Что такое процессор с четырьмя потоками. Процессы и потоки в Windows

Во многих процессорах топового уровня есть потоки, как и ядра. Я постараюсь объяснить в чем отличие потока от ядра, и в чем преимущество этих потоков. Потоки появились достаточно давно, а именно еще во времена правления Pentium 4 (до них она был в Ксеонах как суперпоточность).

В то время потоки еще носили сомнительную пользу, некоторые пользователи считали что они только ухудшают производительность.

Но на самом деле, производительность не падала, просто на то время программ, которые могли грамотно работать с двумя потоками — вообще не было. Поэтому, потоки это скорее всего была экспериментальная технология в то время, кстати почти все Pentium D также не имели ее за исключением топовых моделе D955, D965 (это двухядерники с четырьмя потоками).

Теперь немного разберемся с тем, что это вообще такое. Технология потоков называется Hyper-threading и отображается сокращенно: HT (как правило указывается на коробках сбоку). На одно ядро допустим один поток. Если вы задавались иногда вопросом «как увеличить количество потоков процессора», то я вас разочарую — это невозможно, и даже не думайте об этом, это глупости =).

Hyper-threading позволяет хранить состояние сразу двух потоков, поэтому в из под Windows такие потоки выглядят как ядра. То есть, если у вас имеет процессор 2 ядра, то это 4 потока. Соответственно я имею ввиду процессор, который поддерживает гипертрейдинг.

Как работает Hyper-threading? Чтобы вы понимали, то процессор выполняет не только ваши задачи, но и другие, и в том числе служебные. Так вот, обрабатывая данные, поток потом их отправляет, или ждет новых данных из оперативной памяти. В это время, пока он ждет, он может помогать другому потоку. То есть гипертрейдинг призван увеличить производительность процессора, уменьшая время бездействия.

То есть, можно сделать вывод, что количество потоков всегда равно количеству ядер умноженное на два. Никак иначе. Эту технологию разработала Intel, соответственно в AMD-процессорах ее нет, но есть мнение, что у них есть подобная технология, именно поэтому многие считают что в восьми-ядерных процессорах AMD восемь не ядре, а потоков.

В любом случае, эта технология полезна, хоть это и виртуальные ядра — лучше с HT, чем без нее.

Также плюсом является то, что не только система видит такие потоки как настоящие ядра, но и программы, и если программа умеет распараллеливать свою работу, то скорость ее работы будет выше с потоками, чем без.

Теперь вас наверно заинтересует — как узнать количество потоков процессора? Это очень просто. Вам нужно открыть диспетчер задач (по панели задач нажмите правой кнопкой), и перейти на вкладку производительность. Там будет поле ядра, а под ним — количество потоков, вам нужно последнее:


Как видите, число потоков равно числу ядер, потому что мой Pentium G3220 к сожалению не поддерживает технологию HT.

Современные процессоры Intel Core i3, i7 ее поддерживают, а вот i5 — нет (вроде бы только в ноутбуках есть i5 с двумя ядрами и HT, и некоторые процессоры на 1156 сокет, там тоже два ядра и HT). Думаю что маркетинговый ход, чтобы было равно-мерное увеличение производительности моделей серии i.

Если вы думаете, какой процессор лучше — с потоками или нет, то конечно с ними. Иногда (не буду углубляться) цена с поддержкой HT и без невелика, поэтому стоит доплатить и взять тот, что поддерживает HT. Это я так, в общих чертах вам на будущее.

Многоядерностью процессоров в нынешнее время никого не удивишь. Наоборот, все стараются чтобы их компьютер поддерживал как можно больше ядер, а следовательно быстрее работал, и это правильно.
Если касаться именно процессоров, то уже давно на рынке встречаются только два производителя - это Intel и AMD. И если вторые рассказывают про свои 8ми и 10-ядерные процессоры (имея ввиду что их много, а значит они мощнее), то первые имеют по 2 и 4 ядра, но делают акцент на свои потоки (не нужно писать гневных комментариев что ядер бывает и больше т.к. здесь и далее описываются процессоры для домашнего использования).

И если посмотреть на сравнительные графики производительности процессоров, то Вы можете увидеть, что 4-ядерный процессор (не все) от Intel будет обгонять 8-ядерный от AMD. Почему же так? Ведь 4 меньше чем 8, а значит должен быть слабее... Но если копнуть поглубже (не прям до кешей, частотой, шиной и т.д.), то можно увидеть одно интересное слово, которым часто описывают процессоры Intel - поддержка Hyper-threading .

Технология Hyper-threading ("гипертрендинг" в простонародье) была изобретена Intel`ом и используется только в их процессорах (не во всех). Я не буду особо глубоко вдаваться в её подробности, если хотите, то можете почитать про неё на . Данная технология позволяет как бы разделять каждое ядро надвое и в итоге вместо одного физического, мы имеем два логических (или виртуальных) и операционная система Windows думает что установлено два вместо одного.

Как узнать сколько потоков в процессоре?

Если Вы хотите узнать про конкретный процессор, то чаще всего в описании в магазинах указывают поддержку Hyper-threading либо вставляя это словосочетание, либо просто абревеатуру HT. Если же нет такого описания, то всегда можно воспользоваться самой правдивой информацией на официальной странице Intel`а http://ark.intel.com/ru/search/advanced/?s=t&HyperThreading=true
Рекомендую пользоваться только этой информацией ибо она самая точная.

Если же Вы хотите узнать уже находясь в системе и конкретно используются эти самые потоки в Вашей системе, то нет ничего проще.

Запускаете любым удобным способом (проще всего сочетание горячих клавиш Ctrl +Shift +Esc ) находясь в любом месте (хоть читая эту статью) и, если у Вас Windows 7, перейдите во вкладку Быстродействие.


Обратите внимание на верхнюю строку с загрузкой процессора и конкретно на количество "квадратов". Вот как раз сколько их будет - столько и будет всех ядер, включая все потоки. Если точнее здесь отображаются все логические/виртуальные ядра, а потоки как раз они и есть.

Если у Вас Windows 8, 8.1 или 10, то такой вкладки не будет, зато есть Производительность.


Здесь я выделил куда нужно обратить внимание. Кстати, я не зря кликнул по этому графику правой кнопкой мыши, потому что если выбрать пункт Логические процессы, то график изменится и будет похож на тот, который в Windows 7, т.е. будет 8 "квадратиков" и графиками загруженности по каждому ядру.
Если у Вас обратная картина, т.е. отображается не один, а несколько графиков, значит как раз и выбран данный пункт в свойствах самого графика.

Разумеется есть ещё несколько способов того, а в данном случае потоков.

Например можно вызвать свойство системы (сочетание клавиш Win + R и вводим systeminfo ) и увидеть там.

Добрый день. Сегодня хотелось бы разобрать, что такое потоки в процессоре. Те самые, о функциях и возможностях которых большинство и не догадывается, однако любят хвастаться остальным.

Цель функции заключается в том, что на 1 ядро может одновременно обрабатывать несколько потоков данных. Пока первый поток простаивает, а второй занимается вычислением, запущенное приложение может воспользоваться вакантной логической мощью для своих целей. В результате, прерывания случаются гораздо реже, а вы не ощущаете тормозов и прочих неудобств при работе.

Недостаток технологии заключается в следующем:

Если очень грубо, то все кирпичи с одного места на другое можно перенести в одной руке (1 поток), либо в двух (2 потока), но человек при этом один (1 ядро) и устает одинаково при любых условиях, хоть его производительность фактически увеличивается вдвое. Иными словами, мы упираемся в производительность ЦП, а конкретней в его частоту.

Под процессом понимается программа в стадии выполнения. Процесс можно рассматривать также как единицу работы для . Для современных типов процессоров существует и более мелкая единица работы поток или нить. Другими словами процесс может породить один и более потоков.

В чем же состоит принципиальное различие в понятиях процесс и поток. Процесс рассматривается ОС, как заявка на все виды ресурсов (память, файлы и пр.), кроме одного — процессорного времени. Поток — это заявка на процессорное время.

В дальнейшем в качестве единицы работы ОС будут использоваться понятия процесс и поток. В тех же случаях, когда это не играет существенной роли, они будут называться задача

Планирование процессов и потоков

Планирование процессов и потоков включает:

  • Создание-уничтожение процессов
  • Взаимодействие между процессами
  • распределение процессорного времени
  • Обеспечение процессов необходимыми ресурсами (единолично, совместно)
  • Синхронизация (контроль за возникновением «гонок», блокировок)
  • После завершения процесса — «зачистка», т.е. удаление следов пребывания в системе

Каждый процесс изолируется от других своим виртуальным адресным пространством, под которым понимается совокупность адресов, которыми может манипулировать программный модуль процесса. ОС отображает виртуальное адресное пространство на отведенную процессу .

Для взаимодействия, процессы обращаются к ОС, которая предоставляет средства общения (конвейеры, почтовые ящики, разделяемые секции памяти и др.)

Возможность распараллеливания вычислений в рамках процесса на потоки повышает эффективность . Механизм распараллеливания вычислений для одного приложения называется многопоточной обработкой (multithreading). Потоки процесса имеют одно адресное виртуальное пространство. Распараллеливание ускоряет выполнение процесса за счет отсутствия переключения ОС с одного адресного пространства на другое, которое имеет место при выполнении процессов. Программы становятся более логичны. Особый эффект при этом достигается в мультипроцессорных системах.

Примером многопоточной обработки может служить выполнение запросов MS SQL Server

Создание процессов

Создать процесс — это создать описатель процесса (информационная структура, содержащая сведения необходимые для управления этим процессом)

Примеры описателей для:

  • Windows NT/2000/XP — объект-процесс (object-process)
  • UNIX — дескриптор процесса
  • OS/2 — управляющий блок процесса (PCB -Process Control Block)

Кроме того создать процесс — это включает также следующие действия:

  • Найти программу на диске
  • перераспределить оперативную память
  • выделить память новому процессу
  • переписать программу в выделенную память
  • изменить некоторые параметры программы

Примечание. В некоторых системах, коды и данные могут сразу не помещаться в память, а переписываться в специальную область диска — область подкачки

Создание потоков

В многопоточной системе при создании процесса создается хотя бы один поток. Для потока ОС генерирует описатель потока (идентификатор потока, данные о правах, приоритете, состояние потока и пр.).Исходное состояние потока — приостановленное.

Поток может породить другой поток — потомок. При завершения потока-родителя используются разные алгоритмы. Асинхронное завершение предполагает продолжение выполнения потоков-потомков после завершения потока-родителя. Синхронное завершение потока-родителя приводит к завершению всех его потомков.

4.1 Процессы

4.1.1 Понятие процесса

Процесс (задача) - программа, находящаяся в режиме выполнения.

С каждым процессом связывается его адресное пространство, из которого он может читать и в которое он может писать данные.

Адресное пространство содержит:

    саму программу

    данные к программе

    стек программы

С каждым процессом связывается набор регистров, например:

    счетчика команд (в процессоре) - регистр в котором содержится адрес следующей, стоящей в очереди на выполнение команды. После того как команда выбрана из памяти, счетчик команд корректируется и указатель переходит к следующей команде.

    указатель стека

Во многих операционных системах вся информация о каждом процессе, дополнительная к содержимому его собственного адресного пространства, хранится в таблице процессов операционной системы.

Некоторые поля таблицы:

Управление процессом

Управление памятью

Управление файлами

Регистры

Счетчик команд

Указатель стека

Состояние процесса

Приоритет

Параметры планирования

Идентификатор процесса

Родительский процесс

Группа процесса

Время начала процесса

Использованное процессорное время

Указатель на текстовый сегмент

Указатель на сегмент данных

Указатель на сегмент стека

Корневой каталог

Рабочий каталог

Дескрипторы файла

Идентификатор пользователя

Идентификатор группы

4.1.2 Модель процесса

В многозадачной системе реальный процессор переключается с процесса на процесс, но для упрощения модели рассматривается набор процессов, идущих параллельно (псевдопараллельно).

Рассмотрим схему с четырьмя работающими программами.

В каждый момент времени активен только один процесс

С права представлены параллельно работающие процессы, каждый со своим счетчиком команд. Разумеется, на самом деле существует только один физический счетчик команд, в который загружается логический счетчик команд текущего процесса. Когда время, отведенное текущему процессу, заканчивается, физический счетчик команд сохраняется в памяти, в логическом счетчике команд процесса.

4.1.3 Создание процесса

Три основных события, приводящие к созданию процессов (вызов fork или CreateProcess ):

    Работающий процесс подает системный вызов на создание процесса

    Запрос пользователя на создание процесса

Во всех случаях, активный текущий процесс посылает системный вызов на создание нового процесса.

В UNIX каждому процессу присваивается идентификатор процесса (PID - Process IDentifier)

4.1.4 Завершение процесса

Четыре события, приводящие к остановке процесса (вызов exit или ExitProcess ):

    Плановое завершение (окончание выполнения)

    Плановый выход по известной ошибке (например, отсутствие файла)

    Выход по неисправимой ошибке (ошибка в программе)

    Уничтожение другим процессом

Таким образом, приостановленный процесс состоит из собственного адресного пространства, обычно называемого образом памяти (core image ), и компонентов таблицы процессов (в числе компонентов и его регистры).

4.1.5 Иерархия процессов

В UNIX системах заложена жесткая иерархия процессов. Каждый новый процесс созданный системным вызовом fork, является дочерним к предыдущему процессу. Дочернему процессу достаются от родительского переменные, регистры и т.п. После вызова fork, как только родительские данные скопированы, последующие изменения в одном из процессов не влияют на другой, но процессы помнят о том, кто является родительским.

В таком случае в UNIX существует и прародитель всех процессов - процесс init .

Дерево процессов для систем UNIX

4.1.6 Состояние процессов

Три состояния процесса:

    Выполнение (занимает процессор)

    Готовность (процесс временно приостановлен, чтобы позволить выполняться другому процессу)

    Ожидание (процесс не может быть запущен по своим внутренним причинам, например, ожидая операции ввода/вывода)

Возможные переходы между состояниями.

1. Процесс блокируется, ожидая входных данных

2. Планировщик выбирает другой процесс

3. Планировщик выбирает этот процесс

4. Поступили входные данные

Переходы 2 и 3 вызываются планировщиком процессов операционной системы, так что сами процессы даже не знают о этих переходах. С точки зрения самих процессов есть два состояния выполнения и ожидания.

На серверах для ускорения ответа на запрос клиента, часто загружают несколько процессов в режим ожидания, и как только сервер получит запрос, процесс переходит из "ожидания" в "выполнение". Этот переход выполняется намного быстрее, чем запуск нового процесса.

4.2 Потоки (нити, облегченный процесс)

4.2.1 Понятие потока

Каждому процессу соответствует адресное пространство и одиночный поток исполняемых команд. В многопользовательских системах, при каждом обращении к одному и тому же сервису, приходится создавать новый процесс для обслуживания клиента. Это менее выгодно, чем создать квазипараллельный поток внутри этого процесса с одним адресным пространством.

4.2.2 Модель потока

С каждым потоком связывается:

    Счетчик выполнения команд

    Регистры для текущих переменных

    Состояние

Потоки делят между собой элементы своего процесса:

    Адресное пространство

    Глобальные переменные

    Открытые файлы

  • Семафоры

    Статистическую информацию.

В остальном модель идентична модели процессов.

В POSIX и Windows есть поддержка потоков на уровне ядра.

4.2.3 Преимущества использования потоков

    Упрощение программы в некоторых случаях, за счет использования общего адресного пространства.

    Быстрота создания потока, по сравнению с процессом, примерно в 100 раз.

    Повышение производительности самой программы, т.к. есть возможность одновременно выполнять вычисления на процессоре и операцию ввода/вывода. Пример: текстовый редактор с тремя потоками может одновременно взаимодействовать с пользователем, форматировать текст и записывать на диск резервную копию.

4.2.4 Реализация потоков в пространстве пользователя, ядра и смешанное

B - потоки в пространстве ядра

В случае А ядро о потоках ничего не знает. Каждому процессу необходима таблица потоков , аналогичная таблице процессов.

Преимущества случая А :

    Такую многопоточность можно реализовать на ядре не поддерживающим многопоточность

    Более быстрое переключение, создание и завершение потоков

    Процесс может иметь собственный алгоритм планирования.

Недостатки случая А :

    Отсутствие прерывания по таймеру внутри одного процесса

    При использовании блокирующего (процесс переводится в режим ожидания, например: чтение с клавиатуры, а данные не поступают) системного запроса все остальные потоки блокируются.

    Сложность реализации