Информация и ее свойства.

По степени трудности задачи делят на: простые, более сложные, повышенной сложности, творческие. Про стые задачи требуют для решения одну формулу и форму лирование одного двух выводов. С простых задач начина ют закрепление нового материала, поэтому их иногда на зывают тренировочными. Более сложные задачи требуют для решения использования нескольких формул, привле чения сведений из других разделов курса информатики, формулировки нескольких выводов.

Творческие задачи различаются большим разнооб разием, но среди них можно выделить исследовательские, которые требуют ответа на вопрос «почему?», и конструк торские, требующие ответа на вопрос «как сделать?».

По используемым для решения программным сред ствам можно выделить задачи, требующие применения: операционной системы, текстового редактора, графиче ского редактора, электронной таблицы, системы управле ния базами данных, других прикладных программ.

По используемым для решения аппаратным сред ствам можно выделить задачи, требующие применения различных средств вычислительной техники и внешних устройств, например, принтера, графопостроителя, скане ра, цифрового фотоаппарата, локальной сети и др.

Комбинированные задачи отличаются большим раз нообразием и предполагают: сочетание учебного мате риала различного содержания, часто из разных разделов курса, формулирования нескольких выводов, использова ния для решения нескольких формул и закономерностей.

12.3. Качественные задачи по информатике

Качественной называют такую задачу, в которой главной особенностью является акцент на качественную

сторону процесса или явления. Их ещё называют задачи вопросы. Решаются такие задачи путём логических умо заключений, с помощью графиков, рисунков или экспери ментально, обычно без применения математических вы числений.

Качественные задачи по информатике разнообразны по содержанию и используются учителем на большинстве уроков. Они служат средством проверки знаний и умений, способствуют их закреплению и углублению. Умело по ставленные задачи вопросы поддерживают активность учащихся на уроке, повышают интерес к информатике. Ис пользовать качественные задачи особенно необходимо при изучении тех разделов, где нет возможности решать количественные задачи, например, при изучении моде лей, истории информатики, текстового редактора и др. Ка чественные задачи позволяют учителю быстро провести проверку усвоения материала, выявить отсутствие его формального понимания.

Основной способ решения качественных задач – это аналитико синтетический, когда описываемое явление или процесс расчленяется на ряд простых, а затем путём син теза конструируется вывод следствий и получается ответ. С помощью дедукции и индукции строятся логическая це почка рассуждений, умозаключения.

Графический приём решения качественных задач часто подходит при решении задач на построение изобра жений с помощью средств графического редактора, по строения таблицы сложной формы с разновеликими боко виками и головками и др.

Экспериментальный приём решения заключается в получении ответа на основании проведённого опыта. Например:

Что произойдет с выравниванием содержимого ячейки электронной таблицы, если вы введёте в

неё: последовательность чисел и букв; последо вательность букв и чисел?

В какой из поисковых систем Google, Rambler или Яndex, на запрос по ключевым словам «Информа тика. Базовый курс» будет выдан наибольший список адресов документов?

В последней задаче ученикам придется потратить достаточно много времени на подключение к Интернету и проведение поиска в поисковых системах, а затем подсчё та числа выданных адресов.

Следует избегать сложных качественных задач, ре шение которых требует строить длинные цепи умозаклю чений, проследить за которыми по силу лишь немногим учащимся.

12.4. Количественные задачи по информатике

Количественные задачи обычно решаются по сле дующим темам:

количество и единицы измерения информации; сис темы счисления;

передача информации по линиям связи, кодирова ние информации;

хранение информации в памяти компьютера;

форматы машинных команд;

представление символьной, числовой, графической и звуковой информации.

Пример решения задачи на количество информации

Условие задачи : Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите

мощностью 32 символа, второй – мощностью 64 символа. Во сколько раз отличается количество информации в этих текстах?

Решение : В равновероятном приближении информаци онный объём текста равен произведению числа симво лов на информационный вес одного символа:

I = K x i

Поскольку оба текста имеют одинаковое количество символов (K ), то различие информационных объёмов определяется только разницей в информативности сим волов алфавита (i ). Найдемi 1 для первого алфавита иi 2 для второго алфавита:

2 i1 = 32; отсюдаi 1 = 5 битов; 2i2 = 64; отсюдаi 2 = 6 битов;

Следовательно, информационные объёмы первого и второго текстов:

I1 = Kx 5битов ; I2 = Kx 6битов

Отсюда следует, что количество информации во втором тексте больше, чем в первом в 6/5 раз или в 1,2 раза.

Ответ: во втором тексте информации больше в 1,2 раза.

Приведём пример записи условия и решения задачи, способ оформления которого близок к принятому для за дач по физике .

Условие задачи : Если сообщение несёт 4 бита информа ции, то во сколько раз была уменьшена неопределён ность?

Дано: Решение

N = 2 4 = 16 (вариантов).

3. В данном случае возможно 16 вариан тов. А произошло только одно событие.

16 / 1 = 16 (раз).

Ответ: Неопределённость в результате сообщения уменьшилась в 16 раз.

Такая форма записи условия и решения имеет пре имущество перед свободной записью, так как обладает определённым формализмом, знакома по урокам физики, дисциплинирует учащихся, выстраивает для них чёткий алгоритм решения.

В задачах на подсчёт количества информации можно выделить следующие основные этапы решения :

1) Осмысление условия задачи : определение, однозначно ли сформулирована задача, понимание всех слов и фраз, например «из 256 символьного алфавита», выявление су щественных элементов задачи, определение исходных данных и искомых результатов.

2) Запись краткого условия задачи : записать условное обозначение исходных данных и искомых величин.

3) Поиск пути решения задачи : выявление теоретических положений, связанных с задачей, соотнесение задачи с известным способом решения, разделение задачи на от дельные составляющие части.

4) Осуществление плана решения и получение искомого результата : записать решение словесным способом, по лучить конечную формулу в буквенном выражении и лишь затем подставить в формулу конкретные значения, полу

чить правильную единицу измерения искомой величины, записать развёрнутую формулировку ответа на вопрос за дачи после слова «Ответ».

5) Изучение и интерпретация найденного решения: уча щиеся демонстрируют осмысление полученного ответа; верифицируют результат; выполняют проверку путем со ставления и решения задачи, обратной данной, находят другой способ решения.

Как можно заметить, такой порядок во многом соот ветствует тому, что принят при решении задач по физике, поэтому он знаком учащимся и это обстоятельство следует использовать учителю. Приведём образец решения задачи на расчёт объёма памяти для хранения звуковой инфор мации :

Условие задачи : Определить размер (в байтах) цифрового аудиофайла, время звучания которого со ставляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.

Решение: Формула для расчёта размера (в бай тах) цифрового аудиофайла (монофоническое звуча ние):(частота дискретизации в Гц) х (время записи в секундах) х (разрешение в битах) / 8.

Таким образом, размер файла вычисляется так: 22050 х 10х 8 / 8 = 220500 байт.

Ответ: 220500 байт.

12.5. Задачи на моделирование явлений и про­ цессов

Задачи по этой теме занимают важное место в базо вом курсе, так как направлены на формирование умений и навыков владения информационно коммуникационными технологиями. Эти задачи обычно называют практически

ми заданиями из за их объёма и длительности решения. Часть задач на моделирование в среде текстового и графи ческого редактора относительно просты для исполнения. Задачи на моделирование в среде электронных таблиц и баз данных могут быть достаточно сложными и громозд кими, потребовать для решения несколько уроков.

Обычно в задачах моделируются физические, хими ческие и биологические явления и процессы, а также ма тематические и экономические расчёты, но есть и приме ры для моделирования литературных произведений. За дачи этого раздела представлены в учебнике Н.Д. Угрино вича по базовому курсу для 9 класса , в практикум задачнике под редакцией Н.В. Макаровой и задачни ке практикуме под редакцией И.Г. Семакина и Е.К. Хенне ра . Число имеющихся в них заданий с избытком пере крывает потребности базового курса, а учитель имеет воз можность выбора, исходя из своих предпочтений и вкуса.

В практикум задачнике по моделированию под ре дакцией профессора Н.В. Макаровой представлены такие важные и сложные темы курса как:

моделирование в среде графического редактора;

моделирование в среде текстового редактора;

моделирование в электронных таблицах;

информационные модели в базах данных.

В этом практикум задачнике по каждой теме курса дано большое число заданий и приведены подробные указания по их решению, включая выделение таких этапов как: постановка задачи, разработка модели, компьютер ный эксперимент, анализ результатов моделирования. Рассмотрим кратко пример задания по моделированию движения парашютиста. Выполнение задания разбивается на четыре этапа.

I этап. Постановка задачи. Описание задачи.

Парашютист при падении к земле испытывает действие силы тяжести и силы сопротивления воздуха. Экспериментально установлено, что сила сопротивле ния зависит от скорости движения: чем больше ско рость, тем больше сила. При движении в воздухе эта сила пропорциональна квадрату скорости с некоторым коэффициентом сопротивления k , который зависит от конструкции парашюта и веса человекаR сопр = k V 2 . Каково должно быть значение этого коэффициента, чтобы парашютист приземлился на землю со скоро стью не более 8 м/с, не представляющей опасности для здоровья?

Определите цели моделирования и проведите формализацию задачи.

II этап. Разработка модели.

На этом этапе сначала составляется информаци онная модель, а затем – математическая модель с записью уравнений движения парашютиста и выво дом формул для скорости парашютиста и пройденно го пути. После чего составляется компьютерная мо дель в среде электронной таблицы. Таблица содер жит три области: для исходных данных, для промежу точных расчётов, для результатов.

III этап. Компьютерный эксперимент.

Он включает план эксперимента и собственно проведение исследования.

IV этап. Анализ результатов моделирования.

Анализ состоит в формулировки ответов на по ставленные вопросы.

В учебнике Н.Д. Угриновича по базовому курсу моде лированию и формализации посвящена одна глава, а в

компьютерном практикуме моделированию процессов и явлений посвящены 3 практические работы из 23 х. Это проект «Движение Земли», биологическая модель разви тия популяций «Жертва хищник» и модель экспертной системы для лабораторной работы по химии «Распознава ние пластмасс». Причём для выполнения первой и третьей работы применяется система объектно ориентированного программирования Визуал Бейсик.

Моделирование развития биологической популяции проводится с использованием среды электронной табли цы. При этом вначале подробно описывается формальная модель процесса, вводятся коэффициенты роста числа жертв и хищников, коэффициент частоты их встреч. Затем записывается формулы для уменьшения числа жертв и увеличения числа хищников в ходе развития популяции. Потом строится компьютерная модель, которая визуали зируется путём построения графика изменения популяции на несколько лет вперёд.

В задачнике практикуме под редакцией И.Г. Семаки на и Е.К. Хеннера по данной теме в теоретическом введе нии подробно рассмотрено моделирование физических процессов на разнообразных примерах – движение с уче том сопротивления среды, свободное падение, взлёт раке ты, движение заряженных частиц, колебание маятника, теплопроводность в стержне. Моделирование биологиче ских процессов проводится на примере роста популяций, межвидовой конкуренции, системы жертва хищник. Инте рес представляет задание на моделирование случайных процессов – очереди в магазине.

Следует отметить, что подход к моделированию в этом задачнике основан на строгом и точном описании яв ления или процесса, использовании точных физических и

РЕШЕНИЕ ЗАДАЧ

При хранении и передаче информации с помощью технических устройств информацию следует рассматривать как последовательность символов - знаков (букв, цифр, кодов цветов точек изображения и т.д.).

Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события).
Тогда, если считать, что появление символов в сообщении равновероятно, количество возможных событийN можно вычислить как N=2 i
Количество информации в сообщении I можно подсчитать умножив количество символов K на информационный вес одного символа i
Итак, мы имеем формулы, необходимые для определения количества информации в алфавитном подходе:

Возможны следующие сочетания известных (Дано) и искомых (Найти) величин:

Тип Дано Найти Формула
1 i N N=2 i
2 N i
3 i,K I I=K*i
4 i,I K
5 I, K i
6 N, K I Обе формулы
7 N, I K
8 I, K N

Если к этим задачам добавить задачи на соотношение величин, записанных в разных единицах измерения, с использованием представления величин в виде степеней двойки мы получим 9 типов задач.
Рассмотрим задачи на все типы. Договоримся, что при переходе от одних единиц измерения информации к другим будем строить цепочку значений. Тогда уменьшается вероятность вычислительной ошибки.

Задача 1 . Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?

Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.

Задача 2 . Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.

Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.

Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:

1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.

Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=2 3 битам, а 1Мбайт=2 10 Кбайт=2 20 байт=2 23 бит. Отсюда, 2Мбайт=2 24 бит.
Ответ: 2 24 бит.

Задача 5. Сколько мегабайт информации содержит сообщение объемом 2 23 бит?
Решение: Поскольку 1байт=8битам=2 3 битам, то
2 23 бит=2 23 *2 23 *2 3 бит=2 10 2 10 байт=2 10 Кбайт=1Мбайт.
Ответ: 1Мбайт

Задача 6. Один символ алфавита "весит" 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:


Ответ: 16

Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:


Ответ: 256

Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:


Ответ: 5

Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:


Ответ: 5

Задача 10. У племени "чичевоков" в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:


Ответ: 5

Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:


Ответ: 351Кбайт или 0,4Мбайт

Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:


Ответ: 65536

Задача 13. Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:


Ответ: 4

Задача 14. Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:


Ответ: 120бит

Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:


Ответ: 131072

Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:


Ответ: 256

Задачи для самостоятельного решения:

  1. Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
  2. Алфавит для записи сообщений состоит из 32 символов, каков информационный вес одного символа? Не забудьте указать единицу измерения.
  3. Информационный объем текста, набранного на компьюте¬ре с использованием кодировки Unicode (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
  4. Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
  5. Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
  6. Сообщение, записанное буквами из 256-символьного ал¬фавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
  7. Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков. Длина каждого сигнала — 6 звонков.
  8. Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатом наблюдений.
  9. Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
  10. Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640х480 пикселей. На каждый пиксель приходится 3 байта. А если в палитре 16 миллионов цветов?
Тема определения количества информации на основе алфавитного подхода используется в заданиях А1, А2, А3, А13, В5 контрольно-измерительных материалов ЕГЭ.

При изучении информатики немало внимания уделяется изучению алгоритмов и их видам. Не зная основных сведений о них, нельзя написать программу или проанализировать ее работу. Изучение алгоритмов начинается еще в школьном курсе информатики. Сегодня мы рассмотрим понятие алгоритма, свойства алгоритма, виды.

Понятие

Алгоритм - это определенная последовательность действий, которая приводит к достижению того или иного результата. Составляя алгоритм, детально прописывают каждое действие исполнителя, которое в дальнейшем приведет его к решению поставленной задачи.

Довольно часто алгоритмы используют в математике для решения тех или иных задач. Так, многим известен алгоритм решения квадратных уравнений с поиском дискриминанта.

Свойства

Прежде чем рассматривать в информатике, необходимо выяснить их основные свойства.

Среди основных свойств алгоритмов необходимо выделить следующие:

  • Детерминированность, то есть определенность. Заключается в том, что любой алгоритм предполагает получение определенного результата при заданных исходных.
  • Результативность. Означает, что при наличии ряда исходных данных после выполнения ряда шагов будет достигнут определенный, ожидаемый результат.
  • Массовость. Написанный единожды алгоритм может использоваться для решения всех задач заданного типа.
  • Дискретность. Она подразумевает, что любой алгоритм можно разбить на несколько этапов, каждый из которых имеет свое назначение.

Способы записи

Вне зависимости от того, какие виды алгоритмов в информатике вы рассматриваете, существует несколько способов их записи.

  1. Словестный.
  2. Формульно-словестный.
  3. Графический.
  4. Язык алгоритма.

Наиболее часто изображают алгоритм в виде блок-схемы, используя специальные обозначения, зафиксированные ГОСТами.

Основные виды

Выделяют три основных схемы:

  1. Линейный алгоритм.
  2. Ветвящийся алгоритм, или разветвленный.
  3. Циклический.

Линейный

Наиболее простым в информатике считается Он предполагает последовательность выполнения действий. Приведем наиболее простой пример алгоритма такого вида. Назовем его «Сбор в школу».

1. Встаем, когда звенит будильник.

2. Умываемся.

3. Чистим зубы.

4. Делаем зарядку.

5. Одеваемся.

6. Кушаем.

7. Обуваемся и идем в школу.

8. Конец алгоритма.

Разветвляющийся алгоритм

Рассматривая виды алгоритмов в информатике, нельзя не вспомнить о разветвляющейся структуре. Данный вид предполагает наличие условия, при котором в случае его выполнения действия выполняются в одном порядке, а в случае невыполнения - в другом.

Например, возьмем следующую ситуацию - переход дороги пешеходом.

1. Подходим к светофору.

2. Смотрим на сигнал светофора.

3. Он должен быть зеленым (это условие).

4. Если условие выполняется, мы переходим дорогу.

4.1 Если нет - ждем, пока загорится зеленый.

4.2 Переходим дорогу.

5. Конец алгоритма.

Циклический алгоритм

Изучая виды алгоритмов в информатике, детально следует остановиться на Данный алгоритм предполагает участок вычислений или действий, который выполняется до выполнения определенного условия.

Возьмем простой пример. Если ряд чисел от 1 до 100. Нам необходимо найти все то есть те, которые делятся на единицу и себя. Назовем алгоритм «Простые числа».

1. Берем число 1.

2. Проверяем, меньше ли оно 100.

3. Если да, проверяем простое ли это число.

4. Если условие выполняется, записываем его.

5. Берем число 2.

6. Проверяем, меньше ли оно 100.

7. Проверяем, простое ли оно.

…. Берем число 8.

Проверяем, меньше ли оно 100.

Проверяем, простое ли число.

Нет, пропускаем его.

Берем число 9.

Таким образом перебираем все числа, до 100.

Как видите, шаги 1 - 4 будут повторяться некоторое число раз.

Среди циклических выделяют алгоритмы с предусловием, когда условие проверяется в начале цикла, или с постусловием, когда проверка идет в конце цикла.

Другие варианты

Алгоритм может быть и смешанным. Так, он может быть циклическим и разветвленным одновременно. При этом используются разные условия на разных отрезках алгоритма. Такие сложные структуры приеняются при написании сложных программ и игр.

Обозначения в блок-схеме

Мы с вами рассмотрели, какие виды алгоритмов есть в информатике. Но мы не рассказали о том, какие обозначения используются при их графической записи.

  1. Начало и конец алгоритма записываются в овальной рамке.
  2. Каждая команда фиксируется в прямоугольнике.
  3. Условие прописывается в ромбе.
  4. Все части алгоритма соединяются при помощи стрелок.

Выводы

Мы с вами рассмотрели тему "Алгоритмы, виды, свойства". Информатика уделяет немало времени изучению алгоритмов. Их используют при написании различных программ как для решения математических задач, так и для создания игр и различного рода приложений.

Задание 1.

Алфавит племени содержит всего 8 букв. Какое количество информации несет одна буква этого алфавита?

Решение.

Известен информационный объем теста и информационный «вес» одного символа в нем. Найдем объем одной страницы: 40648 бит. 20 Кбайт = 201024 байт = 2010248 бит. Найдем количество страниц: 2010248/(40648) = 8 (стр.) (Ответ № 4)

Ответ : 4.

Задание 3.

В пяти килобайтах:

Решение.

32Гб = 25 Гб = 25210 Мб = 25210 210 Кб =25210 210210 байт = 235 байт, что соответствует ответу №1.

Ответ : 1.

Задание 5.

Считая, что один символ кодируется одним байтом, подсчитать в байтах количество информации, содержащееся в фразе: “Терпение и труд все перетрут.”

Решение.

В фразе 29 символов (включая точку и пробелы), 1 символ несет 1 байт информации, значит фраза содержит 29 байт.

Ответ : 29.

Задание 6. ( А4 демоверсии 2004 г.)

Получено сообщение, информационный объём которого равен 32 битам. Чему равен этот объём в байтах?

Решение.

Предложенная строка содержит ровно 108 символов, включая кавычки, пробелы и знаки препинания. При кодировании каждого символа одним байтом на символ будет приходиться по 8 бит, поэтому объём этого предложения составит 108 байт или 108х8=864 бит, что соответствует ответу №2.

Ответ : 2.

Задание 8. (Задание А3 демоверсии 2004 г.)

Шахматная доска состоит из 64 полей: 8 столбцов и 8 строк. Какое минимальное количество бит потребуется для кодирования координат одного шахматного поля?

Решение.

Для того, чтобы различить 64 клетки шахматного поля потребуются 64 значения двоичного кода. Поскольку 64=26, то в двоичном коде потребуется шесть разрядов. Верный ответ№3.

Ответ : 3.

Задание 9.

Каждое показание счётчика, фиксируемое в памяти компьютера, занимает 10 бит. Записано 100 показаний этого датчика. Каков информационный объём снятых значений в байтах?

Решение.

10 бит100= 1000 бит, 1 байт = 8 бит, следовательно: 1000/8=125 байт. Значит, верный ответ №3.

Ответ : 3.

Задание 10.

В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?

Решение.

Так как вытаскивание карандаша любого цвета из имеющихся в коробке 32 карандашей является равновероятным, то число возможных событий

N = 2I, 32 = 25, I = 5 бит.

Свойства информации

Предметное содержание информации позволяет уяснить ее основные свойства:

Объективность информации - Информация – это отображение окружающего мира, а он существует независимо от нашего сознания, знаний и мыслей о нем.

ПРИМЕРЫ:

1) Фома неверующий

2) Игра «Глухой телефон»

Информация достоверна , если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

ПРИМЕРЫ:

1) Пропущено занятие, подруга говорит, что ничего не задано.

2) Скачали информацию в Интернете

Информация полна , если ее достаточно для понимания и принятия решений. Неполнота информации сдерживает принятие решений или может повлечь ошибки.

ПРИМЕРЫ:

1) Пропущено занятие, подруга говорит, что задан только параграф и забывает про задачи.

2) На улице 20 0 С (не понятно + или -)

Актуальность (своевременность) важность, необходимость для данного времени. Актуальную информацию важно иметь при работе в изменившихся условиях.

ПРИМЕРЫ:

1) Предупреждение накануне о контрольной работе

2) Прогноз погоды на завтра актуальнее прогноза на вчера

Полезность (ценность) зависит от потребностей конкретных людей и от тех задач, которые можно решать с помощью полученной информации.

ПРИМЕРЫ:

1) В расписании уроков указаны занятия для всех классов, для вас ценна информация лишь о ваших уроках

2) Просмотрен документальный фильм про Петра 1. На уроке информатике он ценности не имеет, но на уроке истории - имеет.

Понятность . Если ценная и актуальная информация выражена непонятными словами, она может стать бесполезной. Информация становится понятной , если она выражена языком, на котором говорят те, кому предназначена эта информация.

ПРИМЕРЫ:

1) Дошкольник спрашивает у старшеклассника: "Как светит лампочка?". В ответ слышит: "Существует две теории света – волновая и корпускулярная. Согласно первой …".

2) Объяснять материал на китайском языке.

В следующих примерах определите свойства встречающейся информации:

q На следующий день учительница вывесила правильные решения всех задач…

q Идет контрольная работа по математике. Вы попросили у соседа решение задачи. Шпаргалка содержала полное и правильное решение, но... на японском языке.

q Один персидский царь, собираясь завоевать соседнее государство, обратился к оракулу с вопросом: “Что произойдет, если я со своим войском переправлюсь через пограничную реку?” Оракул ответил: “Государь, ты разрушишь великое царство”. Удовлетворившись таким предсказанием, завоеватель переправился со своим войском через реку и был разгромлен войском противной стороны. В гневе он обратился к оракулу, обвиняя того в обмане. На что оракул ответил: “Государь, а разве твое царство было не велико?”

Приведите примеры:

ь достоверной, но неактуальной информации;

ь актуальной, но недостоверной информации;

ь полной, достоверной, но бесполезной информации;

ь актуальной, но непонятной информации.