Мощность современных энергосберегающих ламп. Срок службы ламп накаливания и способы его продления Срок службы лампы накаливания 60 вт

На сегодняшний день лампы накаливания практически вытеснены с рынка альтернативными источниками. Это происходит не только потому, что они морально устарели, но и из-за их низкой эффективности и высокого энергопотребления. Несмотря на это, мы по привычке или из-за недостатка времени выбираем лампы накаливания, опираясь при выборе на низкую стоимость.

Нужно ли нам на минутку остановиться и выбрать более эффективную лампу? Не потеряем ли мы больше, когда покупаем дешевую лампочку Ильича? Многие из нас наслышаны о выгоде использования современных светодиодных ламп. Мы решили провести смелое сравнение, минуя промежуточный этап – люминесцентную лампу (сравнение с ней в ).

Основные отличия

Энергопотребление ламп

Энергопотребление светодиодной лампы составляет около 10% от потребления лампы накаливания.

Спектр света

Лампы накаливания излучают более жёлтый спектр света, в отличие от светодиодных, которые имеют заливающий свет близкий к естественному.

Нагрев корпуса лампы

Лампа накаливания мощностью 25 Вт нагревается до 100 градусов Цельсия, о неё можно легко обжечься! За 30 минут работы температура может достигать 250 градусов. Лампа накаливания считается пожароопасной, при соприкосновении с текстилем её колба нагревается ещё сильнее. Например, солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 60-70 минут. Поэтому нагрев лампы требует термостойкой арматуры светильников.

Светодиодная лампа, напротив, является пожаробезопасной. Максимальный нагрев её корпуса составляет 40-50 градусов Цельсия и за время работы остается постоянным. Поэтому светодиодную лампу можно использовать рядом с легковоспламеняющимися материалами.

Экологичность

Лампа накаливания создаёт инфракрасное и ультрафиолетовое излучение. Долгий взгляд на включенный прибор и длительное пребывание может оказывать негативное влияние на зрение — высушивать слизистую оболочку глаз. Ультрафиолетовые лучи могут вызвать преждевременное старение кожи и ожог сетчатки. В LED лампе отсутствует инфракрасное и ультрафиолетовое излучение, в ней нет нити накала, которая раздражает органы зрения, а также отсутствуют любые токсические элементы, поэтому светодиодная лампа считается экологически чистой как в процессе эксплуатации, так и после.

Коэффициент полезного действия – это эффективность преобразования энергии в свет. У светодиодной лампы он достигает 90%.

Срок службы

Срок службы светодиодной лампы в 50 раз больше по сравнению с номинальным сроком службы лампы накаливания.

Другие недостатки лампы накаливания

хрупкость, чувствительность к удару и вибрации.

Стоимость ламп

Лампа накаливания является самой дешевой, а светодиодная наиболее дорогой, хотя стоимость последней с каждым годом становится всё ниже.

Стоимость ламп за 30 000 часов работы:

Исходя из срока службы, стоимость лампы накаливания составит 600 руб. Светодиодной лампы — 325 руб. (из расчета 20 и 540 руб. за штуку соответственно). Преимущество светодиодной лампы в том, что всё это время о ней можно не вспоминать, а каждую лампу накаливания менять как минимум 30 раз.

Плата за электричество в течение 30 000 часов работы: из расчета 1 кВт = 3,5 руб.

Стоимость работы ламп накаливания составит 7 875 руб. Стоимость светодиодной лампы составит 1 050 руб.

Итого, общие расходы за 30 000 часов работы (плата за электричество + стоимость ламп за 30 000 часов):

Лампы накаливания: 8 475 руб. Светодиодная лампа: 1 375 руб.

Светодиодная лампа экономичнее лампы накаливания более чем в 6 раз! С LED лампами экономия составит более 83%.

Ктому же преимущества светодиодной лампы видны по каждому рассматриваемому пункту, кроме первоначальной стоимости светодиодной лампы, которая при использовании достаточно быстро окупается.

Пожалуй, нам действительно стоит пересмотреть некоторые устоявшиеся модели поведения, купить светодиодные лампы и начать экономить деньги и здоровье. Мы рекомендуем вам обратить внимание на компанию «Нью Лайт Технолоджи», которая предлагает большой ассортимент светодиодных ламп, а также порадует вас гибкими условиями доставки и оплаты. Ознакомиться с ассортиментом вы можете на их сайте

Несмотря на развитие энергосберегающей техники, лампы накаливания до сих пор держат лидерство на рынке осветительных приборов.

Как выглядит лампа накаливания

Принцип действия

Действие лампы заключается в существенном нагревании электрическим током нити накала. Чтобы твердое тело начало светиться красным излучением, его температуру надо увеличить до 570 0 С. Оно становится комфортным для глаз при 4-5 кратном увеличении температуры.

Из всех металлов самым тугоплавким является вольфрам (3400 0 С), поэтому в качестве нити накала применяют проволоку из него. Для увеличения площади излучения ее свертывают в спираль, которая в лампе накаливания нагревается до 2000-2800 0 С. При этом цветовая температура составляет 2000-3000К, создавая желтоватый спектр. Он более энергозатратный и тусклый, чем дневной, но комфортный для глаз.

Еще в школьном учебнике приводится эксперимент с увеличением свечения лампы в зависимости от силы электрического тока. По мере его роста происходит выброс излучения и тепла.

В воздушной среде вольфрамовая нить быстро окисляется и разрушается под действием высокой температуры. Раньше в стеклянной колбе создавали вакуум, а сейчас чаще всего применяют инертный газ: азот, аргон, криптон. При этом сила свечения увеличивается. Кроме того, давление газа препятствует испарению вольфрама от температуры свечения.

Строение

Несмотря на видимую простоту изготовления, лампа состоит из 11 элементов. При этом в конструкции применяются 7 различных металлов. Важнейшим элементом является нить накала. Она может быть разных видов: круглой, иметь форму одной или нескольких лент. В связи с разнообразием элементов, где световая энергия получается из электрической, их принято называть телами накала. Колбы в большинстве случаев бывают круглыми или грушевидными, но могут быть других форм.

Виды ламп накаливания

На рисунке ниже изображена конструкция лампы. Внутри располагаются электроды (6), спираль (2) (вольфрам) и крючки (3) (молибден). Цоколи (9) из оцинкованной стали изготавливают в основном резьбовыми еще со времен Эдисона. Диаметры их могут различаться: Е 14 , Е 27 , Е 40 – по величине наружного диаметра. Цоколь также соединяют с патроном посредством штырьков или штифтов. Его тип определяется по маркировке, выбитой на наружной поверхности.

Устройство лампы накаливания

Параметры

  • электрические;
  • технические (интенсивность и спектральный состав светового потока);
  • эксплуатационные (условия применения, размеры, отдача света, срок эксплуатации).

Мощность

Основные характеристики наносятся в виде маркировки. В их число входит мощность, по которой выбирают лампу (60 Вт – наиболее востребованы). Здесь более важна световая характеристика. В таблице приведены характеристики бытовых ламп, из которых следует, что световая энергия от одной лампы интенсивней, чем от нескольких, с той же суммарной мощностью. При этом она обходится дешевле.

Характеристики ламп

Мощность, Вт 5 15 25 40 60 75 100
Отдача света, Лм/Вт 4 8 8.8 10.4 11.8 12.5 13.8

Световая энергия расходуется больше на лампах меньшей мощности. Поэтому сэкономить электроэнергию таким образом не получится.

Технические характеристики

Световая энергия от мощности лампы накаливания зависит нелинейно. Отдача света растет с ее повышением, а после 75 Вт начинает снижаться.

Преимуществом ламп накаливания является равномерность освещения. Сила света у них практически одна и та же во все стороны.

Пульсирование света негативно сказывается на утомляемости глаз. Нормальным считается коэффициент пульсации не более 10 % во время занятий мелкой работой. У ламп накаливания он не превышает 4 %, и худший показатель наблюдается у лампы на 40 Вт.

Лампы накаливания нагреваются больше всех остальных. По расходу мощности она больше является обогревателем помещения, а не прибором освещения. Отдача света происходит всего на 5-15 %. С целью экономии электроэнергии использование ламп накаливания на 100 Вт и более запрещено. Лампа на 60 Вт греется не очень сильно, а освещения бывает достаточно на одну комнату.

Если оценивать спектр излучения, то по сравнению с дневным светом в лампах накаливания недостаточно синего света и избыток красного. Но он считается приемлемым, поскольку меньше утомляет глаза по сравнению с лампами дневного света.

Эксплуатационные параметры

Для ламп важны условия, где они применяются. Их можно эксплуатировать в температурном интервале от -60 0 С до +50 0 С, влажности не более 98 % при 20 0 С и давлении не менее 0,75∙10 5 Па. Для них не нужны дополнительные устройства за исключением , которым плавно регулируется отдача света. Лампы дешевы и не требуют никакой квалификации при замене.

К недостаткам относятся: самая низкая надежность, сильный нагрев и низкий КПД.

Виды ламп накаливания

Хотя энергосберегающие источники света обладают лучшими показателями, лампы накаливания остаются на первом месте. Особенно это относится к применению в быту.

Лампы общего назначения (ЛОН)

ЛОН широко применяются, несмотря на то, что только 5 % энергии остается на освещение, а остальная – выделяется в виде тепла. ЛОН предназначены для бытовых нужд, предприятий, административных зданий и внешних светильников. Они подразделяются на стабильное напряжение 220 В и повышенное – до 250 В. Продолжительность горения у ламп небольшая и составляет около 1000 часов.

Первой буквой маркировки обозначается основная особенность, например, В – вакуумная, Б – биспиральная, Г – моноспиральная.

  • Г 235-245-60-П (моноспиральная, диапазон напряжения 235-245 В, мощность 60 Вт, для подсобных помещений);
  • В 230-240-60 (вакуумная, на 230-240 В, 60 Вт).

Лампы имеют значительную мощность. Ограничение по верхнему пределу 100 Вт к ним не относится. Лампы служат для направленного освещения на дальние расстояния: для прожекторов общего назначения, кинопроекционные и маячные. Тело накала у них имеет компактное расположение, чтобы улучшить фокусировку. Она обеспечивается также специальной конструкцией цоколей или за счет наличия дополнительных линз.

Как выглядят прожекторные лампы

Зеркальные лампы

Особенностью является специальная конструкция колбы и наличие светоотражающего экрана из алюминия. Чтобы придать свету мягкость и уменьшить контрастность, светопроводящий участок сделан матовым. Светораспределение бывает концентрированным (ЗК), средним (ЗС) и широким (ЗШ). Состав стекла некоторых зеркальных ламп меняют, добавляя в него окись неодима. Это делает их ярче и сдвигает цветовую температуру в сторону белого света.

Как выглядит зеркальная лампа

Лампы применяются для освещения сцен, витрин, промышленных комплексов, медицинских кабинетов и многого другого.

Галогенные лампы

Особенностью лампы является наличие в колбе галогенных соединений. При взаимодействии с ними испарившиеся молекулы вольфрама осаждаются обратно на спираль, что позволяет создавать повышенную температуру ее нагрева и в 2 раза увеличивать срок службы ламп.

Галогенная лампа со штырьковым цоколем

Выбирая лампу, нужно знать ее особенности, обычно указанные на маркировке, а также цель применения.

Как включать лампы накаливания

Несмотря на то, что для ламп накаливания не требуются никакие пусковые устройства, есть правила их подключения, которые следует выполнять. Прежде всего, к цоколю подключается нулевой провод, а через выключатель проходит фазный. При выполнении этих правил случайное прикосновение к цоколю не вызовет удара током.

Чтобы подать напряжение на все лампы с помощью одного выключателя, их следует подключить параллельно.

Схемы подключения ламп

В схемах подключение светильников производится параллельно. Обычно в помещение делается общий с розетками ввод, но выключатель связан только с лампами. Источники могут переключаться одновременно (рис. в) или раздельно (рис. б). В люстрах лампы могут объединяться в группы от одного переключателя. На рис. г показана схема ее работы, где 3 положения переключателя обеспечивают все схемы возможных состояний двух ламп.

Для длинных коридоров применяют 2 проходных выключателя, через которые можно независимо работать с лампой из разных мест (рис. д). Особенно это удобно для переключений наружных светильников из дома. При нажатии на один из них одна или несколько ламп загораются или гаснут. Для такой схемы требуется большее количество проводов.

Способы совершенствования ламп

Лампы накаливания развиваются в тех же направлениях, что и остальные источники света: повышение КПД, снижение энергозатрат и безопасное применение. Для этого подбирается определенная газовая среда, применяются галогенные и квацево-галогенные лампы, улучшаются технические характеристики. Многих вполне устраивает мягкий и теплый свет лампы накаливания.

Применение углеродных нанотрубок в качестве тела накаливания позволило в 2 раза увеличить светоотдачу по сравнению с вольфрамом. Стабильные параметры ламп сохраняются в течение 3000 часов. Пониженное напряжение питания делает ее более безопасной.

Как увеличить срок службы

Причины быстрого перегорания ламп следующие:

  • нестабильность источника питания;
  • механические сотрясения;
  • температура воздуха;
  • нарушение соединений в проводке.

С течением времени нить накала испаряется, сопротивление лампы увеличивается, и она перегорает. Кроме того, сопротивление обычной холодной и горячей лампы на 60-100 Вт меняется в 10 раз. Сопротивление холодной спирали в лампе на 60 Вт составляет 61,5 Ом, а горячей – 815 Ом. Чем ярче свет и чаще включение, тем процесс происходит интенсивней. При этом опасность выхода из строя возрастает к концу периода службы. В связи с этим требуется подобрать подходящее напряжение для нормальной светоотдачи и достаточного срока эксплуатации.

Способы обеспечения долговечности ламп накаливания:

  1. При покупке выбрать подходящий диапазон напряжений.
  2. Переноски перемещаются в выключенном состоянии, поскольку малейшее сотрясение приводит к перегоранию работающей лампы.
  3. Если лампочка быстро выходит из строя в одном и том же патроне, его следует отремонтировать или заменить.
  4. На лестничной площадке в цепь питания устанавливают диод или включают две одинаковые лампы.
  5. В разрыв цепи питания устанавливается устройство плавного включения.

Энергосбережение. Видео

Научиться энергосбережению в домашнем освещении можно, просмотрев видео ниже.

При правильном выборе и способе эксплуатации лампы накаливания могут быть экономичными и долго служить. Их небольшая стоимость, комфортное освещение и простота пользования до сих пор позволяют занимать первое место среди разных источников света.

Почему две лампы по 60 вт светят темнее, чем одна в 100 вт? и получил лучший ответ

Ответ от Инженер[гуру]
КПД у лампочек разной мощности разное. У 60 ваттной КПД 2,1%, у 100 ваттной - 2,6%
Более толстую нить у мощных лампочек можно больше раскалить без потери долговечности. Больше температура - больше КПД).
Теперь считаем:
Лампа накаливания 60 Вт дает 14,5 люмен на ватт. Итого 870 люмен на одну и 1740 на две лампочки.
Лампа накаливания 100 Вт дает17,5 люмен/ватт. Итого 1750 люмен.
Различие невелико, но оно есть. Одна стоваттная лампа лучше освещает, чем две 60 ваттных.
Инженер
Высший разум
(175912)
Раздел Photometry этой уважаемой книги Keefe, T.J. The Nature of Light
http://www.ccri.edu/physics/keefe/light.htm

Ответ от Vera Molchanova [гуру]
почему?
светят одинаково, если сразу вместе горят


Ответ от @Link [гуру]
Ну а почему одно колесо на скорости 60 км/ч не едет быстрее, чем два колеса по 60 км/ч каждое?


Ответ от Ёталин [гуру]
Что значит СВЕТЯТ ТЕМНЕЕ.. .
Вам не кажется что словосочетание несколько идиотское?
Освещёность поверхости от двух ламп 60 Вт будет выше.
А сама лампа 60 Вт по определению даёт меньше света, чем 100Вт.
Вы блондинка?


Ответ от Евгений Куликов [гуру]
Лампы накаливания являются типичными теплоизлучателями. В их запаянной, заполненной вакуумом или инертным газом, колбе вольфрамовая спираль под действием электрического тока накаляется до высокой температуры (около 2600-3000С) , в результате чего излучается тепло и свет. Большая часть этого излучения находится в инфракрасном диапазоне.
При повышении температуры спирали возрастает яркость, но вместе с тем и сокращается срок службы. Сокращение срока службы является следствием того, что испарение материала, из которого сделана нить, при высоких температурах происходит быстрее, вследствие чего колба темнеет, а нить накала становится все тоньше и тоньше и в определенный момент расплавляется, после чего лампа выходит из строя.
Потемнение колбы можно значительно сократить за счет увеличения давления газов-наполнителей, преимущественно тяжелых (аргон, криптон, ксенон) , ведущего к уменьшению скорости испарения атомов вольфрама.
Основными типами ламп накаливания являются лампы общего назначения, лампы специального назначения, декоративные лампы и лампы с отражателем. Световая отдача ламп накаливания в диапазоне от 25 до 1000 Вт составляет примерно от 9 до 19 лм/Вт для ламп со средним сроком службы 1000 ч.
P.S.: Как можно заметить из сказанного выше, яркость ламп накаливания зависит от поданного напряжения, состоянии нити, количества и состава инертного газа и может колебаться в очень широком приделе.. . Поэтому, что бы не сказали Вам выше, не стоит обрашать внимание на людей, не способных разобраться в вопросе! !
Если предположить что у Вас 2 лампы по 60 Вт (со световой отдачей 9 лм/Вт) и одна 100 Вт лампочка (19 лм/Вт) , получаем 2*60*9=1080 < 100*19=1900


Ответ от Владимир Авдонин [гуру]
Одна стоваттная лампа лучше освещает, чем две по 60. Возможно, возможно и нет.
Субъективное мнение создает "ГЛАЗ".
Глаз отмечает лампу в 100 ватт как очень яркую, а две по 60 ватт "так себе".

Сегодня широкое распространение имеют четыре вида освещения: традиционные лампы накаливания, люминесцентные, галогенные и светодиодные. Срок службы лампочек напрямую зависит от технологии осветительного прибора. Но в рамках технологи ресурс лампочек будет напрямую зависеть от условий эксплуатации.

Принцип работы ламп накаливания при нагрузках.

Наибольшую нагрузку спираль лампы накаливания испытывает в момент включения. Это происходит из-за того, что спираль лампочки в холодном состоянии имеет сопротивление в десятки раз меньше, чем когда она раскалена.

Экспериментальная проверка наиболее распространенных электрических ламп накаливания мощностью 25, 40, 60, 75, 100 Вт показывает, что их сопротивление в холодном состоянии составляет 155,5; 103,5; 61,5; 51,5; 40 Ом, а в рабочем - 1936; 1210; 815; 650; 490 Ом, соответственно. Тогда отношение «горячего» сопротивления к «холодному» равняется 12,45; 11,7; 13,25; 12,62; 12,4, а в среднем оно составляет 12,5. Эти показатели взяты из справочника. Но ради любопытства наши электрики в Королеве провели такие опытные замеры и вышли на те же цифры.

В результате лампа накаливания при включении работает в экстремальных условиях при токах, которые превышают номинальный. Это приводит к сокращению ресурса лампочек накаливания, к ускоренному износу нити накала и преждевременному выходу из строя, особенно при превышениях напряжения в питающей сети. Последнее обстоятельство при длительных превышениях напряжения относительно номинального приводит к резкому сокращению срока службы лампы. В результате при очередном нажатии на выключатель лампочка перегорит, и даже может отключиться автомат в щитке. А вы зададитесь вопросом, что делать, если погас свет и обесточилась квартира?

Срок службы лампы накаливания сильно зависит от условий эксплуатации.

Эксплуатационный ресурс обычной лампочки накаливания зависит:

  • от качества коммутации проводов;
  • от качества монтажа и подключения люстры;
  • от качества сборки светильника;
  • от стабильности номинального напряжения;
  • от наличия или отсутствия механических воздействий на светильник, толчков, сотрясений, вибраций;
  • от температуры и влажности окружающей среды;
  • от типа примененного выключателя и скорости нарастания величины тока при подаче питания.


Как увеличить срок службы лампы накаливания.

Для того, чтобы продлить ресурс и эксплуатационный срок службы, необходимо разобраться, почему перегорают электрические лампы накаливания . При продолжительной работе лампочки ее нить накала под воздействием высокой температуры нагрева постепенно испаряется, уменьшаясь в диаметре и рвется (перегорает).

Чем выше температура нагрева нити накала, тем больше света она излучает. При этом интенсивнее протекает процесс испарения нити, и сокращается срок службы лампы. Поэтому для ламп накаливания устанавливается такая температура накала нити, при которой обеспечивается необходимая светоотдача лампы и определенная продолжительность ее службы.

Увеличить срок эксплуатации ламп накаливания можно путем включения в цепь устройств плавного пуска, которые будут сглаживать нагрузку, возникающую на старте работы холодной лампочки. Для уточнения возможных способов продления работы светильников обратитесь за консультацией к мастеру. Например, наш электрик в Мытищах в подъезде многоквартирного дома собирал схему лестничного освещения, просчитывая оптимальный ресурс работы ламп. Такой же опыт есть у наших мастеров, оказывающих услуги электрика в Пушкино.

Средний ресурс лампы накаливания составляет 1000 часов.

Средняя продолжительность горения лампы накаливания при расчетном напряжении не превышает 1000 часов. После 750 часов горения световой поток снижается в среднем на 15%.

Лампы накаливания очень чувствительны даже к относительно небольшим повышениям напряжения: при повышении напряжения всего на 6% срок службы снижается вдвое. По этой причине лампы накаливания, освещающие лестничные клетки, довольно часто перегорают, так как ночью электросеть мало нагружена и напряжение повышено.

В осветительных установках производственных зданий приме­няются лампы типа КГ 220-1000, КГ 220-1500 и КГ 220-2000 для напряжения 220В, мощностью 1000, 1500 и 2000 Вт. Их световая отдача 22 лм/Вт, продолжительность горения 2 тыс. ч. Эти лампы отличаются большой стабильностью светового потока, который снижается к концу срока службы только на несколько процентов.

Лампы накаливания для общего освещения могут применять­ся во вспо-могательных и подсобных помещениях без постоянно­го пребывания людей и в некоторых производственных помеще­ниях с грубыми зрительными работами, не требующими высокой освещенности.

Лампы накаливания должны применяться для общего освеще­ния также в случаях, когда по тем или иным причинам невозможно или недопустимо использование газоразрядных ламп. К числу таких случаев относятся:

Осветительные установки, питаемые постоянным током или
переключаемые на него в аварийных случаях;

Установки, в которых могут иметь место хотя бы кратковре­менные понижения напряжения до уровня ниже 90% номи­нального;

При специальных требованиях по ограничению радиопомех;

Помещения с условиями среды, для которых отсутствуют светильники с газоразрядными лампами (например, взрывоопасные, с высокой температурой воздуха и т.п.);

Установки местного освещения;

Аварийное освещение помещений, рабочее освещение которых выполняется лампами ДРЛ (дуговые ртутные люминесцентные), ДРИ (дуговые ртутные с йодидами), ДНТ (дуговые натриевые трубчатые) во всех случаях или люминесцентными лампами в помещениях, где температура воздуха может быть ниже+10 °С.

ГОСТ 2239-79 «Лампы накаливания общего назначения» рас­пространяется на лампы накаливания, пред­назначенные для светильников внутреннего и наружного освеще­ния, а лампы на повышенное напряжение 225-235, 235-240В следует применять в осветительных приборах, устанавливаемых в трудно-доступных местах помещения: лестничных клетках, чер­даках, вентиляционных камерах и др.

Использовать лампы на повышенное напряжение в сетях со стабильным напряжением 220 В нецелесообразно из-за резкого снижения светового потока.

К лампам накаливания предъявляются высокие требования:

Лампы должны изготавливаться в климатическом исполнении ГОСТ 15543-70;

Лампы должны быть прочными в условиях эксплуатации ГОСТ 17516-72;



Требования безопасности должны соответствовать ГОСТ 12.2.007.13-75;

Для проверки соответствия ламп требованиям ГОСТ 2239-79
изготовитель проводит приемно-сдаточные, периодические и типовые испы-тания.

Газоразрядные и люминесцентные лампы

Различают газоразрядные лампы низкого давления - люми­несцентные и ртутно-кварцевые лампы высокого давления типа ДРЛ (дуговая ртутная люминес­центная).

Для освещения производственных и общественных помеще­ний, как правило, предусматриваются газоразрядные лампы.

Широкое распространение получили люминесцентные лампы, исполь-зуемые для создания особо благоприятных условий зри­тельной работы (при выполнении точных работ, в учебных по­мещениях и др.), в помещениях с недостаточным естественным освещением, в которых постоянно пребывают люди, а также при работах с различением цветных оттенков.

Принцип действия люминесцентных ламп основан на исполь­зовании фотолюминесцентных люминофоров, возбуждаемых ультрафиолетовым излу-чением электрического разряда в парах ртути при низком давлении (5 -10 Па). Невидимое ультрафиолето­вое излучение плазмы (ионизированных паров метал-ла) преобразу­ется с помощью люминофоров в излучение, ощущаемое глазом.

Существуют люминесцентные лампы с разрядом в инертных газах – без-ртутные лампы, которые имеют три важных преиму­щества: они нетоксичны, работоспособны при низких температу­рах и пригодны для люминофоров, возбуждающихся коротко­волновыми ультрафиолетовыми излучениями. Све-товая отдача и срок службы у них значительно ниже, что ограничивает приме­нение этих ламп.

Люминесцентные лампы по сравнению с лампами накалива­ния обладают рядом преимуществ:

Высокой световой отдачей (до 95 лм/Вт, что в 4-5 раз больше, чем у ламп накаливания);

Большим сроком службы (до 15000час);

Малой себестоимостью изготовления в связи с высокой степенью механизации, простотой конструкции, доступностью сы­рья и материалов;

Благоприятным спектром излучения, обеспечивающим качество цветопередачи;

Большой длиной трубки при низкой температуре ее поверхности, что позволяет размещать лампы близко к работающим и обеспечивать равномерное распределение освещенности в по­ле зрения.

Наряду с достоинствами люминесцентные лампы имеют сле­дующие недостатки:

Малая мощность (4-150) Вт, что недостаточно для освещения высоких помещений;

Большие размеры трубок;

Трудность перераспределения и концентрации их светового потока в пространстве;

Ненадежная работа при низких температурах окружающей среды;

Подключение к электрической сети только через пускорегулирующие аппараты (ПРА), причем напряжение на люминесцентных лампах при горении должно быть приблизительно вдвое ниже напряженности в сети;

Снижение напряженности сети приводит к снижению светового потока и уменьшению ресурса работы лампы. Люминесцентные лампы предназначены для освещения в раз­личных областях применения. Конструктивно подразделяются на прямые, трубчатые, фигурные (U -образные) и кольцевые (рис. 4.7).


Рис.4.7. Люминесцентные лампы: а) прямые трубки; б) U – образные; в) кольцевые; г) компактные

Газоразрядные лампы высокого давления

Ртутные лампы высокого давления представляют собой труб­ку большей частью из кварцевого стекла, по концам которой впаяны активированные вольфрамовые электроды. Внутрь трубки после тщательного обезвоживания вводится строго дозированное количество ртути и спектрально чистый ар­гон при давлении 1,5-3 кПа. Аргон служит для облегчения зажи­гания разряда и защиты электродов от распыления в начальной стадии разгорания лампы, так как при комнатной температуре давление паров ртути очень низкое (около 1,5 Па). В отдельных типах ламп кварцевая разрядная трубка помещается в вакуумированную внешнюю колбу. Лампы включают в сеть с соответст­вующей пускорегулирующей аппаратурой. Общий вид и габа­ритные размеры некоторых ламп показаны на рис.4.8.


Рис 4.8. Общий вид и габаритные размеры некоторых ламп

Выбор источников света

Газоразрядные лампы должны применяться, как правило, для общего освещения: помещений с работами разрядов I-IV и VII, с недостаточным или отсутствующим естественным освещением, для общего освещения в системе комбинированного освещения, в общественных, административных и других зданиях, кроме вспомогательных помещений.

В указанных случаях допустимо использовать лампы накали­вания, если технически невозможно применение газоразрядных ламп.

Для местного освещения применение люминесцентных ламп желательно. Люминесцентные лампы неизбежно используются при повышенных требо-ваниях к цветопередаче независимо от разряда работы. Увеличение высоты и усложнение доступа явля­ются противопоказаниями для освещенности люминесцентными лампами. В неотапливаемых помещениях люминесцент-ные лам­пы не применяют.

Допускают применение в одном помещении ламп разных ти­пов: для общего и местного освещения, для рабочего и аварийно­го освещения.

Светильники

Создание в производственных помещениях высококачествен­ного и эконо-мичного освещения невозможно без применения ра­циональных светильников.

Электрический светильник представляет собой совокупность источника света и арматуры.

Наиболее важной функцией осветительной арматуры является перераспре-деление светового потока, которое повышает эконо­мичность осветительной установки. Для характеристики светиль­ника с точки зрения распределения световой энергии в простран­стве составляют кривую светораспределения - характеристику силы света в полярной системе координат (рис. 4.9).

Другим не менее важным назначением осветительной армату­ры является предохранение глаз работающих от воздействия чрезмерно больших яркостей источников света. Применяющиеся источники света имеют яркость колбы, в десятки и сотни раз пре­вышающую допустимую яркость в поле зрения.

Степень возможного ограничения слепящего действия источ­ника света определяется защитным углом светильника. Защитный угол - это угол между горизонталью и линией, соединяющей нить накала (поверхность лампы) с противоположным краем от­ражателя (рис. 4.10).

Осветительная арматура служит для предохранения источника света от загрязнения и механического повреждения. Она необхо­дима также для подвод-ки электрического питания и крепления ламп. Выбор тех или других светиль-ников по светораспределению зависит от характера выполняемых в помеще-нии работ, воз­можности запыления воздушной среды, коэффициентов отраже­ния окружающих поверхностей и др.


Рис. 4.9. График распределения силы Рис. 4.10. Защитный угол

света в пространстве: 1 – лампа светильника: а – светильник

накаливания; 2 – та же лампа с лампой накаливания; б – све-

установленная в светильнике типа тильник с люминесцентными

«Астра-23» лампами

Важной характеристикой светильника является его коэффициент полезного действия. Осветительная арматура поглощает часть све­тового потока, излучаемого источником света. Отношение фактиче­ского светового потока светильника к световому потоку помещен­ной в него лампы называется коэф-фициентом полезного действия.

По распределению светового потока в пространстве различа­ют светиль-ники прямого, преимущественно прямого, рассеянно­го, отраженного и преиму-щественно отраженного света, (рис. 4.11)


Рис 4.11. Методы освещения

По степени защиты от пыли, воды и взрывов в соответствии с правилами устройств электроустановок (ПУЭ) различают сле­дующие светильники:

Светильники открытые - лампа не отделена от внешней среды;

Защищенные - лампа отделена от внешней среды оболочкой, допускаю-щей свободный проход воздуха;

Закрытые - оболочка защищает от проникновения крупной пыли;

Пылезащищенные - оболочка не допускает проникновения внутрь све-тильника тонкой пыли;

Влагозащищенные - корпус и патрон противостоят воздействию влаги и обеспечивают сохранность изоляции вводных проводов;

Взрывозащищенные, которые делятся на взрывонепроницаемые (В) - оболочка светильника выдерживает полное давление взрыва, продукты взрыва должны выходить из светильника че­рез щели охлажденными; повышенной надежности против взрыва (Н) - исключается возникновение искры, электрической дуги или опасных температур на поверхности светильника.

Кроме того, необходимо учитывать целесообразное для рас­сматриваемого случая светораспределение.

Основные образцы светильников с лампами накаливания и основные типы светильников внутреннего освещения (см. рис. 4.12; 4.13) а также типы светильников внутреннего освещения с люминесцентными лампами (см. рис. 4.14).

Главное требование к светильникам любого назначения и ис­полнения - светильники должны быть рассчитаны так, чтобы при нормальной эксплуа-тации они не представляли угрозы имущест­ву, здоровью и жизни людей.

Рис. 4.12. Светильники с лампами накаливания для производственных

зданий: а - ЛПД2, «Астра-32»; б - УПД, Гс-М, ГсУ-М, СУ-М, «Астра-

1», «Астра-2», «Астра-12»; в - УПС, «Астра-2», «Астра-22», «Астра-23»;

г-УПМ-15; д-у-15; е-УП-24; ж - НСП07; з - ППД-500; и-ППР-500; к-ППД-

100, ППД-200; л - НСП03; м - НСП02, ППР-100, ППР-200; н - НСР01,

НСП09; о - НПП 01; п - артикул 135(ПСХ).



Рис. 4.13. Светильники с лампами накаливания для общественных зданий, получивших наибольшее распространение: а - НПБОО, ПЛ-11, арт. 38;

б-арт.198, ПЛ-11А; в – НП091; г – ПП- 07; д – НПП07; е – НПО19;НПО20);ж - ПУН-60М; з - ПУН-100М; и – НБО05; к-НС-2; л-НСП-14; м - арт.341; н - арт. 254; о - БУН-60М; п - ПО-02; р - ПО-21; с - ПКР-2 (арт. 119); т - СК-300; у - ПЛК-150; ф - ПКР-300


Размещение светильников

В плане и разрезе помещения размещение светильников опре­деляется следующими размерами (рис. 4.15): H - высотой поме­щения; h с - расстоянием светильников от перекрытия («свесом»); h п = H - h с - высотой светильника над полом; h р - расчетной вы­сотой; L - расстоянием между соседними светиль-никами или ря­дами люминесцентных светильников (если они расположены по длине и ширине помещения, то расстояние между ними обозна­чается L a L в); l - расстояние от крайних светильников (или ряда светильников) до стен.

Важное требование при выборе светильников - доступность их для обслу-живания. Рекомендуемая высота подвеса светильни­ков 2,5 м при установке на стойках вдоль ограждений технологи­ческих площадок, не более 3,5 м при установке на стенах и по­толках площадок верхних отметок.

Расстояние от крайних светильников до стен принимается в пределах 0,3 - 0,5 расстояния между соседними светильниками в зависимости от наличия вблизи стен рабочих мест. Светильники с «точечными» источниками света располагаются по вершинам квадратных, прямоугольных или треугольных полей.

В узких помещениях допустимо однорядное расположение.

При прямоугольных полях рекомендуется L a / L в ≤ 1,5, где L a и L в - расстояние по длине и ширине помещения. Причем увеличе­ние L в одном направлении следует компенсировать увеличением его в другом. Светильники с люминесцентными лампами в по­мещениях для работы рекомендуется устанавливать рядами, пре­имущественно параллельно длинной стороне помещения или стене с окнами.

Некоторые преимущества имеют непрерывные ряды или ряды с неболь-шими разрывами (светящимися линиями).

При выборе расстояния между соседними светильниками не­обходимо руководствоваться величиной λ = L / h p . Величина λ за­висит от типа кривых светораспределения светильников, λ = 0,6 ± 2,6. Например, для люминесцен-тных ламп с равномерным светораспределением λ = 2.

Средства индивидуальной защиты органов зрения

Для защиты глаз от механических повреждений, лучистого и те­плового воздействия применяют специальные очки, щитки, маски. Стекла очков лучше использовать небьющиеся из сталинита. Очки не должны ограничивать поле зрения, должны быть легкими, не раз­дражать кожу, хорошо прилегать к лицу и не покрываться влагой.

Для защиты глаз от лучистой энергии, ультрафиолетовых и инфракрасных лучей, яркого света применяют очки со специаль­ными светофильтрами типа «ТИС». При газосварке применяют защитные очки с желто-зелеными светофильтрами различной на­сыщенности в зависимости от яркости пламени горелки.

Для защиты глаз и лица при электросварке применяют щитки и маски. При подборе защитных очков для лиц с плохим зрением (бли­зорукость, дальнозоркость) и особенно для лиц, выполняющих особо точные работы, желательно защитные функции очков сочетать с кор­рекцией зрения и подбирать специальные (оптические) стекла.

Рис. 4.15. Схема размещения светильников в помещении: а - схема размещения светильников в разрезе помещения; б, в – схема размещения светильников в плане помещения для ламп накаливания и

люминесцентных ламп соответственно

Эксплуатация осветительных установок. Контроль освещения

Тщательный и регулярный уход за установками естественного и искусственного света имеет значение для создания рациональ­ных условий освещения, в частности, обеспечения требуемых ве­личин освещенности без дополнительных затрат электроэнергии.

В установках с люминесцентными лампами и лампами ДРЛ необходимо следить за исправностью схем включения (не долж­но быть видимых глазу миганий ламп), а также пускорегулирующих аппаратов, о неисправности кото-рых, например, можно су­дить по значительному шуму дросселей (необходимо их исправить или заменить).

Сроки чистки светильников и застекления в зависимости от запыленности помещения предусматриваются действующими нормами и должны произво-диться для стекол световых проемов (не реже двух раз в год для помещений с незначительным выделе­нием пыли) и не реже четырех раз в год для помеще-ний со значи­тельными выделениями пыли, для светильников - от четырех до двенадцати раз в год в зависимости от характера запыленности производ-ственного помещения.

Своевременно должна производиться замена перегоревших ламп, которая осуществляется двумя способами: индивидуаль­ным - заменяются лампы после выхода их из строя, и групповым - через определенный интервал одновременно заменяются и перего­ревшие и работающие лампы (ДРЛ через 7500 ч, люминес-центные 40 Вт - через 8000 ч, люминесцентные 65-80 Вт - через 6300 ч).

На крупных предприятиях (при установленной общей мощно­сти на освещение свыше 250 кВт) следует иметь специально вы­деленное лицо, ведающее эксплуатацией освещения (инженер или техник).

При оценке производственного освещения не реже одного раза в год после очередной чистки светильников и замены перегорев­ших ламп следует прове-рять уровень освещенности в контрольных точках. В настоящее время основным прибором для измерения ос­вещенности является объективный люкс-метр (Ю-116,Ю-117), ос­нованный на явлении фотоэлектрического эффекта.

Полученная фактическая освещенность должна быть больше или равна нормируемой освещенности, умноженной на коэффициент запаса. При несоб-людении этого соотношения осветитель­ная установка непригодна для дальней-шей эксплуатации и требу­ет реконструкции или капитального ремонта.