r < S . Поэтому существуют такие числа , не все равны нулю, что

Перейдем к равенству компонент

(3.3.8)

Теперь рассмотрим следующую линейную комбинацию:

или

Рассмотрим произвольную, необязательно квадратную, матрицу А размера mxn.

Ранг матрицы.

Понятие ранга матрицы связано с понятием линейной зависимости (независимости) строк (столбцов) матрицы. Рассмотрим это понятие для строк. Для столбцов – аналогично.

Обозначим стоки матрицы А:

е 1 =(а 11 ,а 12 ,…,а 1n); е 2 =(а 21 ,а 22 ,…,а 2n);…, е m =(а m1 ,а m2 ,…,а mn)

e k =e s если a kj =a sj , j=1,2,…,n

Арифметические операции над строками матрицы (сложение, умножение на число) вводятся как операции, проводимые поэлементно: λе k =(λа k1 ,λа k2 ,…,λа kn);

e k +е s =[(а k1 +a s1),(a k2 +a s2),…,(а kn +a sn)].

Строка е называется линейной комбинацией строк е 1 , е 2 ,…,е k , если она равна сумме произведений этих строк на произвольные действительные числа:

е=λ 1 е 1 +λ 2 е 2 +…+λ k е k

Строки е 1 , е 2 ,…,е m называются линейно зависимыми , если существуют действительные числа λ 1 ,λ 2 ,…,λ m , не все равные нулю, что линейная комбинация этих строк равна нулевой строке: λ 1 е 1 +λ 2 е 2 +…+λ m е m =0 ,где0 =(0,0,…,0) (1)

Если линейная комбинация равна нулю тогда и только тогда, когда все коэффициенты λ i равны нулю (λ 1 =λ 2 =…=λ m =0), то строки е 1 , е 2 ,…,е m называются линейно независимыми.

Теорема 1 . Для того, чтобы строки е 1 ,е 2 ,…,е m были линейно зависимы, необходимо и достаточно, чтобы одна из этих строк была линейной комбинацией остальных строк.

Доказательство . Необходимость . Пусть строки е 1 , е 2 ,…,е m линейно зависимы. Пусть, для определенности в (1) λ m ≠0, тогда

Т.о. строка е m является линейной комбинацией остальных строк. Ч.т.д.

Достаточность . Пусть одна из строк, например е m , является линейной комбинацией остальных строк. Тогда найдутся числа такие, что выполняется равенство , которое можно переписать в виде ,

где хотя бы 1 из коэффициентов, (-1), не равен нулю. Т.е. строки линейно зависимы. Ч.т.д.

Определение. Минором k-го порядка матрицы А размера mxn называется определитель k-го порядка с элементами, лежащими на пересечении любых k строк и любых k столбцов матрицы А. (k≤min(m,n)). .

Пример. , миноры 1-го порядка: =, =;

миноры 2-го порядка: , 3-го порядка

У матрицы 3-го порядка 9 миноров 1-го порядка, 9 миноров 2-го порядка и 1 минор 3-го порядка (определитель этой матрицы).

Определение. Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение - rg A или r(A).

Свойства ранга матрицы .

1) ранг матрицы A nxm не превосходит меньшего из ее размеров, т.е.

r(A)≤min(m,n).

2) r(A)=0 когда все элементы матрицы равны 0, т.е. А=0.

3) Для квадратной матрицы А n –го порядка r(A)=n , когда А невырожденная.



(Ранг диагональной матрицы равен количеству ее ненулевых диагональных элементов).

4) Если ранг матрицы равен r, то матрица имеет хотя бы один минор порядка r, не равный нулю, а все миноры больших порядков равны нулю.

Для рангов матрицы справедливы следующие соотношения:

2) r(A+B)≤r(A)+r(B); 3) r(AB)≤min{r(A),r(B)};

3) r(A+B)≥│r(A)-r(B)│; 4) r(A T A)=r(A);

5) r(AB)=r(A), если В - квадратная невырожденная матрица.

6) r(AB)≥r(A)+r(B)-n, где n-число столбцов матрицы А или строк матрицы В.

Определение. Ненулевой минор порядка r(A) называется базисным минором . (У матрицы А может быть несколько базисных миноров). Строки и столбцы, на пересечении которых стоит базисный минор, называются соответственно базисными строками и базисными столбцами .

Теорема 2 (о базисном миноре). Базисные строки (столбцы) линейно независимы. Любая строка (любой столбец) матрица А является линейной комбинацией базисных строк (столбцов).

Доказательство . (Для строк). Если бы базисные строки были линейно зависимы, то по теореме (1) одна из этих строк была бы линейной комбинацией других базисных строк, тогда, не изменяя величины базисного минора, можно вычесть из этой строки указанную линейную комбинацию и получить нулевую строку, а это противоречит тому, что базисный минор отличен от нуля. Т.о. базисные строки линейно независимы.

Докажем, что любая строка матрицы А является линейной комбинацией базисных строк. Т.к. при произвольных переменах строк (столбцов) определитель сохраняет свойство равенства нулю, то, не ограничивая общности, можно считать, что базисный минор находится в верхнем левом углу матрицы

А=, т.е. расположен на первых r строках и первых r столбцах. Пусть 1£j£n, 1£i£m. Покажем, что определитель (r+1)-го порядка

Если j£r или i£r, то этот определитель равен нулю, т.к. у него будет два одинаковых столбца или две одинаковых строки.

Если же j>r и i>r, то этот определитель является минором (r+1)-го порядка матрицы А. Т.к. ранг матрицы равен r, значит любой минор большего порядка равен 0.

Раскладывая его по элементам последнего (добавленного) столбца, получаем

a 1j A 1j +a 2j A 2j +…+a rj A rj +a ij A ij =0, где последнее алгебраическое дополнение A ij совпадает с базисным минором М r и поэтому A ij = М r ≠0.

Разделив последнее равенство на A ij , можем выразить элемент a ij , как линейную комбинацию: , где .

Зафиксируем значение i (i>r) и получаем, что для любого j (j=1,2,…,n) элементы i-й строки e i линейно выражаются через элементы строк е 1 , е 2 ,…,е r , т.е. i-я строка является линейной комбинацией базисных строк: . Ч.т.д.

Теорема 3. (необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель n-го порядка D был равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Доказательство (с.40) . Необходимость . Если определитель n-го порядка D равен нулю, то базисный минор его матрицы имеет порядок r

Т.о., одна строка является линейной комбинацией других остальных. Тогда по теореме 1 строки определителя линейно зависимы.

Достаточность . Если строки D линейно зависимы, то по теореме 1 одна строка А i является линейной комбинацией остальных строк. Вычитая из строки А i указанную линейную комбинацию, не изменив величины D, получим нулевую строку. Следовательно, по свойствам определителей, D=0. ч.т.д.

Теорема 4. При элементарных преобразованиях ранг матрицы не меняется.

Доказательство . Как было показано при рассмотрении свойств определителей, при преобразованиях квадратных матриц их определители либо не изменяются, либо умножаются на ненулевое число, либо меняют знак. При этом наивысший порядок отличных от нуля миноров исходной матрицы сохраняется, т.е. ранг матрицы не изменяется. Ч.т.д.

Если r(A)=r(B), то А и В –эквивалентные: А~В.

Теорема 5. При помощи элементарных преобразований можно привести матрицу к ступенчатому виду. Матрица называется ступенчатой, если она имеет вид:

А=, где a ii ≠0, i=1,2,…,r; r≤k.

Условия r≤k всегда можно достигнуть транспонированием.

Теорема 6. Ранг ступенчатой матрицы равен количеству ее ненулевых строк.

Т.е. Ранг ступенчатой матрицы равен r, т.к. есть отличный от нуля минор порядка r:

Каждую строку матрицы А обозначим е i = (a i 1 a i 2 …, a in) (например,
е 1 = (a 11 a 12 …, a 1 n), е 2 = (a 21 a 22 …, a 2 n) и т.д.). Каждая из них представляет собой матрицу-строку, которую можно умножить на число или сложить с другой строкой по общим правилам действий с матрицами.

Линейной комбинацией строк e l , e 2 ,...e k называют сумму произведений этих строк на произвольные действительные числа:
e = l l e l + l 2 e 2 +...+ l k e k , где l l , l 2 ,..., l k - произвольные числа (коэффициенты линейной комбинации).

Строки матрицы e l , e 2 ,...e m называются линейно зависимыми , если существуют такие числа l l , l 2 ,..., l m , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:
l l e l + l 2 e 2 +...+ l m e m = 0, где 0 = (0 0...0).

Линейная зависимость строк матрицы означает, что хотя бы одна строка матрицы является линейной комбинацией остальных. Действительно, пусть для определенности последний коэффициент l m ¹ 0. Тогда, разделив обе части равенства на l m , получим выражение для последней строки, как линейной комбинации остальных строк:
e m = (l l /l m)e l + (l 2 /l m)e 2 +...+ (l m-1 /l m)e m-1 .

Если линейная комбинация строк равна нулю тогда и только тогда, когда все коэффициенты равны нулю, т.е. l l e l + l 2 e 2 +...+ l m e m = 0 Û l k = 0 "k, то строки называют линейно независимыми .

Теорема о ранге матрицы . Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые можно линейно выразить все остальные ее строки или столбцы.

Докажем эту теорему. Пусть матрица А размера m х n имеет ранг r (r(А) £ min {m; n}). Следовательно, существует отличный от нуля минор r-го порядка. Всякий такой минор будем называть базисным . Пусть для определенности это минор

Строки этого минора также будем называть базисными .

Докажем, что тогда строки матрицы e l , e 2 ,...e r линейно независимы. Предположим противное, т.е. одна из этих строк, например r-я, является линейной комбинацией остальных: e r = l l e l + l 2 e 2 +...+ l r-1 e r-1 = 0. Тогда, если вычесть из элементов r-й строки элементы 1-й строки, умноженные на l l , элементы 2-й строки, умноженные на l 2 , и т.д., наконец, элементы (r-1)-й строки, умноженные на l r-1 , то r-я строка станет нулевой. При этом по свойствам определителя вышеприведенный определитель не должен измениться, и при этом должен быть равен нулю. Получено противоречие, линейная независимость строк доказана.

Теперь докажем, что любые (r+1) строк матрицы линейно зависимы, т.е. любую строку можно выразить через базисные.

Дополним рассмотренный ранее минор еще одной строкой (i-й) и еще одним столбцом (j-м). В результате получим минор (r+1)-го порядка, который по определению ранга равен нулю.