Выполнение арифметических операций в различных системах счисления. Арифметические операции в различных системах счисления двоичная

| Информатика и информационно-коммуникационные технологии | Планирование уроков и материалы к урокам | 10 классы | Планирование уроков на учебный год (ФГОС) | Арифметические операции в позиционных системах счисления

Урок 15
§12. Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления с основанием q выполняются по правилам, аналогичным правилам, действующим в десятичной системе счисления.

В начальной школе для обучения детей счёту используют таблицы сложения и умножения. Подобные таблицы можно составить для любой позиционной системы счисления.

12.1. Сложение чисел в системе счисления с основанием q

Рассмотрите примеры таблиц сложения в троичной (табл. 3.2), восьмеричной (табл. 3.4) и шестнадцатеричной (табл. 3.3) системах счисления.

Таблица 3.2

Сложение в троичной системе счисления

Таблица 3.3

Сложение в шестнадцатеричной системе счисления

Таблица 3.4

Сложение в восьмеричной системе счисления

q получить сумму S двух чисел А и Б , надо просуммировать образующие их цифры по разрядам i справа налево:

Если a i + b i < q, то s i = a i + b i , старший (i + 1)-й разряд не изменяется;
если a i + b i ≥ q, то s i = а i + b i - q, старший (i + 1)-й разряд увеличивается на 1.

Примеры:

12.2. Вычитание чисел в системе счисления с основанием q

Чтобы в системе счисления с основанием q получить разность R двух чисел А и В , надо вычислить разности образующих их цифр по разрядам i справа налево:

Если a i ≥ b i , то r i = a i - b i , старший (i + 1)-й разряд не изменяется;
если a i < b i , то r i = a i - b i + g, старший (i + 1)-й разряд уменьшается на 1 (выполняется заём в старшем разряде).

Для работы с данными используется кодирование , т.е. выражение данных одного типа через данные другого типа.

Своя система существует и в вычислительной технике - она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами, по английски - binarydigit или, сокращенно, bit (бит).

Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т. п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:

Тремя битами можно закодировать восемь различных значений: 000 001 010 011 100 101 110 111

Увеличивая на единицу количество разрядов в системе двоичного кодирования, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе, то есть общая формула имеет вид:

N=2 m , где:

N - количество независимых кодируемых значений;

т - разрядность двоичного кодирования, принятая в данной системе.

Поскольку бит - слишком мелкая единица измерения, на прак­тике чаще применяется более крупная единица - байт, равная восьми битам.

Используются также более крупные производные единицы данных:

Килобайт (Кбайт) = 1024 байт = 2 10 байт;

Мегабайт (Мбайт) = 1024 Кбайт = 2 20 байт;

Гигабайт (Гбайт) = 1024 Мбайт = 2 30 байт.

В последнее время в связи с увеличением объемов обрабатывае­мых данных входят в употребление такие производные едини­цы, как:

Терабайт (Тбайт) = 1024 Гбайт = 2 40 байт;

Петабайт (Пбайт) = 1024 Тбайт = 2 50 байт;

Экзабайт (Эбайт) = 1024 Пбайт = 2 60 байт.

Кодирование текстовой информации производится с помощью Американского стандартного кода для обмена информацией ASCII, в котором установлены коды символов от 0 до 127. Национальные стандарты отводят под символ 1 байт информации и включают таблицу кодов ASCII, а также коды национальных алфавитов с номерами от 128 до 255. В настоящее время существуют пять различных кодировок кириллицы: КОИ-8, MS-DOS, Windows, Macintosh и ISO. В конце 90-х годов появился новый международный стандарт Unicode, который отводит под каждый символ не один байт, а два байта, и поэтому с его помощью можно закодировать не , а различных символов.



Базовая таблица кодировки ASCII приведена в таблице.

Кодирование цветных графических изображений производится с помощью растра, где каждой точке сопоставлен ее номер цвета. В системе кодирования RGB цвет каждой точки представляется суммой красного (Red), зеленого (Green) и синего (Blue) цветов. В системе кодирования CMYK цвет каждой точки представляется суммой голубого (Cyan), пурпурного (Magenta), желтого (Yellow) и добавлением черного (Black, K) цветов.

Кодирование аналоговых сигналов

Исторически первой технологической формой получения, передачи и хранения данных являлось аналоговое (непрерывное) представление звукового, оптического, электрического или другого сигнала. Для приема таких сигналов в ЭВМ предварительно выполняют аналого-цифровое преобразование.

Аналого-цифровое преобразование заключается в измерении аналогового сигнала через равные промежутки времени τ и кодировании результата измерения n-разрядным двоичным словом. При этом получают последовательность n-разрядных двоичных слов, представляющих с заданной точностью аналоговый сигнал.

Принятый в настоящее время стандарт CD использует так на­зываемый «16-разрядный звук с частотой сканирования 44 кГц». Для приведенного рисунка в переводе на нормальный язык это означает, что «дли­на ступеньки» (т) равна 1/44000 с, а «высота ступеньки» (δ) состав­ляет 1/65 536 от максимальной громкости сигнала (поскольку 2 16 = 65 536). При этом частотный диапазон воспроизведения со­ставляет 0-22 кГц, а динамический диапазон - 96 децибел (что со­ставляет совершенно недостижимую для магнитной или механиче­ской звукозаписи характеристику качества).

Сжатие данных.

Объем обрабатываемых и передаваемых данных быстро растет. Это связано с выполнением все более сложных прикладных процессов, появлением новых информацион­ных служб, использованием изображений и звука.

Сжатие данных (datacompression) - процесс, обеспечивающий уменьшение объема данных. Сжатие позволяет резко уменьшить объем памяти, необходимый для хранения данных, сократить (до приемлемых размеров) время их передачи. Особенно эффективно сжатие изображений. Сжатие данных может осуществляться как программным, так и аппаратным или комбинированным методом.

Сжатие текстов связано с более компактным расположением байтов, кодирующих символы. Здесь также использу­ется счетчик повторений пробелов. Что же касается звука и изобра­жений, то объем представляющей их информации зависит от вы­бранного шага квантования и числа разрядов аналого-цифрового преобразования. В принципе, здесь используются те же методы сжа­тия, что и при обработке текстов. Если сжатие текстов происходит без потери информации, то сжатие звука и изображения почти все­гда приводит к ее некоторой потере. Сжатие широко используется при архивировании данных.

Система счисления – представление числа определенным набором символов. Системы счисления бывают:

1. Единичные (система бирок или палочек);

2. Непозиционные (римская);

3. Позиционные (десятичная, двоичная, восьмеричная, шестнадцатеричная и т.д.).

Позиционной называется система счисления, в которой количественное значение каждой цифры зависит от ее места (позиции) в числе. Основанием позиционной системы счисления называется возводимое в степень целое число, которое равно количеству цифр в данной системе.

Двоичная система счисления включает алфавит из двух цифр: 0 и 1.

Восьмеричная система счисления включает алфавит из 8 цифр: 0, 1, 2, 3, 4, 5, 6 и 7.

Десятичная система счисления включает алфавит из 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9.

Шестнадцатеричная система счисления включает алфавит из 16 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

A B C D E F

В вычислительной технике используется кодирование в двоичной системе счисления, т.е. последовательностью 0 и 1.

Для перевода целого числа из одной системы счисления в другую надо выполнить следующий алгоритм:

1. Основание новой системы счисления выразить цифрами исходной системы счисления.

2. Последовательно выполнять деление данного числа на основание новой системы счисления, пока не получится частное, меньшее делителя.

3. Полученные остатки перевести в новую систему счисления.

4. Составить число из остатков в новой системе счисления, начиная с последнего остатка.

В общем случае в позиционной СС с основанием Р любое число Х может быть представлено в виде полинома от основания Р:

Х = а n Р n + a n-1 P n-1 + … + a 1 P 1 + a o P 0 + a -1 P -1 + a -2 P -2 + …+ a -m P -m ,

где в качестве коэффициентов а i могут стоять любые из Р цифр, используемых в СС с основанием Р.

Перевод чисел из 10 СС в любую другую для целой и дробной части числа выполняется различными методами:

а) целая часть числа и промежуточные частные делятся на основание новой СС, выраженное в 10 СС до тех пор, пока частное от деления не станет меньше основания новой СС. Действия выполняются в 10 СС. Результат – частные, записанные в обратном порядке.

б) дробная часть числа и получающиеся затем дробные части промежуточных произведений умножаются на основание новой СС до тех пор, пока не будет достигнута заданная точность, либо не будет получен «0» в дробной части промежуточного произведения. Результат – целые части промежуточных произведений, записанные в порядке их получения.

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод 8 (16) числа в 2 форму – достаточно заменить каждую цифру этого числа соответствующим 3-х разрядным (4-х разрядным) двоичным числом. Ненужные нули в старших и младших разрядах отбросить.

Пример 1: перевести число 305,4 8 в двоичную СС.

(_3_ _0 _ _5 _ , _4 _) 8 = 011000101,100 = 11000101,1 2

Пример 2: перевести число 9АF,7 16 в двоичную СС.

(_9 __ _A __ _F __ , _7 __) 16 = 100110101111,0111 2

1001 1010 1111 0111

Для перевода 2-го числа в 8 (16) СС поступают следующим образом: двигаясь от запятой влево и вправо, разбивают двоичное число на группы по 3 (4) разряда, дополняя при необходимости нулями крайние левую и правую группы. Затем каждую группу заменяют соответствующей восьмеричной (16) цифрой.

Пример 1: перевести число 110100011110100111,1001101 2 в восьмеричную СС.

110 100 011 110 100 111,100 110 100 2 = 643647,464 8

Пример 2: перевести число 110100011110100111,1001101 2 в шестнадцатеричную СС.

0011 0100 0111 1010 0111,1001 1010 2 = 347А7,9А 16

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 110 2 и 11 2:

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 на 11 2:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

УРОК №19-20.

Тема

Арифметические операции в позиционных системах счисления. Умножение и деление.

Цель урока: показать способы арифметических операций (умножения и деления) чисел в разных системах счисления, проверить усвоение темы «Сложение и вычитание чисел в различных системах счисления».

Задачи урока:

    образовательные : практическое применение изученного материала по теме «Умножение и деление в различных системах счисления», закрепление и проверка знаний по теме «Сложение и вычитание чисел в различных системах счисления». развивающие: развитие навыков индивидуальной практической работы , умения применять знания для решения задач. воспитательные: достижение сознательного усвоения материала учащимися.

Материалы и оборудование к уроку: карточки для самостоятельной работы, таблицы умножения.

Тип урока: комбинированный урок

Форма проведения урока : индивидуальная, фронтальная.

Ход урока:

1. Проверка домашнего задания.

Домашнее задание:

1. № 2.41 (1 и 2 столбик), практикум, стр. 55

Решение:

А) 11102+10012 =101112

Б) 678+238=1128

В)AF16+9716 = 14616

Г)11102-10012 =1012

Д) 678-238 =448

Е) АF16-9716 =1816

2. №2.48 (стр. 56)

2. Самостоятельная работа «Сложение и вычитание чисел в различных системах счисления». (20 минут)

Самостоятельная работа. 10 класс .

11 + 1110 ; 10111+111 ; 110111+101110

3. Вычесть: 10111-111; 11 - 1110

4. Сложить и вычесть в 8-ричной системе: 738 и 258

Вариант 1

Самостоятельная работа. 10 класс. Двоичная система счисления: перевод 2® 10; сложение.

1. Выполнить перевод из двоичной системы счисления в десятичную.

2. Сложить два двоичных числа.

1110+111 ; 111+1001 ; 1101+110001

3. Вычесть: 111-1001; 1110+111

4. Сложить и вычесть в 16-ричной системе: 7316 и 2916

Вариант 2

3. Новый материал.


1. У м н о ж е н и е

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе

Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 1. Перемножим числа 5 и 6 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

https://pandia.ru/text/80/244/images/image004_82.gif" width="419" height="86 src=">
Ответ: 5 . 6 = 3010 = 111102 = 368.
Проверка.
111102 = 24 + 23 + 22 + 21 = 30;
368 = 381 + 680 = 30.

Пример 2. Перемножим числа 115 и 51 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

https://pandia.ru/text/80/244/images/image006_67.gif" width="446" height="103 src=">
Ответ: 115 . 51 = 586510 = 10110111010012 = 133518.
Проверка. Преобразуем полученные произведения к десятичному виду:
10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865;
133518 = 1 . 84 + 3 . 83 + 3 . 82 + 5 . 81 + 1 . 80 = 5865.

2. Д е л е н и е

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто , ведь очередная цифра частного может быть только нулем или единицей.
Пример 3. Разделим число 30 на число 6.

https://pandia.ru/text/80/244/images/image008_48.gif" width="478" height="87 src=">
Ответ: 30: 6 = 510 = 1012 = 58.

Пример 4. Разделим число 5865 на число 115.

https://pandia.ru/text/80/244/images/image010_50.gif" width="400" height="159 src=">

Восьмеричная: 133518:1638

https://pandia.ru/text/80/244/images/image012_40.gif" width="416" height="18 src=">

https://pandia.ru/text/80/244/images/image014_36.gif" width="72" height="89 src=">
Ответ: 35: 14 = 2,510 = 10,12 = 2,48.
Проверка. Преобразуем полученные частные к десятичному виду:
10,12 = 21 + 2 -1 = 2,5;
2,48 = 2 . 80 + 4 . 8-1 = 2,5.

4. Домашнее задание:

1. Приготовиться к контрольной работе № 2 «По теме Системы счисления. Перевод чисел. Арифметические операции в системах счисления»

2. Практикум Угринович, №2.46, 2.47, стр. 56.

Литература:

1. Практикум по информатике и информационным технологиям . Учебное пособие для общеобразовательных учреждений / , . – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

2. Угринович и информационные технологии. Учебник для 10-11 классов. – М.:БИНОМ. Лаборатория знаний, 2003.

3. Шауцукова: Учебн. пособие для 10-11 кл. общеобразоват. учреждений. – М.: Просвещение, 2003.9 - с. 97-101, 104-107.

Системы счисления

Система счисления – совокупность приемов и правил для записи чисел цифровыми знаками или символами.

Все системы счисления можно разделить на два класса: позиционные и непозиционные . В классе позиционных систем для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. Ниже приведена таблица, содержащая наименования некоторых позиционных систем счисления и перечень знаков (цифр), из которых образуются в них числа.

Некоторые системы счисления

Основание Система счисления Знаки
Двоичная 0,1
Троичная 0, 1, 2
Четверичная 0, 1, 2, 3
Пятеричная 0, 1, 2, 3, 4
Восьмеричная 0, 1, 2, 3, 4, 5, 6, 7
Десятичная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Двенадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
Шестнадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

В позиционной системе счисления относительной позиции цифры в числе ставится в соответствие весовой множитель, и число может быть представлено в виде суммы произведений коэффициентов на соответствующую степень основания системы счисления (весовой множитель):

A n А n–1 A n–2 ...A 1 A 0 , A –1 A –2 ... =

A n B n + A n-1 B n-1 + ... + A 1 B 1 + A 0 B 0 + A –1 B –1 + A –2 B –2 + ...

(знак «,» отделяет целую часть числа от дробной. Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными).

Позиционная система счисления – система, в которой величина числа определяется значениями входящих в него цифр и их относительным положением в числе.

23,45 10 = 2 ⋅ 10 1 + 3 ⋅ 10 0 + 4 ⋅ 10 –1 + 5 ⋅ 10 –2 .

Десятичный индекс внизу указывает основание системы счисления.

692 10 = 6 ⋅ 10 2 + 9 ⋅ 10 1 + 2 ⋅ 10 0 ;

1101 2 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 13 10 ;

112 3 = 1 ⋅ 3 2 + 1 ⋅ 3 1 + 2 ⋅ 3 0 = 14 10 ;

341,5 8 = 3 ⋅ 8 2 + 4 ⋅ 8 1 + 1 ⋅ 8 0 + 5 ⋅ 8 –1 = 225,125 10 ;

A1F,4 16 = А ⋅ 16 2 + 1 ⋅ 16 1 + F ⋅ 16 0 + 4 ⋅ 16 –1 = 2591,625 10 .

При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную, восьмеричную и шестнадцатеричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую. Заметим, что во всех приведенных выше примерах результат является десятичным числом, и, таким образом, способ перевода чисел из любой позиционной системы счисления в десятичную уже продемонстрирован.



В общем случае, чтобы перевести целую часть числа из десятичной системы в систему с основанием В, необходимо разделить ее на В. Остаток даст младший разряд числа. Полученное при этом частное необходимо вновь разделить на В – остаток даст следующий разряд числа и т.д. Деления продолжают до тех пор, пока частное не станет меньше основания. Значения получившихся остатков, взятые в обратной последовательности, образуют искомое двоичное число.

Пример перевода целой части: Перевести 25 10 в число двоичной системы.

25 / 2 = 12 с остатком 1,

12 / 2 = 6 с остатком 0,

6 /2 = 3 с остатком 0,

Целая и дробная части переводятся порознь. Для перевода дробной части ее необходимо умножить на В. Целая часть полученного произведения будет первым (после запятой, отделяющей целую часть от дробной) знаком. Дробную же часть произведения необходимо вновь умножить на В. Целая часть полученного числа будет следующим знаком и т.д.

Для перевода дробной части (или числа, у которого «0» целых) надо умножить ее на 2. Целая часть произведения будет первой цифрой числа в двоичной системе. Затем, отбрасывая у результата целую часть, вновь умножаем на 2 и т.д. Заметим, что конечная десятичная дробь при этом вполне может стать бесконечной (периодической) двоичной.

Пример перевода дробной части: Перевести 0,73 10 в число двоичной системы.

0,73 ⋅ 2 = 1,46 (целая часть 1),

0,46 ⋅ 2 = 0,92 (целая часть 0),

0,92 ⋅ 2 = 1,84 (целая часть 1),

0,84 ⋅ 2 = 1,68 (целая часть 1) и т.д.

Таким образом: 0,73 10 = 0,1011 2 .

Над числами, записанными в любой системе счисления, можно производить различные арифметические операции. Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.



Рассмотрим сложение двух чисел с основание десять:

При сложении числа 6 и 7 результат можно представить, как выражение 10 + 3, где 10, является полным основанием для десятичной системы счисления. Заменим 10 (основание) на 1 и подставим слева от цифры 3. Получится:

6 10 + 7 10 = 13 10 .

Рассмотрим сложение двух чисел с основание восемь:

При сложении числа 6 и 7 результат можно представить, как выражение 8 + 5, где 8, является полным основанием для восьмеричной системы счисления. Заменим 8 (основание) на 1 и подставим слева от цифры 5. Получится:

6 8 + 7 8 = 15 8 .

Рассмотрим сложение двух больших чисел с основание восемь:

Сложение начинается с младшего разряда. Итак, 4 8 + 6 8 представляем, как 8 (основание) + 2. Заменяем 8 (основание) на 1 и добавляем эту единицу к цифрам старшего разряда. Далее складываем следующие разряды: 5 8 + 3 8 + 1 8 представляем, как 8 + 1, заменяем 8 (основание) на 1 и добавляем ее к старшему разряду. Далее, 2 8 + 7 8 + 1 8 представляем, как 8 (основание) + 2, заменяем 8 (основание) на 1 и подставляем слева от получившегося числа (в позицию старшего разряда). Таким образом, получается:

254 8 + 736 8 = 1212 8 .

276 8 + 231 8 = 527 8 ,

4A77 16 + BF4 16 = 566B 16 ,

1100110 2 + 1100111 2 = 11001101 2 .

Другие арифметические операции (вычитание, умножение и деление) в различных системах счисления выполняются аналогично.

Рассмотрим умножение «столбиком», на примере двух чисел двоичной системы:

11101 2 · 101 2

Записываем числа друг под другом, в соответствии с разрядами. Затем производим поразрядное перемножение второго множителя на первый и записываем со смещением влево, так же, как при умножении десятичных чисел. Остается сложить «смещенные» числа, учитывая основание чисел, в данном случае двоичное.

преобразуем получившийся результат к основанию 16.

Во втором разряде 29 представляем, как 16 (основание) и 13 (D). Заменим 16 (основание) на 1 и добавим к старшему разряду.

В третьем разряде 96 + 1 = 97. Затем 97 представим, как 6 · 16 (основание) и 1. Добавим 6 старшему разряду.

В четвертом разряде 20 + 6 = 26. Представим 26, как 16 (основание) и 10 (А). Единицу переносим в старший разряд.

При определенных навыках работы с различными системами счисления запись можно было сразу представить, как

A
B B
A D

Таким образом, A31 16 · 29 16 = 1A1D9 16 .

527 8 – 276 8 = 231 8 ,

566B 16 – 4A77 16 = BF4 16 ,

11001101 2 – 1100110 2 = 1100111 2 ,

276 8 · 231 8 = 70616 8 ,

4A77 16 · BF4 16 = 37A166C 16 ,

1100110 2 · 1100111 2 = 10100100001010 2 .

С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые системы (двоичная, восьмеричная и шестнадцатеричная) представляют большой интерес, хотя компьютер обрабатывает данные только преобразованные к двоичному коду (двоичная система счисления). Однако, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатеричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста – гораздо проще переводов между любой из этих трех систем и десятичной.

Представим числа различных систем счисления соответственно друг другу:

Десятичная Шестнадцатеричная Восьмеричная Двоичная
A
B
C
D
E
F

Из таблицы видно, что числа системы с основанием 2, 8 и 16 имеют периодические закономерности. Так, восемь значений восьмеричной системы, то есть (от 0 до 7 или полное основание) соответствуют трем разрядам (триады ) двоичной системы. Таким образом, для описания чисел одного разряда восьмеричной системы требуется ровно три разряда двоичной. Аналогично и с числами шестнадцатеричной системы. Только для их описания требуется ровно четыре разряда (тетрады ) двоичной системы.

Отсюда следует, что для перевода любого целого двоичного числа в восьмеричное, необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент.

Например, требуется перевести 11011001 2 в восьмеричную систему.

Разбиваем число на группы по три цифры 011 2 , 011 2 и 001 2 . Подставляем соответствующие цифры восьмеричной системы. Получаем 3 8 , 3 8 и 1 8 или 331 8 .

11011001 2 = 331 8 .

Аналогично осуществляются и обратные переводы, например:

Перевести AB5D 16 в двоичную систему счисления.

Поочередно заменяем каждый символ числа AB5D 16 на соответствующее число из двоичной системы. Получим 1010 16 , 1011 16 , 0101 16 и 1101 16 или 1010101101011101 2 .

AB5D 16 = 1010101101011101 2 .

Кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое он занимает в числе. Такие системы счисления называются непозиционными . Наиболее известным примером непозиционной системы являетсяримская . В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:

Правила записи чисел римскими цифрами : – если большая цифра стоит перед меньшей, то они складываются (принцип сложения), – если меньшая цифра стоит перед большей, то меньшая вычитается из большей (принцип вычитания).

Второе правило применяется для того, чтобы избежать четырёхкратного повторения одной и той же цифры. Так, римские цифры I, Х, С ставятся соответственно перед Х, С, М для обозначения 9, 90, 900 или перед V, L, D для обозначения 4, 40, 400.

Примеры записи чисел римскими цифрами:

IV = 5 - 1 = 4 (вместо IIII),

XIX = 10 + 10 - 1 = 19 (вместо XVIIII),

XL = 50 - 10 =40 (вместо XXXX),

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33 и т.д.

Следует отметить, что выполнение даже простых арифметических действий над многозначными числами римскими цифрами весьма неудобно. Вероятно, сложность вычислений в римской системе, основанной на использовании латинских букв, стала одной из веских причин замены ее на более удобную в этом плане десятичную систему.

3.1 Основанием системы счисления называется...

Совокупность приемов и правил для записи чисел цифровыми знаками или символами

Число знаков использующиеся в определенной позиционной системе счисления

Делитель, использующийся при переводе чисел из одной системы счисления в другую

Общий множитель, при переводе чисел из одной системы счисления в другую

3.2 Какая система счисления не нашла широкого применения в компьютерной технике

Восьмеричная

Двоичная

Пятеричная

Шестнадцатеричная