Какой принцип кодирования информации используется в компьютере. Кодирование информации

Кодирование информации в компьютере

Вся информация, которую обрабатывает компьютер, должна быть представлена двоичным кодом с помощью двух цифр - 0 и 1. Эти два символа принято называть двоичными цифрами, или битами. С помощью двух цифр 1 и 0 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организовано два важных процесса:

    кодирование, которое обеспечивается устройствами ввода при преобразовании входной информации в форму, воспринимаемую компьютером, то есть в двоичный код; декодирование, которое обеспечивается устройствами вывода при преобразовании данных из двоичного кода в форму, понятную человеку.

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного
более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:

    0 - отсутствие электрического сигнала или сигнал имеет низкий уровень; 1 - наличие сигнала или сигнал имеет высокий уровень.

Эти состояния легко различать. Недостаток двоичного кодирования - длинные коды. Но в технике легче иметь дело с большим числом простых элементов, чем с небольшим количеством сложных.

Вам и в быту ежедневно приходится сталкиваться с устройством, которое может находиться только в двух устойчивых состояниях: включено/выключено. Конечно же, это хорошо знакомый всем выключатель. А вот придумать выключатель, который мог бы устойчиво и быстро переключаться в любое из 10 состояний, оказалось невозможным. В результате после ряда неудачных попыток разработчики пришли к выводу о невозможности построения компьютера на основе десятичной системы счисления. И в основу представления чисел в компьютере была положена именно двоичная система счисления.


В настоящее время существуют разные способы двоичного кодирования и декодирования информации в компьютере. В первую очередь это зависит от вида информации, а именно, что должно кодироваться: текст, числа, графические изображения или звук. Кроме того, при кодировании чисел важную роль играет то, как они будут использоваться: в тексте, в расчетах или в процессе ввода-вывода. Накладываются также и особенности технической реализации.

Кодирование графической информации

Создавать и хранить графические объекты в компьютере можно двумя способами - как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.

Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора. Объем растрового изображения определяется как произведение количества точек и информационного объема одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объем одной точки равен 1 биту, так как точка может быть либо черной, либо белой, что можно закодировать двумя цифрами - 0 или 1.

Для кодирования 8 цветов необходимо 3 бита; для 16 цветов - 4 бита; для 6 цветов - 8 битов (1 байт) и т. д.

Кодирование звуковой информации

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Таким образом, непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность уровней громкости.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. В таком случае количество уровней сигнала будет равно 65536.

При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, т. е. от частоты дискретизации. Чем больше количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

Количество измерений в секунду может лежать в диапазоне от 8000 до 48000, т. е. частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц - качество звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стерео-режимы.

Представление видеоинформации

В последнее время компьютер все чаще используется для работы с видеоинформацией. Простейшей такой работой является просмотр кинофильмов и видеоклипов. Следует четко представлять, что обработка видеоинформации требует очень высокого быстродействия компьютерной системы.

Что представляет собой фильм с точки зрения информатики? Прежде всего, это сочетание звуковой и графической информации. Кроме того, для создания на экране эффекта движения используется дискретная по своей сути технология быстрой смены статических картинок. Исследования показали, что если за одну секунду сменяется более 10-12 кадров, то человеческий глаз воспринимает изменения на них как непрерывные.

Казалось бы, если проблемы кодирования статистической графики и звука решены, то сохранить видеоизображение уже не составит труда. Но это только на первый взгляд, поскольку, как показывает разобранный выше пример, при использовании традиционных методов сохранения информации электронная версия фильма получится слишком большой. Достаточно очевидное усовершенствование состоит в том, что первый кадр запомнить целиком (в литературе его принято называть ключевым), а в следующих сохранять только отличия от начального кадра (разностные кадры).

Существует множество различных форматов представления видеоданных.

В среде Windows, например, уже боле 10 лет (начиная с версии 3.1) применятся формат Video for Windows, базирующийся на универсальных файлых с расширением AVI (Audi o Video Interleave - чередование аудио и видео).

Большое рапространение получила технология под названием DivX (происходит от сокращения слова Digital Video Express). Благодаря DivX удалось достигнуть степени сжатия, позволившей вместить качественную запись полнометражного фильма на один компакт диск - сжать 4,7 Гб DVD-фильма до 650 Мб.

Код - это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий.

Кодирование информации – это процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Обычно каждый образ при кодировании (иногда говорят - шифровке) представлении отдельным знаком.

Знак - это элемент конечного множества отличных друг от друга элементов.

В более узком смысле под термином "кодирование" часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например "наложить" друг на друга звуки от разных источников.

Аналогичным образом на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной десятичной форме, а все необходимые преобразования выполняют программы, работающие на компьютере.

Способы кодирования информации.

Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Кодирование символьной (текстовой) информации.

Основная операция, производимая над отдельными символами текста - сравнение символов.

При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.

Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.

Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.

Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.

Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.

Кодирование числовой информации.

Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.

Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.

Кодирование текстовой информации

В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.

10 цифр, 12 знаков препинания, 15 знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО: 155 символов, что соответствует 8 бит информации.

Единицы измерения информации.

1 байт = 8 бит

1 Кбайт = 1024 байтам

1 Мбайт = 1024 Кбайтам

1 Гбайт = 1024 Мбайтам

1 Тбайт = 1024 Гбайтам

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой

Основным отображением кодирования символов является код ASCII - American Standard Code for Information Interchange- американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.

Кодирование графической информации.

Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).

Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения

Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.

Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.

Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.

Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.

В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.

Качество изображения будет тем выше, чем "плотнее" расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.

Для черно-белого изображения код цвета каждого пикселя задается одним битом.

Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.

Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.

Кодирование звуковой информации.

Из курса физики вам известно, что звук - это колебания воздуха. По своей природе звук является непрерывным сигналом. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение.

Для компьютерной обработки аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел, а для этого его необходимо дискретизировать и оцифровать.

Можно поступить следующим образом: измерять амплитуду сигнала через равные промежутки времени и записывать полученные числовые значения в память компьютера.

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два символа (0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту.

Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда --4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др.

На основании одной ячейки информационной ёмкостью 1 бит можно закодировать только 2 различных состояния. Для того чтобы каждый символ, который можно ввести с клавиатуры в латинском регистре, получил свой уникальный двоичный код, требуется 7 бит. На основании последовательности из 7 бит, в соответствии с формулой Хартли, может быть получено N=2 7 =128 различных комбинаций из нулей и единиц, т.е. двоичных кодов. Поставив в соответствие каждому символу его двоичный код, мы получим кодировочную таблицу. Человек оперирует символами, компьютер – их двоичными кодами.

Для латинской раскладки клавиатуры такая кодировочная таблица одна на весь мир, поэтому текст, набранный с использованием латинской раскладки, будет адекватно отображен на любом компьютере. Эта таблица носит название ASCII (American Standard Code of Information Interchange) по-английски произносится [э́ски], по-русски произносится [а́ски]. Ниже приводится вся таблица ASCII, коды в которой указаны в десятичном виде. По ней можно определить, что когда вы вводите с клавиатуры, скажем, символ “*”, компьютер его воспринимает как код 42(10), в свою очередь 42(10)=101010(2) – это и есть двоичный код символа “*”. Коды с 0 по 31 в этой таблице не задействованы.

Таблица символов ASCII

Для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события):

К = 2 I = 2 8 = 256,

т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов.

Одному и тому же двоичному коду ставится в соответствие различные символы.

Двоичный код

Десятичный код

Впрочем, в большинстве случаев о перекодировке текстовых документов заботится не пользователь, а специальные программы - конверторы, которые встроены в приложения.

Начиная с 1997 г. последние версии Microsoft Office поддерживают новую кодировку. Она называется Unicode (Юникод). Unicode – это кодировочная таблица, в которой для кодирования каждого символа используется 2 байта, т.е. 16 бит. На основании такой таблицы может быть закодировано N=2 16 =65 536 символов.

Юникод включает практически все современные письменности, в том числе: арабскую, армянскую, бенгальскую, бирманскую, греческую, грузинскую, деванагари, иврит, кириллицу, коптскую, кхмерскую, латинскую, тамильскую, хангыль, хань (Китай, Япония, Корея), чероки, эфиопскую, японскую (катакана, хирагана, кандзи) и другие.

С академической целью добавлены многие исторические письменности, в том числе: древнегреческая, египетские иероглифы, клинопись, письменность майя, этрусский алфавит.

В Юникоде представлен широкий набор математических и музыкальных символов, а также пиктограмм.

Для символов кириллицы в Юникоде выделено два диапазона кодов:

Cyrillic (#0400 - #04FF)

Cyrillic Supplement (#0500 - #052F).

Но внедрение таблицы Unicode в чистом виде сдерживается по той причине, что если код одного символа будет занимать не один байт, а два байта, что для хранения текста понадобится вдвое больше дискового пространства, а для его передачи по каналам связи – вдвое больше времени.

Поэтому сейчас на практике больше распространено представление Юникода UTF-8 (Unicode Transformation Format). UTF-8 обеспечивает наилучшую совместимость с системами, использующими 8-битные символы. Текст, состоящий только из символов с номером меньше 128, при записи в UTF-8 превращается в обычный текст ASCII. Остальные символы Юникода изображаются последовательностями длиной от 2 до 4 байтов. В целом, так как самые распространенные в мире символы – символы латинского алфавита - в UTF-8 по-прежнему занимают 1 байт, такое кодирование экономичнее, чем чистый Юникод.

Чтобы определить числовой код символа можно или воспользоваться кодовой таблицей. Для этого в меню нужно выбрать пункт "Вставка" - "Символ", после чего на экране появляется диалоговая панель Символ. В диалоговом окне появляется таблица символов для выбранного шрифта. Символы в этой таблице располагаются построчно, последовательно слева направо, начиная с символа Пробел.

Мы познакомились с системами счисления - способами кодирования чисел. Числа дают информацию о количестве предметов. Эта информация должна быть закодирована, представлена в какой-то системе счисления. Какой из известных способов выбрать, зависит от решаемой задачи.
До недавнего времени на компьютерах в основном обрабатывалась числовая и текстовая информация. Но большую часть информации о внешнем мире человек получает в виде изображения и звука. При этом более важным оказывается изображение. Помните пословицу: “Лучше один раз увидеть, чем сто раз услышать”. Поэтому сегодня компьютеры начинают всё активнее работать с изображением и звуком. Способы кодирования такой информации будут обязательно нами рассмотрены.

Двоичное кодирование числовой и текстовой информации.

Любая информация кодируется в ЭВМ с помощью последовательностей двух цифр - 0 и 1. ЭВМ хранит и обрабатывает информацию в виде комбинации электрических сигналов: напряжение 0.4В-0.6В соответствует логическому нулю, а напряжение 2.4В-2.7В - логической единице. Последовательности из 0 и 1 называются двоичными кодами , а цифры 0 и 1 - битами (двоичными разрядами). Такое кодирование информации на компьютере называется двоичным кодированием . Таким образом, двоичное кодирование - это кодирование с минимально возможным числом элементарных символов, кодирование самыми простыми средствами. Тем оно и замечательно с теоретической точки зрения.
Инженеров двоичное кодирование информации привлекает тем, что легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться только в одном из двух состояний: есть сигнал/нет сигнала или высокое напряжение/низкое напряжение .
ЭВМ в своей работе оперируют действительными и целыми числами, представленными в виде двух, четырёх, восьми и даже десяти байт. Для представления знака числа при счёте используется дополнительный знаковый разряд , который обычно располагается перед числовыми разрядами. Для положительных чисел значение знакового разряда равно 0, а для отрицательных чисел - 1. Для записи внутреннего представления целого отрицательного числа (-N) необходимо:
1) получить дополнительный код числа N заменой 0 на 1 и 1 на 0;
2) к полученному числу прибавить 1.

Так как одного байта для представления этого числа недостаточно, оно представлено в виде 2 байт или 16 бит, его дополнительный код: 1111101111000101, следовательно, -1082=1111101111000110.
Если бы ПК мог работать только с одиночными байтами, пользы от него было бы немного. Реально ПК работает с числами, которые записываются двумя, четырьмя, восемью и даже десятью байтами.
Начиная с конца 60-х годов компьютеры всё больше стали использоваться для обработки текстовой информации. Для представления текстовой информации обычно используется 256 различных символов, например большие и малые буквы латинского алфавита, цифры, знаки препинания и т.д. В большинстве современных ЭВМ каждому символу соответствует последовательность из восьми нулей и единиц, называемая байтом .
Байт – это восьмиразрядная комбинация нулей и единиц.
При кодировании информации в этих электронно-вычислительных машинах используют 256 разных последовательностей из 8 нулей и единиц, что позволяет закодировать 256 символов. Например большая русская буква «М» имеет код 11101101, буква «И» - код 11101001, буква «Р» - код 11110010. Таким образом, слово «МИР» кодируется последовательностью из 24 бит или 3 байт: 111011011110100111110010.
Количество бит в сообщении называется информационным объёмом сообщения. Это интересно!

Первоначально в ЭВМ использовался лишь латинский алфавит. В нём 26 букв. Так что для обозначения каждой хватило бы пяти импульсов (битов). Но в тексте есть знаки препинания, десятичные цифры и др. Поэтому в первых англоязычных компьютерах байт - машинный слог - включал шесть битов. Затем семь - не только чтобы отличать большие буквы от малых, но и для увеличения числа кодов управления принтерами, сигнальными лампочками и прочим оборудованием. В 1964 году появились мощные IBM-360, в которых окончательно байт стал равен восьми битам. Последний восьмой бит был необходим для символов псевдографики.
Присвоение символу конкретного двоичного кода - это вопрос соглашения, которое фиксируется в кодовой таблице. К сожалению, существует пять различных кодировок русских букв, поэтому тексты, созданные в одной кодировке, не будут правильно отражаться в другой.
Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 («Код обмена информацией, 8 битный»). Наиболее распространённая кодировка - это стандартная кириллическая кодировка Microsoft Windows, обозначаемая сокращением СР1251 («СР» означает «Code Page» или «кодовая страница»). Фирма Apple разработала для компьютеров Macintosh собственную кодировку русских букв (Мас). Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка кодировку ISO 8859-5. Наконец, появился новый международный стандарт Unicode, который отводит на каждый символ не один байт, а два, и поэтому с его помощью можно закодировать не 256 символов, а целых 65536.
Все эти кодировки продолжают кодовую таблицу стандарта ASCII (Американский стандартный код для информационного обмена), кодирующую 128 символов.

Таблица символов ASCII:

код символ код символ код символ код символ код символ код символ
32 Пробел 48 . 64 @ 80 P 96 " 112 p
33 ! 49 0 65 A 81 Q 97 a 113 q
34 " 50 1 66 B 82 R 98 b 114 r
35 # 51 2 67 C 83 S 99 c 115 s
36 $ 52 3 68 D 84 T 100 d 116 t
37 % 53 4 69 E 85 U 101 e 117 u
38 & 54 5 70 F 86 V 102 f 118 v
39 " 55 6 71 G 87 W 103 g 119 w
40 ( 56 7 72 H 88 X 104 h 120 x
41 ) 57 8 73 I 89 Y 105 i 121 y
42 * 58 9 74 J 90 Z 106 j 122 z
43 + 59 : 75 K 91 [ 107 k 123 {
44 , 60 ; 76 L 92 \ 108 l 124 |
45 - 61 < 77 M 93 ] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 DEL

Двоичное кодирование текста происходит следующим образом: при нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц на машинном языке). Программа драйвер клавиатуры и экрана по кодовой таблице определяет символ и создаёт его изображение на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде и программным способом преобразуются в изображения на экране.

Двоичное кодирование графической информации.

С 80-х годов бурно развивается технология обработки на компьютере графической информации. Компьютерная графика широко используется в компьютерном моделировании в научных исследованиях, компьютерных тренажёрах, компьютерной анимации, деловой графике, играх и т.д.
Графическая информация на экране дисплея представляется в виде изображения, которое формируется из точек (пикселей). Всмотритесь в газетную фотографию, и вы увидите, что она тоже состоит из мельчайших точек. Если это только чёрные и белые точки, то каждую из них можно закодировать 1 битом. Но если на фотографии оттенки, то два бита позволяет закодировать 4 оттенка точек: 00 - белый цвет, 01 - светло-серый, 10 - тёмно-серый, 11 - чёрный. Три бита позволяют закодировать 8 оттенков и т.д.
Количество бит, необходимое для кодирования одного оттенка цвета, называется глубиной цвета.

В современных компьютерах разрешающая способность (количество точек на экране), а также количество цветов зависит от видеоадаптера и может изменяться программно.
Цветные изображения могут иметь различные режимы: 16 цветов, 256 цветов, 65536 цветов (high color ), 16777216 цветов (true color ). На одну точку для режима high color необходимо 16 бит или 2 байта.
Наиболее распространённой разрешающей способностью экрана является разрешение 800 на 600 точек, т.е. 480000 точек. Рассчитаем необходимый для режима high color объём видеопамяти: 2 байт *480000=960000 байт.
Для измерения объёма информации используются и более крупные единицы:


Следовательно, 960000 байт приблизительно равно 937,5 Кбайт. Если человек говорит по восемь часов в день без перерыва, то за 70 лет жизни он наговорит около 10 гигабайт информации (это 5 миллионов страниц - стопка бумаги высотой 500 метров).
Скорость передачи информации - это количество битов, передаваемых в 1 секунду. Скорость передачи 1 бит в 1 секунду называется 1 бод.

В видеопамяти компьютера хранится битовая карта, являющаяся двоичным кодом изображения, откуда она считывается процессором (не реже 50 раз в секунду) и отображается на экран.


Двоичное кодирование звуковой информации.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, может сохранять в виде файлов (файл - это определённое количество информации, хранящееся на диске и имеющее имя ) и воспроизводить звуковую информацию. С помощью специальных программных средств (редакторов аудио файлов) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи, и появляется возможность управления компьютером голосом.
Именно звуковая плата (карта) преобразует аналоговый сигнал в дискретную фонограмму и наоборот, «оцифрованный» звук – в аналоговый (непрерывный) сигнал, который поступает на вход динамика.


При двоичном кодировании аналогового звукового сигнала непрерывный сигнал дискретизируется, т.е. заменяется серией его отдельных выборок - отсчётов. Качество двоичного кодирования зависит от двух параметров: количества дискретных уровней сигнала и количества выборок в секунду. Количество выборок или частота дискретизации в аудиоадаптерах бывает различной: 11 кГц, 22 кГц, 44,1 кГц и др. Если количество уровней равно 65536, то на один звуковой сигнал рассчитано 16 бит (216). 16-разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный.
Количество бит, необходимое для кодирования одного уровня звука, называется глубиной звука.
Объём моноаудиофайла (в байтах) определяется по формуле:


При стереофоническом звучании объём аудиофайла удваивается, при квадрофоническом звучании – учетверяется.
По мере усложнения программ и увеличения их функций, а также появления мультимедиа-приложений, растёт функциональный объём программ и данных. Если в середине 80-х годов обычный объём программ и данных составлял десятки и лишь иногда сотни килобайт, то в середине 90-х годов он стал составлять десятки мегабайт. Соответственно растёт объём оперативной памяти.


В мире идет постоянный обмен потоками информации. Источниками могут быть люди, технические устройства, различные вещи, объекты неживой и живой природы. Получать сведения может как один объект, так и несколько.

Для более качественного обмена данными одновременно осуществляется кодирование и обработка информации на стороне передатчика (подготовка данных и преобразование их в форму, удобную для трансляции, обработки и хранения), пересылка и декодирование на стороне приемника (преобразование кодированных данных в исходную форму). Это взаимосвязанные задачи: источник и приемник должны обладать сходными алгоритмами обработки сведений, иначе процесс кодирования-декодирования будет невозможен. Кодирование и обработка графической и мультимедийной информации обычно реализуются на основе вычислительной техники.

Кодирование информации на компьютере

Есть много способов обработки данных (тексты, числа, графика, видео, звук) с помощью компьютера. Вся информация, обрабатываемая компьютером, представлена в двоичном коде — с помощью цифр 1 и 0, называемых битами. Технически этот способ реализуется очень просто: 1 — электрический сигнал присутствует, 0 — отсутствует. С точки зрения человека, такие коды неудобны для восприятия — длинные строчки нулей и единиц, представляющие собой кодированные символы, очень сложно сходу расшифровать. Зато такой формат записи сразу наглядно показывает, что такое кодирование информации. Например, число 8 в двоичном восьмиразрядном виде выглядит как следующая последовательность бит: 000001000. Но то, что сложно человеку, просто компьютеру. Электронике проще обработать множество простых элементов, чем небольшое количество сложных.

Кодирование текстов

Когда мы нажимаем кнопку на клавиатуре, компьютер получает определенный код нажатой кнопки, ищет его в стандартной таблице символов ASCII (американский код для обмена информацией), «понимает» какая кнопка нажата и передает этот код для дальнейшей обработки (например, для отображения символа на мониторе). Для хранения символьного кода в двоичном виде используется 8 разрядов, поэтому максимальное число комбинаций равняется 256. Первые 128 символов используется под управляющие символы, цифры и латинские буквы. Вторая половина предназначается для национальных символов и псевдографики.

Кодирование текстов

Легче будет понять, что такое кодирование информации, на примере. Рассмотрим коды английского символа «С» и русской буквы «С». Заметим, что взяты символы заглавные, и их коды отличаются от строчных. Английский символ будет выглядеть как 01000010, а русский - 11010001. То, что для человека на экране монитора выглядит одинаково, компьютер воспринимает совершенно по-разному. Необходимо также обратить внимание на то, что коды первых 128 символов остаются неизменны, а начиная от 129 и далее одному двоичному коду могут соответствовать различные буквы в зависимости от используемой кодовой таблицы. К примеру, десятичный код 194 может соответствовать в КОИ8 букве «б», в СР1251 - «В», в ISO - «Т», а в кодировках СР866 и Мас вообще этому коду не соответствует ни один символ. Поэтому, когда при открытии текста мы вместо русских слов видим буквенную-символьную абракадабру, это означает, что такое кодирование информации нам не подходит и нужно выбрать другой конвертор символов.

Кодирование чисел

В двоичной системе исчисления берутся всего два варианта значения — 0 и 1. Все основные операции с двоичными числами использует наука под названием двоичная арифметика. Эти действия имеют свои особенности. Возьмем, к примеру, число 45, набранное на клавиатуре. Каждая цифра имеет свой восьмиразрядный код в кодовой таблице ASCII, поэтому число занимает два байта (16 бит): 5 - 01010011, 4 - 01000011 . Для того чтобы использовать это число в вычислениях, оно переводится по специальным алгоритмам в двоичную систему исчисления в виде восьмиразрядного двоичного числа: 45 - 00101101.

В 50-х годах на компьютерах, которые чаще всего использовались в научных и военных целях, впервые реализовали графическое отображение данных. Сегодня визуализация информации, получаемой от компьютера, является обычным и привычным для любого человека явлением, а в те времена это произвело необычайный переворот в работе с техникой. Возможно, сказалось влияние человеческой психики: наглядно представленная информация лучше усваивается и воспринимается. Большой рывок в развитии визуализации данных произошел в 80-х годах, когда кодирование и обработка графической информации получили мощное развитие.

Аналоговое и дискретное представление графики

Кодирование звука

Кодирование мультимедийной информации состоит в преобразовании аналоговой природы звука в дискретную для более удобной ее обработки. АЦП получает на входе измеряет его амплитуду в определенные промежутки времени и выдает на выходе цифровую последовательность с данными об изменениях амплитуды. Никаких физических преобразований не происходит.

Выходной сигнал является дискретным, поэтому, чем чаще частота измерения амплитуды (сэмпл), тем точнее выходной сигнал соответствует входному, тем лучше проходит кодирование и обработка мультимедийной информации. Сэмплом также принято называть упорядоченную последовательность цифровых данных, полученных через АЦП. Сам процесс при этом называется сэмплированием, по-русски — дискретизацией.


Обратное преобразование происходит при помощи ЦАП: на основании поступающих на вход цифровых данных в определенные моменты времени происходит генерация электрического сигнала необходимой амплитуды.

Параметры дискретизации

Основными параметрами сэплирования являются не только частота измерения, но и разрядность — точность измерения изменения амплитуды за каждый сэмпл. Чем точнее передается при оцифровке значение амплитуды сигнала в каждую единицу времени, тем выше качество сигнала после АЦП, тем выше достоверность восстановление волны при обратном преобразовании.