Система водяного охлаждения для компьютера — Подробное описание. Бесшумный компьютер с двухконтурной системой водяного охлаждения


Радиаторы и кулеры – об этом даже писать не так интересно, потому что все это давно есть в любом компьютере и этим никого не удивишь. Жидкий азот и всякие там системы с фазовым переходом – еще одна крайность, шансы встречи с которой в хозяйстве обычного человека почти нулевые. А вот «водянка»… в вопросе охлаждения компьютера это как золотая середина – необычно, но доступно; почти не шумит, но в то же время охладить может что угодно. Справедливости ради, СВО (система водяного охлаждения) правильней называть СЖО (система жидкостного охлаждения), ведь, по сути, залить внутрь можно что угодно. Но, забегая вперед, я использовал обычную воду, так что орудовать больше буду именно термином СВО.

Совсем недавно я достаточно подробно писал про сборку нового системного блока. Получившийся стенд выглядел следующим образом:

Вдумчивое изучение списка говорит о том, что тепловыделение некоторых устройств не просто высокое, а ОЧЕНЬ высокое. И если подключить все как есть, то внутри даже самого просторного корпуса будет как минимум жарко; а как показывает практика, будет еще и очень шумно.

Напомню, что корпусом, в который собирается компьютер, является пусть и не очень практичный (хотя с каждым разом я убеждаюсь в обратном), но очень презентабельный Thermaltake Level 10 – у него есть минусы, но за один только внешний вид ему можно очень многое простить.

На этом этапе материнская плата была установлена в корпус, в нее поставлена видеокарта – предварительно в самый верхний PCI-слот.

Установка радиатора/помпы/резервуара

Один из самых интересных этапов работы, на который у нас ушло больше всего времени (если бы мы сразу пошли по легкому пути, то управились бы за полчаса, но сперва мы перепробовали все сложные варианты, из-за которых все работы суммарно растянулись на 2 дня (конечно же, далеко неполных).

Система водяного охлаждения очень похожа на ту, что применяется в автомобилях, просто немного побольше – там тоже есть радиатор (чаще всего не один), кулер, охлаждающая жидкость и т.д. Но у автомобиля есть одно преимущество – солидный встречный поток холодного воздуха, который играет ключевую роль в охлаждении системы во время движения.

В случае с компьютером, отводить тепло приходится тем воздухом, который есть в комнате. Соответственно, чем больше размеры радиатора и количество кулеров, тем лучше. А так как хочется минимум шума, то эффективное охлаждение будет достигаться в основном за счет поверхности радиатора.

А суть проблемы заключалась в следующем. В скайпе мы предварительно сошлись на мнении «повесим сзади радиатора на 2-3 секции – его более чем хватит!», но как только мы взглянули на корпус, оказалось, что все не так-то просто. Во-первых, для трехсекционного радиатора там действительно было маловато места (если крепить радиатор на то отверстие, куда предполагается установка выдувного кулера корпуса), а во-вторых, даже если бы и хватило, то никак не получилось бы открыть сам корпус – мешалась бы «дверь» системного отсека:)

В общем, вариантов установки радиатора в корпус Thermaltake Level 10 мы насчитали минимум четыре – все они возможны, на каждый потребовалось бы разное количество времени и у каждого были бы свои плюсы и минусы. Начну с тех, что мы рассматривали, но которые нам не подошли:

1. Установка радиатора на задней (от пользователя) боковой стороне, то есть на съемной дверце.
Плюсы:
+ Возможность горизонтальной и вертикальной установки любого радиатора, хоть на 3-4 кулера
+ Размеры корпуса особо не увеличились бы

Минусы:
- Пришлось бы сверлить в дверце от 4 до 6-8 отверстий
- Снимать дверцу было бы очень неудобно
- При горизонтальном расположении потребовался бы радиатор с нестандартным расположением отверстия для залива жидкости
- При вертикальном расположении шланги были бы очень длинными и с большим изгибом
- Корпус будет стоять слева от меня (на подоконнике), а теплый воздух от кулеров в лицо мне не нужен:)

2. Установка радиатора сверху, на «кожухе» отсека блока питания. Плюсы и минусы идентичны

3. Установка двухсекционного радиатора внутри системного отсека

Плюсы:
+ Простота решения
+ Внешне не было бы никаких изменений
+ Дверца системного отсека открывалась бы без проблем

Минусы:
- Подошел бы только 2-секционный радиатор (этого мало для железа конфига)
- В таком случае браться холодному воздуху было бы не откуда, а гонять туда-сюда теплый воздух не хотелось.
- Были бы сложности по «расстановке» помпы и резервуара
- Даже если использовать сверхтонкие кулеры, перекрывались бы все SATA-разъемы (если бы они выводились на пользователя, а не вбок, то этой проблемы бы не было)

В общем, все эти варианты мы в той или иной степени попробовали – потратили много времени на поиски нужных компонентов, их примерку и т.д.

Самым последним вариантом оказалось достаточно необычное решение – может быть не самое на первый взгляд красивое, но действительно практичное. Это установка радиатора на задней стороне корпуса через специальный регулируемый переходник с механизмом типа «ножницы» .

Плюсы:
+ Ничего не пришлось сверлить
+ Возможность повесить ЛЮБОЙ радиатор
+ Отличная продуваемость
+ Не перекрывался доступ к разъемам материнской платы
+ Минимальная длина шлангов, минимум изгибов
+ Конструкция съемная и транспортабельна

Минусы:
- Не самый презентабельный внешний вид:)
- Открыть дверь системного отсека теперь не так просто
- Достаточно дорогой переходник

Почему мы пришли к этому варианту в последнюю очередь? Потому что во время поисков для предыдущих трех вариантов, совершенно случайно нашли переходник, про который все забыли, а в в интернет магазине его не было) Глядя на единственный (последний) экземпляр монтажной рамки Koolance Radiator Mounting Bracket , я подумал «И чего только не придумают!». Суть в следующем – в отверстия для крепления к корпусу заднего выдувного кулера вставляются 4 «конусных гвоздя», на которые вешается специальная рамка.

Конструкция этой рамки такова, что ее длинна может изменяться путем подкручивания фиксаторов, а снимается она смешением двух частей ее корпуса (чтобы отверстия разжались и ее можно было снять с «гвоздиков») – вот я загнул!) Гораздо проще понять все по фото.

Рамка металлическая и очень прочная – в этом я убедился, когда мы на пробу повесили 3-секционный (на 3 кулера) радиатор. Ничего не болтается и не качается, все висит намертво, но в «разжатом» случае дверь вполне себе открывалась – такой вариант меня полностью устраивал!

Радиаторов на выбор было огромное количество – черные, белые, красные… В этом вопросе меня больше всего удивил 4-секционный TFC Monsta , способный отвести до 2600Вт тепла (это, видимо, SLI из четырех 480ых)! Но мы люди гораздо проще, поэтому решили остановиться на том радиаторе, который примеряли - Swiftech MCR320-DRIVE . Его преимущество в том, что он объединяет в себе сразу три компонента – радиатор (MCR320 QP Radiator для трех 120мм кулеров), резервуар для жидкости и помпу высокого давления (MCP350 Pump , полный аналог «обычной» помпы Laing DDC ). По сути, с такой железякой для СВО потребуется докупить только водоблоки, шланги и прочие мелочи, что у нас уже было. Помпа работает от 12В (от 8 до 13.2), издавая шум 24~26 dBA. Максимальное создаваемое давление составляет 1.5бар, что примерно равно 1.5 «атмфосферам».

Для радиатора было три кулера-претендента – Noctua , Be Quiet и Scythe . В итоге остановились на индонезийских (с японскими корнями) Scythe Gentle Typhoon (120мм, 1450 об/мин, 21 dBA) – эти вертушки не первый день пользуются большим спросом у многих пользователей. Они ооочень тихие, а качество балансировки подшипников просто удивляет – кулер будет неестественно долго крутиться даже от самого легкого прикосновения. Срок службы составляет 100000 часов при 30°C (или 60000 часов при 60 °C), чего хватит для морального устаревания данного системника.

Обзор этих «тайфунов» был на ФЦентре – советую почитать . Поверх кулеров были поставлены защитные решетки, чтобы ребенок не засунул в вентиляторы чего-нибудь жизненно необходимого.

Примеряем получившуюся конструкцию к системному блоку – выглядит очень необычно) Но зато смотрите, как удобно – чтобы залезть внутрь корпуса (или снять систему охлаждения), достаточно нажать одну «кнопку» и вся конструкция, фактически, уже отсоединена. Сжимаем монтажную рамку и имеем полный доступ к внутренностям – там более чем просторно, ведь мы туда ничего не громоздили. Может быть я описал не самый удобный вариант, но… если учесть, что после сборки компьютера лазить внутрь практически не придется, а хорошее охлаждение гораздо важнее, то я считаю наше решение правильным.

Конструкция в сборе весит 2.25 килограмма, а с жидкостью и фитингами, наверное, все 3 – забегая вперед, даже такой вес рамке от Koolance оказался по силам, за что ей респекты и уважухи:)

Финишная прямая

Дело осталось за малым – установить все компоненты, «обвязать водой» и протестировать получившийся компьютер. Все началось с установки фитингов – красивые такие железки (в виде «ёлочек»), которые через специальные прокладки (и иногда, когда резьба фитинга очень длинная, через специальные спэйсеры) устанавливаются в соответствующее отверстие водоблока или резервуара – для затягивания мы использовали небольшой разводной ключ, но тут тоже важно не перестараться.

Помимо фитингов, в два отверстия водоблока видеокарты были установлены специальные заглушки:

После этого мы продумали маршрут, по которому будет идти вода. Правило простое – от менее нагретого к более. Соответственно, «выход» радиатора соединяется сперва с водоблоком материнской платы, из него выход на процессор, затем в видеокарту и уже потом обратно на вход в радиатор, остужаться. Так как вода одна на всех, то температура всех компонентов в результате будет примерно одинаковой – именно из этих соображений делают многоконтурные системы и именно по этой причине не имеет смысла подключать к одному контуру еще и всякие там жесткие диски, оперативку и т.д.

Роль шланга досталась красному Feser Tube (ПВХ, рабочая температура от -30 до +70°C, давление на разрыв 10МПа), для нарезки которого использовался специальный хищный инструмент.

Ровно отрезать шланг – может быть и не так сложно, но очень важно! Почти на все шланги были надеты специальные пружины против изгибов и изломов шланга (минимальный радиус петли шланга становится равным ~3.5см).

На каждый шланг (с обеих сторон) в области фитинга нужно установить по «хомуту» – мы использовали красивые Koolance Hose Clamp . Устанавливаются они с помощью обычных плоскогубцев (с грубой мужской силой), поэтому нужно действовать аккуратно, чтобы случайно не задеть чего-нибудь.

Пришло время поработать над соединением «внутреннего мира» с «внешним». Для того, чтобы иметь возможность снять радиатор-резервуар-помпу (например, для открытия корпуса или для транспортировки), мы поставили на трубки так называемые «быстросъемы» (быстросъемные клапаны), принцип действия которых до безобразия прост.

Когда мы поворачиваем соединение (как у BNC-коннекторов), отверстие в трубке закрывается-открывается, благодаря чему разобрать «водянку» можно меньше чем за минуту, без всяких луж и прочих последствий. Еще парочка дорогих, но прекрасно выглядящих железяк:

Расходы

5110 - Водоблок EK FB RE3 Nickel на материнскую плату
3660 - Водоблок EK-FC480 GTX Nickel+Plexi на видеокарту
1065 - Бэкплэйт EK-FC480 GTX Backplate Nickel на видеокарту
2999 - Водоблок Enzotech Stealth на процессор
9430 - Помпа/радиатор/резервуар Swiftech MCR320-DRIVE
2610 - Два быстросъемных клапана Release Coupling
4000 - Переходник Koolance Radiator Mounting Bracket
1325 - Три кулера Scythe Gentle Typhoon (120мм) для радиатора
290 - Четыре фитинга EK-10mm High Flow Fitting
430 - Термопаста Arctic-Cooling-MX-3
400 - Девять зажимов для шлангов Koolance Hose Clamp
365 - Жидкость Nanoxia HyperZero
355 - Шланг Feser Tube

Столь высокая цена в данном случае вызвана тем, что использовались fullcover-водоблоки для ОЧЕНЬ горячих железок, все тепло от которых нужно рассеивать соответствующим радиатором. Для более простых систем подобные решения просто не понадобятся, так же можно обойтись и без декоративных накладок и всяких быстросъемных клапанов – в таких случаях можно запросто уложиться и в половину стоимости. Цена среднестатистической «водянки» составляет 12-15 тысяч рублей, что в 4-5 раз превышает стоимость действительно хорошего процессорного кулера.

Включение и работа

После того, как все компоненты системы были соединены, подошло время к «leak-тесту» (тест на протечку) – в радиатор была залита охлаждающая жидкость (дважды дистиллированная вода Nanoxia HyperZero красного цвета, с антикоррозийными и антибиологическими присадками) – в контур вошло порядка 500 мл.


Парень в хабрамайке заправляет радиатор)

Т.к. нельзя исключать вероятность того, что к компонентам компьютера что-то было подсоединено не так, было решено отдельно проверить работу самой системы водяного охлаждения. Для этого все провода (от кулеров и от помпы) были подсоединены, а в 24-пиновый разъем блока питания вставлена скрепка – для «холостого хода». На всякий случай внизу мы положили салфеток, чтобы малейшую течь было легче обнаружить.

Нажатие кнопки и… все как задумывалось) Честно сказать, до этого мне приходилось видеть водянки (помимо интернетов) только на различных выставках и конкурсах, где было очень шумно; поэтому я подсознательно готовился к «журчанию ручья», но уровень шума приятно удивил – по большей части было слышно только работу помпы. Первоначально присутствовали «шипящие» звуки – из-за пузырьков воздуха, находящихся внутри контура (их было видно в некоторых местах шлангов). Для решения этой проблемы была открыта пробка резервуара-радиатора – от циркуляции потока воздух постепенно вышел и система стала работать еще тише. После долива жидкости пробка была закрыта и компьютер поработал еще минут 10. Шума от кулера блока питания и от трех на радиаторе не было слышно вообще, хотя их воздушные потоки давали о себе знать.

Убедившись в том, что система полностью работоспособна, мы решили окончательно собрать тестовый стенд. Подключение проводов заняло не больше минуты – гораздо дольше искали монитор и провод для его подключения, т.к. все работали на ноутбуках;) Фраза «Reboot and select proper boot device or insert boot media in selected boot device and press a key» стала бальзамом на душу – мы вставили один из «рабочих» SSD-дисков (с Windows 7 на борту) - хорошо, что новый комп принял такой вариант. Для полного счастья только обновили драйвера для чипсета и установили драйвера для видеокарты.

Запускаем диагностического монстра Everest , где на одной из вкладок находим показания датчиков температуры: 30°C были справедливы для всех компонентов системы – CPU, GPU и материнской платы – что ж, очень приятные цифры. Равенство цифр вызвало предположение о том, что охлаждение в режиме простоя ограничено комнатной температурой, ведь ниже нее температуры в обычной водянке быть не может. В любом случае гораздо интересней посмотреть, какая ситуация будет при нагрузке.

15 минут «офисной работы» и температура видеокарты поднялась до 35°C.

Начинаем с проверки CPU, для чего используем программу OCCT 3.1.0 – спустя достаточно продолжительное время в режиме 100% нагрузки, максимальная температура процессора составила 38°C, а температура ядер 49-55°C соответственно. Температура материнской платы составляла 31°C, северного моста - 38°C, южного - 39°C. Кстати, это очень примечательно, что у всех четырех ядер процессора была практически равная температура – судя по всему, это заслуга именно водяного блока, который отводит тепло равномерно со всей поверхности крышки процессора. 50+ градусов для 4-ядерного Intel Core i7-930 с TDP в 130Вт – на такой результат едва способен хоть один стоковый воздушный кулер. А если и способен, то шум от его работы при этом вряд ли кому-то понравится (интернет гласит о температуре данного процессора в 65-70 градусов с кулером Cooler Master V10 – тот, что с элементом Пельтье).

Видеокарту по привычке прогревали программой FurMark 1.8.2 (в простонародье «бублик») – вряд ли на скорую руку можно было придумать что-то более ресурсоемкое и информативное.

Помимо «Эвереста» так же была установлена программа EVGA Precision 2.0 . На максимально доступном разрешении (с максимальным сглаживаниями) был запущен стресс-тест с ведением лога температуры – уже минуты через 3 температура видеокарты устоялась на отметке в 52 градуса! 52 градуса в нагрузке для топовой (на данный момент) видеокарты NVIDIA GTX 480 на архитектуре Fermi – это не просто здорово, это замечательно!)

Для сравнения, температура видеокарты в нагрузке со штатным кулером может доходить до 100 градусов, а с хорошим нереференсным – до 70-80.

В общем, температурный режим в полном порядке – в нагрузке кулеры выдувают из радиатора практически холодный воздух, а сам радиатор еле теплый. Не буду говорить в этой статье про разгонный потенциал, скажу лишь, что он есть. Но гораздо приятней совсем другое - система работает практически бесшумно!

The end

Можно долго рассуждать о получившемся результате, но он мне понравился, как и всем тем, кто его уже успел посмотреть. Как ни крути, а в корпусе Thermaltake Level 10 мне удалось собрать более чем производительный конфиг, который еще долгое время будет актуальным. Более того, почти без проблем «встала» полноценная система водяного охлаждения, которая помимо хорошего охлаждения начинки дает +5 к внешнему виду. Говоря о температурном режиме, можно смело говорить и о солидном потенциале для разгона – сейчас даже в нагрузке система охлаждения работает далеко не на пределе возможностей.

Я забыл написать про еще один важный плюс – интересность. Пожалуй, это самое интересное, что мне приходилось делать с железками – ни одна сборка компьютера не приносила столько удовольствия! Одно дело, когда ты собираешь обычные «бездушные» компики, совсем другое дело – когда понимаешь всю ответственность и подходишь к делу со всей душой. Такая работа занимает далеко не 5 минут – все это время ты ощущаешь себя ребенком, играющим во взрослый конструктор. А еще инженером-технологом-конструктором-сантехником-дизайнером, да просто гиком… в общем, интересность сильно повышенная!

Развитие технологий неизбежно приводит к тому, что основные компоненты персональных компьютеров становятся более производительными, а значит, и «горячими». Для станций требуется высокоэффективное охлаждение. В качестве отличного варианта для решения такой задачи можно предложить для ПК.

Основные преимущества

Подобная система имеет целый ряд преимуществ в сравнении с традиционным воздушным охлаждением. В первую очередь следует помнить о высокой теплопроводности воды в сравнении с воздухом, а это сказывается положительно на всей системе охлаждения. Следующий нюанс касается высокопроизводительных кулеров, которые создают много шума при прохождении больших масс воздуха. С водяным охлаждением уровень шума минимизируется во время работы всей системы. Современное водяное охлаждение для ПК характеризуется простотой установки при высочайшей производительности. При том, что такая система стоит довольно дорого, она становится выбором очень многих, то есть ее популярность неустанно растет.

Общая характеристика

Водяная система охлаждения для ПК представляет собой совокупность элементов, используемых для переноса воды в качестве теплоносителя. От традиционной воздушной она отличается тем, что все тепло сначала передается воде, а потом уже воздуху. При использовании такой системы все тепло, вырабатываемое процессором и остальными тепловыделяющими элементами, передается посредством специального теплообменника воде. Этот компонент называется ватерблоком. Вода, которая нагрелась таким образом, переносится в следующий теплообменник - радиатор, где ее тепло передается воздуху, покидая пределы компьютера. За движение воды в системе отвечает специальный насос, который обычно называют помпой.

Установка водяного охлаждения для ПК дает массу преимуществ за счет того, что выше, чем воздуха, благодаря чему обеспечивается более эффективный и быстрый отвод тепла от охлаждаемых элементов, а значит, и более низкие температуры. При всей совокупности равных условий данный тип всегда будет намного эффективнее в сравнении со всеми остальными.

Водяная система охлаждения (для ПК и пр.) показала себя довольно надежным и производительным решением за все время его использования. Даже при применении в различных системах, устройствах и механизмах, которые требовательны к надежности и мощности охладителей, к примеру, в двигателях внутреннего сгорания, радиолампах, мощных лазерах, станках на заводах, АЭС и прочих.

Компьютер и водяное охлаждение

Высокая эффективность такой системы позволяет не только добиться более мощного охлаждения, способного положительно сказаться на стабильности и разгоне системы, но и понизить уровень шума компьютера. Можно собрать такую систему, чтобы обеспечить разогнанному компьютеру работу при минимальном уровне создаваемого шума. Именно эта причина делает такие системы особо актуальными для пользователей мощнейших компьютеров, любителей сильного разгона, желающих сделать свой ПК тише, но не желающих идти на компромисс с мощностью.

Нередко геймеры устанавливают себе трех-четырех чиповые видеоподсистемы, при этом работа видеокарт осуществляется с высокой температурой и частыми перегревами, а также с сильным шумом используемых систем охлаждения. Может даже показаться, что для современных видеокарт проектируются такие охладители, которые не позволят использовать мультичиповые конфигурации. Именно поэтому в случаях установки видеокарт одна возле другой часто возникает целый ряд проблем, ведь им просто неоткуда черпать холодный воздух. На рынке имеются альтернативные системы воздушного охлаждения, предназначенные для мультичиповых конфигураций, однако и они не спасают положение. Именно водяное охлаждение ПК в данном случае способно радикально исправить ситуацию, то есть понизить температуру, улучшить стабильность и повысить надежность работы компьютера.

Компоненты водяного охлаждения

В данную систему входит определенный набор компонентов, которые условно делятся на обязательные и необязательные, то есть устанавливаемые по желанию.

Итак, обязательные комплектующие для водяного охлаждения ПК включают: ватерблок, помпу, радиатор, фитинги, шланги, воду. При том, что список необязательных элементов можно расширить, обычно в него включаются: термодатчики, резервуар, сливные краны, контроллеры вентилятора и помпы, измерители и индикаторы, второстепенные ватерблоки, бэкплейты, присадки к воде, фильтры. Для начала следует рассмотреть компоненты, без которых водяное охлаждение для ПК попросту не станет работать.

Ватерблоки

Ватерблок представляет собой специальный теплообменник, посредством которого тепло от греющегося элемента передается воде. Чаще всего его конструкция предполагает наличие медного основания, а также пластиковой или металлической крышки с набором креплений, предназначенных для закрепления ватерблока на охлаждаемом элементе. Для всех тепловыделяющих компонентов компьютера существуют ватерблоки, даже для тех, на которые они не особо требуются, то есть их производительность от этого сильно не возрастет. К основным и наиболее востребованным элементам можно отнести процессорные ватерблоки, ватерблоки для видеокарт и системных чипов. Приспособления для видеокарт бывают двух типов: закрывающие только сам графический чип, закрывающие все элементы видеокарты, которые при работе нагреваются.

При том, что изначально такие элементы делались из толстых листов меди, современные тенденции в данной области привели к тому, что основания ватерблоков теперь делают тонкими, чтобы от процессора к воде тепло передавалось намного быстрее. Помимо этого увеличение поверхности теплопередачи достигается за счет микроигольчатых и микроканальных структур.

Радиаторы

В системах водяного охлаждения радиатором называется водно-воздушный теплообменник, передающий воздуху тепло от воды, которое набирается в ватерблоке. Существует два подтипа радиаторов в таких системах: пассивные, то есть не оснащенные вентилятором, и активные, то есть их продувает вентилятор.

Итак, если вас интересует установка водяного охлаждение для ПК, то стоит отметить, что безвентиляторные радиаторы встречаются не так часто, так как их эффективность заметно ниже, что характерно для всех видов пассивных систем. Помимо низкой производительности, такие радиаторы характеризуются большими габаритами, из-за чего они редко помещаются даже в модифицированные корпуса.

Продуваемые радиаторы, то есть активные, являются более распространенными в компьютерных системах водяного охлаждения, так как их эффективность заметно выше. В случае применения бесшумных или тихих вентиляторов можно добиться бесшумной или тихой работы всей охлаждающей системы, то есть позаимствовать основное достоинство пассивного охлаждения.

Помпа

Помпа представляет собой электрический насос, задачей которого является обеспечение циркуляции воды в системе охлаждения компьютера, без него вся конструкция просто не будет работать. Помпы могут работать как от 220 вольт, так и от 12 вольт. Поначалу, когда в продаже почти не встречалось помп для таких установок, энтузиастами использовались аквариумные помпы, работающие от городской сети, что создавало некоторые трудности, так как их нужно было включать синхронно с компьютером. Для этих целей обычно использовались реле, включающие помпу автоматически при старте компьютера. Развитие систем водяного охлаждения дало возможности для появления новых приспособлений, которые при питании от компьютерных 12 вольт обладали высокой производительностью при компактных размерах.

Так как современные ватерблоки характеризуются очень высоким коэффициентом водного сопротивления, а это ведь плата за высокую производительность, с ними рекомендуется использовать мощные помпы. Это связано с тем, что с даже наиболее мощным, современная водная система охлаждения для ПК не полностью продемонстрирует свою производительность. Не стоит особо гнаться за мощностью, применяя в одном контуре несколько помп или насосы от отопительных систем, так как это не приведет к повышению производительности всей системы в целом. Этот параметр ограничивается эффективностью ватерблока и теплорассеивающей способность радиатора.

Шланги

ПК с водяным охлаждением просто немыслим без применения шлангов или трубок, так как именно они соединяют разные компоненты системы между собой. Чаще всего для компьютеров используются шланги из ПВХ, в крайнем случае, из силикона. Размер шланга не оказывает влияния на производительность, тут главное - не выбирать слишком тонкие, то есть диаметром менее 8 мм.

Фитинги

С помощью фитингов производится подключение шлангов к компонентам системы охлаждения. Их вкручивают в отверстие с резьбой на компоненте без применения так как в качестве уплотнения соединения используются резиновые кольца. Сейчас подавляющее большинство компонентов поставляется без фитингов. Сделано это для того, чтобы у пользователя была возможность самостоятельно подобрать подходящий для себя вариант, ведь они существуют разных типов и под разные размеры шлангов. Наиболее популярным типом являются а также фитинги-елочки. Они могут быть прямыми или угловыми, а устанавливаются в зависимости от того, как производится установка водяного охлаждения на ПК.

Вода

Если вы хотите сделать игровой ПК с водяным охлаждением, то должны понимать, что для этих целей требуется брать дистиллированную воду, то есть избавленную от каких-либо примесей. На западных сайтах иногда пишут о необходимости использования но она отличается от дистиллированной только способом подготовки. Иногда воду заменяют специальными смесями или добавляют в нее присадки. В любом случае не рекомендуется использовать воду из под крана или бутилированную.

Необязательные компоненты

Обычно и без них система водяного охлаждения ПК работает вполне стабильно и без проблем. Основной смысл использования необязательных компонентов состоит в том, чтобы сделать систему более удобной в эксплуатации, либо они служат в качестве декора.

Итак, если вас заинтересовала установка водяного охлаждения на ПК своими руками, то вы можете использовать помимо основных компонентов и дополнительные, первым из которых является резервуар, или Чаще всего вместо него для удобной заправки системы используется фитинг-тройник и заливная горловина. Преимущество варианта без резервуара состоит в том, что при установке системы в компактный корпус ее можно разместить гораздо удобнее. Установка водяного охлаждение на ноутбуке может потребовать наличия резервуара для обеспечения удобства заправки и более удобного удаления воздушных пузырей из системы. Не принципиально, каким объемом характеризуется резервуар, так как он не оказывает воздействия на производительность системы. Выбор размера и формы расширительного бачка зависит только от индивидуальных предпочтений и внешнего вида.

Представляет собой компонент, обеспечивающий удобство слива воды из системы охлаждения. Он в обычном состоянии перекрыт. Этот компонент способен сильно повысить удобство пользования в плане обслуживания.

Индикаторы, датчики и измерители выпускаются специально для тех, кто не может остановиться на минимуме компонентов, а любит различные излишества. В их числе представлены электронные датчики потока и давления воды, температуры воды, контроллеры, которые подстраивают работу вентиляторов под температуру, контроллеры помп, механические индикаторы и прочие.

Фильтр встречается в некоторых системах водяного охлаждения, где его подключают к контуру. Он занят тем, что отфильтровывает разнообразные механические частицы, которые оказались в системе - это пыль, которая могла присутствовать в шлангах, осадок, появившийся из-за использования антикоррозионной добавки или красителя, остатки пайки в радиаторе и прочее.

Внешняя или внутренняя СВО?

Если вам интересно, как установить водяное охлаждение на ноутбуке, то тут стоит сначала сказать о наличии двух видов систем. Внешние обычно выполняются в виде отдельного ящика, то есть модуля, который подключается к ватерблокам посредством шлангов. В корпусе внешней системы обычно находится радиатор с вентиляторами, резервуар, помпа, а иногда и блок питания для помпы с температурными датчиками. Понятно, что такой вариант оптимален для ноутбука, так как корпус лэптопа не позволит разместить это все в нем. Для компьютера такие системы удобны тем, что пользователю не потребуется дорабатывать корпус своего ПК, но неудобны, если вы решите переставить прибор в другое место.

Существует внутреннее водяное охлаждение для ПК. Установить самому такую систему довольно сложно, если сравнивать ее с внешней. Среди плюсов подобной системы отмечается удобство при необходимости переноски компьютера в другое место, так как для этого не потребуется сливать всю жидкость. Еще одно достоинство состоит в том, что внешний вид корпуса при этом никак не изменится, а при правильном моддинге такая система послужит еще и украшением.

Готовые системы или персональная сборка?

Можно сделать водяное охлаждение ПК своими руками, используя для этого отдельные компоненты, а можно воспользоваться уже готовыми решениями, которые сопровождают подробнейшие инструкции. Большинство энтузиастов убеждено, что решения «из коробки» характеризуются низкой производительностью, однако это совсем не так. Многими марками выпускаются комплекты с высокой производительностью, к примеру, Danger Dan, Alphacool, Koolance, Swiftech. В числе преимуществ готовых систем отмечается удобство, так как в одном наборе имеется все необходимое для установки. Помимо того производители часто нацелены на то, чтобы помочь пользователям в любых сложившихся обстоятельствах, поэтому в комплект входят разнообразные элементы и крепления. Однако неудобно, что у пользователя отсутствует возможность выбрать именно те компоненты, которые ему необходимы, системы продаются только в сборе.

Можно и самостоятельно сделать водяное охлаждение для ПК. Отзывы большинства опытных пользователей говорят о том, что в этом случае система будет более гибкой, так как вы сможете подобрать компоненты, подходящие именно вам. Кроме того, если составлять систему из отдельных компонентов, можно иногда сэкономить. Минусом такого подхода является сложность сборки, особенно для новичков.

Выводы

В качестве основных плюсов систем водяного охлаждения можно назвать возможность сборки мощного и тихого ПК, расширение возможностей в плане разгона, улучшение стабильности при разгоне, продолжительный срок эксплуатации и прекрасный внешний вид. Такое решение позволяет собрать мощный игровой компьютер, который будет работать без лишнего шума, что совершенно недостижимо для воздушных систем.

В числе минусов обычно отмечается сложность сборки, ненадежность и дороговизну. Однако такие недостатки можно назвать спорными и относительными. В плане сложности сборки можно отметить, что это не намного сложнее, чем собирать сам компьютер. К надежности правильно собранных систем тоже нет претензий, так как при условии правильной сборки и эксплуатации проблем не возникает.

Введение

Вам не кажется, что термин "жидкостное охлаждение" наводит на мысль об автомобилях? На самом деле, жидкостное охлаждение является неотъемлемой частью обычного двигателя внутреннего сгорания почти 100 лет. Сразу же напрашивается вопрос: почему именно оно является предпочтительным методом охлаждения дорогих автомобильных двигателей? Чем же так замечательно жидкостное охлаждение?

Чтобы это выяснить, мы должны сравнить его с воздушным охлаждением. При сравнении эффективности этих методов охлаждения нужно учесть два наиболее важных свойства: теплопроводность и удельную теплоёмкость.

Теплопроводность - это физическая величина, показывающая, насколько хорошо вещество переносит тепло. Теплопроводность воды почти в 25 раз больше, чем воздуха. Очевидно, что это даёт водяному охлаждению огромное преимущество над воздушным, так как оно позволяет гораздо быстрее переносить тепло от горячего двигателя к радиатору.

Удельная теплоёмкость - ещё одна физическая величина, которая определяется как количество теплоты, необходимое для повышения температуры одного килограмма вещества на один кельвин (градус Цельсия). Удельная теплоёмкость воды почти в четыре раза больше, чем воздуха. Это означает, что для нагревания воды требуется в четыре раза больше энергии, чем для нагревания воздуха. И снова способность воды поглощать гораздо больше тепловой энергии без повышения собственной температуры является огромным преимуществом.

Итак, имеем неоспоримые факты того, что жидкостное охлаждение является более эффективным, чем воздушное. Однако совсем не обязательно, что это - лучший метод для охлаждения компонентов ПК. Давайте разберёмся.

Жидкостное охлаждение ПК

Несмотря на очень хорошие качества воды, касающиеся отвода тепла, есть несколько убедительных причин, чтобы не помещать воду в компьютер. Самая главная из этих причин - электропроводность охлаждающей жидкости.

Если бы вы случайно пролили стакан воды на бензиновый двигатель во время заправки радиатора, то ничего страшного бы не произошло; вода не повредила бы двигатель. А вот если бы вы вылили стакан воды на материнскую плату своего компьютера, то было бы очень плохо. Поэтому существует определённый риск, связанный с применением воды для охлаждения компонентов компьютера.

Следующий фактор - это сложность технического обслуживания. Системы воздушного охлаждения проще и дешевле производить и ремонтировать по сравнению с водяными аналогами, и радиаторы не требуют никакого технического обслуживания, разве что необходимо удалять из них пыль. С системами водяного охлаждения работать гораздо сложнее. Их труднее устанавливать, они часто требуют обслуживания, хотя и незначительного.

В-третьих, элементы системы водяного охлаждения для ПК стоят гораздо больше, чем детали системы охлаждения воздухом. Если комплект качественных радиаторов и вентиляторов воздушного охлаждения для процессора, видеокарты и материнской платы будет стоить, скорее всего, в пределах $150, то стоимость системы жидкостного охлаждения для тех же самых комплектующих легко может доходить до $500.

Имея столько недостатков, системы водяного охлаждения, казалось бы, не должны пользоваться спросом. Но на самом деле они настолько хорошо отводят тепло, что это их свойство оправдывает все недостатки.

На рынке можно найти полностью готовые к установке системы жидкостного охлаждения, которые уже не являются набором запасных частей, с которым энтузиастам приходилось иметь дело в прошлом. Готовые системы собраны, проверены и вполне надёжны. К тому же, водяное охлаждение не так опасно, как кажется: разумеется, всегда существует большой риск при использовании жидкостей в ПК, но если соблюдать осторожность, то этот риск существенно снижается. Что касается технического обслуживания, то современные хладагенты требуют замены довольно редко, может, раз в год. Что касается цены, то любое оборудование, которое работает с высокой производительностью, всегда стоит дороже обычного, будь то "Феррари" в вашем гараже или система водяного охлаждения для вашего компьютера. За высокую производительность приходится платить.

Предположим, что вас привлекает этот метод охлаждения или, по крайней мере, вам хотелось бы узнать, как он работает, что с ним связано, и каковы его преимущества.

Общие принципы водяного охлаждения

Цель любой системы охлаждения в ПК - отвести тепло от компонентов компьютера.

Традиционный воздушный кулер для ЦП отводит тепло от процессора на радиатор. Вентилятор активно прогоняет воздух через рёбра радиатора, и когда воздух проходит мимо, он забирает тепло. Воздух из корпуса компьютера выводится другим вентилятором или даже несколькими. Как видите, воздух совершает много перемещений.

В системах водяного охлаждения вместо воздуха для отвода тепла используется охлаждающая жидкость (теплоноситель) - вода. Вода выходит из резервуара по трубке, поступая туда, куда нужно. Блок водяного охлаждения может либо представлять собой отдельный блок вне корпуса ПК, либо может быть встроен в корпус. На диаграмме водоохладительный блок является внешним.

Тепло передаётся от процессора к головке охлаждения (водоблоку), которая представляет собой полый радиатор-теплосъёмник с входным и выходным отверстиями для охлаждающей жидкости. Когда вода проходит сквозь головку, она забирает с собой тепло. Теплоотдача за счёт воды происходит гораздо эффективнее, чем за счёт воздуха.

Затем нагретая жидкость закачивается в резервуар. Из резервуара она протекает в теплообменник, где отдаёт тепло радиатору, а тот - окружающему воздуху, обычно с помощью вентилятора. После этого вода попадает снова в головку, и цикл начинается сначала.

Сейчас, когда мы имеем хорошее представление об основах жидкостного охлаждения ПК, поговорим о том, какие системы доступны на рынке.

Выбор системы водяного охлаждения

Есть три основных типа систем водяного охлаждения: внутренние, внешние и встроенные. Главное различие между ними заключается в том, где по отношению к корпусу компьютера расположены их основные компоненты: радиатор/теплообменник, насос и резервуар.

Как следует из названия, встроенная охлаждающая система является составной частью корпуса ПК, то есть вмонтирована в корпус и продаётся в комплекте с ним. Так как вся система водяного охлаждения смонтирована в корпусе, этот вариант, возможно, является самым простым в обращении, потому что и внутри корпуса остаётся больше места, и снаружи нет громоздких конструкций. Недостатком, разумеется, является то, что если вы решите перейти на такую систему, то старый корпус ПК окажется бесполезным.


Если вам нравится корпус вашего ПК, и вы не хотите с ним расставаться, то внутренние и внешние системы водяного охлаждения, вероятно, покажутся более привлекательными. Компоненты внутренней системы помещаются внутрь корпуса ПК. Так как большинство корпусов не рассчитаны на размещение такой системы охлаждения, внутри становится довольно тесно. Однако установка подобных систем позволит сохранить ваш любимый корпус, а также переносить его без особых препятствий.


Третий вариант - внешняя система водяного охлаждения. Она тоже для тех, кто желает оставить старый корпус своего ПК. В таком случае радиатор, резервуар и водяной насос помещаются в отдельный блок вне корпуса компьютера. Вода по трубкам закачивается в корпус ПК, к головке охлаждения, а по обратной трубке нагретая жидкость выкачивается из корпуса в резервуар. Преимущество внешней системы заключается в том, что она может использоваться с любым корпусом. Она также позволяет использовать радиатор большего размера и может обладать лучшей охлаждающей способностью, чем средняя встроенная установка. Недостаток заключается в том, что компьютер с внешней системой охлаждения становится не таким мобильным, как с внутренними или встроенными системами охлаждения.


В нашем случае мобильность не имеет большого значения, однако нам хотелось бы оставить наш "родной" корпус ПК. Кроме того, нас привлекла повышенная эффективность охлаждения внешнего радиатора. Поэтому для обзора мы выбрали внешнюю систему охлаждения. Компания Koolance любезно предоставила нам отличный образец - систему EXOS-2.


Внешняя система водяного охлаждения Koolance EXOS-2.

EXOS-2 представляет собой мощную внешнюю систему водяного охлаждения с охлаждающей способностью свыше 700 Вт. Это не означает, что система потребляет 700 Вт - она потребляет лишь малую часть этого. Это значит, что система может эффективно справляться с тепловыделением в 700 Вт, поддерживая температуру на уровне 55 градусов Цельсия при 25 градусах окружающей среды.

EXOS-2 поставляется со всеми необходимыми трубками и приспособлениями, кроме головок охлаждения (водоблоков). Пользователю придётся купить подходящие головки, в зависимости от того, какие компоненты ПК он хочет охлаждать.

Охлаждение нескольких компонентов

Одним из преимуществ большинства систем жидкостного охлаждения является то, что они расширяемы и могут охлаждать не только процессор, но и другие компоненты. Даже после прохождения через головку охлаждения процессора, вода всё ещё способна охладить, например, чипсет материнской платы и видеокарту. Это основное, но по желанию можно добавить ещё больше компонентов, например жёсткий диск. Для этого каждому компоненту, который будет охлаждаться, потребуется свой собственный водоблок. Конечно, придётся заняться и планированием, чтобы убедиться, что охлаждающая жидкость протекает хорошо.

Почему выгодно объединить все три компонента - центральный процессор, чипсет и видеокарту - с хорошей системой водяного охлаждения?

Большинство пользователей понимают необходимость охлаждения процессора. ЦП сильно нагревается в корпусе ПК, а устойчивая работа компьютера зависит от поддержания низкой температуры процессора. Центральный процессор является одной из самых дорогих составляющих компьютера, и чем ниже поддерживаемая температура, тем дольше прослужит процессор. Наконец, охлаждение процессора особенно актуально при разгоне.


Водоблок центрального процессора и аксессуары для сборки.

Идея охлаждения чипсета материнской платы (вернее, северного моста), возможно, не всем знакома. Но учтите, что компьютер устойчив настолько, насколько стабилен его чипсет. Во многих случаях дополнительное охлаждение чипсета может поспособствовать стабильности системы, особенно при разгоне.


Водоблок чипсета и аксессуары для сборки.

Третий компонент очень важен для тех, кто обладает higher-end видеокартой и использует ПК для игр. Во многих случаях графический процессор видеокарты выделяет тепла больше остальных компонентов компьютера. Опять же, чем лучше охлаждение графического процессора, тем дольше он прослужит, тем выше устойчивость и больше возможностей для разгона.

Разумеется, для тех пользователей, кто не намерен использовать свой компьютер для игр и имеет маломощную графическую карту, водяное охлаждение окажется излишеством. Но для современных мощных и сильно нагревающихся видеокарт, водяное охлаждение может стать выгодным приобретением.

Мы собираемся установить охлаждающую систему на нашу видеокарту Radeon X1900 XTX. Хотя эта видеокарта не самая новая и мощная, она всё ещё хоть куда, и к тому же очень сильно нагревается. В случае с данной моделью компания Koolance предлагает не только водоблок для графического процессора/памяти, но и отдельную головку охлаждения для стабилизатора напряжения.


Водоблок для графического процессора и аксессуары для сборки.

Если системы воздушного охлаждения могут поддерживать температуру графического процессора в допустимых пределах, то нам не известны подобные системы, способные урегулировать чрезвычайно высокую температуру регуляторов напряжения на X1900, которая при нагрузках легко может достигать 100 градусов Цельсия. Интересно, как водоблок для регулятора напряжения повлияет на видеокарту X1900.


Водоблок для регулятора напряжения видеокарты и аксессуары для сборки.

Это основные компоненты, которые охлаждаются с помощью воды. Как говорилось выше, есть и другие компоненты, которые можно охлаждать таким образом. Например, компания Koolance предлагает блок питания мощностью 1200 Вт с жидкостным охлаждением. Все электронные компоненты блока питания погружены в жидкость, не проводящую ток, которая прокачивается через собственный внешний радиатор. Это - особый пример альтернативного жидкостного охлаждения, однако такая система отлично справляется с работой.


Koolance: 1200-Вт блок питания с жидкостным охлаждением.

Сейчас можно приступить к установке.

Планирование и установка

В отличие от систем воздушного охлаждения, установка системы жидкостного охлаждения требует некоторого планирования. Жидкостное охлаждение предполагает несколько ограничений, которые пользователь должен принять во внимание.

Во-первых, во время установки следует всегда помнить об удобстве. Трубки с водой должны свободно проходить внутрь корпуса и между компонентами. Кроме того, охлаждающая система должна оставлять свободное место, чтобы в дальнейшем работа с ней и комплектующими не вызывала трудностей.

Во-вторых, течение жидкости не должно быть ничем ограничено. Следует также помнить, что охлаждающая жидкость нагревается при прохождении через каждый водоблок. Если бы мы спроектировали систему таким образом, чтобы вода поступала в каждый последующий водоблок в такой последовательности: сначала к процессору, затем к чипсету, к видеокарте и, наконец, к регулятору напряжения видеокарты, то в водоблок регулятора напряжения всегда поступала бы вода, нагретая всеми предыдущими компонентами системы. Такой сценарий нельзя назвать идеальным для последнего компонента.

Чтобы как-то смягчить эту проблему, неплохо бы пустить охлаждающую жидкость по отдельным, параллельным путям. Если это сделать правильно, то поток воды будет менее нагружен, и в водоблоки каждого компонента будет поступать вода, не нагретая другими компонентами.

Набор Koolance EXOS-2, который мы выбрали для данной статьи, предназначен в основном для работы с соединительными трубками сечением 3/8", и водоблок для центрального процессора спроектирован с прессуемыми соединителями на 3/8". Однако головки охлаждения чипсета и видеокарты Koolance спроектированы для работы с соединительными трубками меньшего диаметра - 1/4". Из-за этого пользователь вынужден использовать сплиттер, разделяющий 3/8" трубку на две 1/4" трубки. Эта схема хорошо работает, когда мы разбиваем поток на два параллельных пути. По одной из этих 1/4" трубок будет охлаждаться чипсет материнской платы, а по другой - видеокарта. После того, как вода заберёт тепло от этих компонентов, две 1/4" трубки соединятся вновь в одну 3/8", по которой нагретая вода потечёт из корпуса ПК обратно в радиатор для охлаждения.

Весь процесс представлен на следующей схеме.


Спланированная конфигурация охлаждающей системы.

При планировании расположения собственной системы водяного охлаждения рекомендуем вам начертить простую схему. Это поможет правильно установить систему. Начертив план на бумаге, можно приступать к реальной сборке и установке.

Для начала можно разложить на столе все детали системы и прикинуть необходимую длину трубок. Не обрезайте слишком коротко, оставьте запас; потом вы всегда сможете отрезать лишнее.

После подготовительных работ можно приступать к установке водоблоков. Головка охлаждения Koolance для процессора, который мы используем, требует установки металлической скобы крепления на задней стороне материнской платы за процессором. И что хорошо, эта скоба крепления поставляется вместе с пластмассовой прокладкой, чтобы предотвратить замыкание с материнской платой. Сначала мы достали материнскую плату из корпуса и установили скобу крепления.


Затем можно снять радиатор, который прикреплён к северному мосту материнской платы. Мы воспользовались материнской платой Biostar 965PT, у которой чипсет охлаждается с помощью пассивного радиатора, прикреплённого пластмассовыми фиксаторами.


Чипсет материнской платы без радиатора. Готов к установке водоблока.

После того, как радиатор чипсета снят, следует прикрепить элементы крепления водоблока для чипсета.

Во время установки мы заметили, что элементы крепления водоблока для чипсета, в частности, пластмассовая прокладка, давит на резистор на задней части материнской платы. За этим нужно внимательно следить при установке. Чрезмерно сильное затягивание болтов может нанести непоправимый ущерб материнской плате, поэтому будьте внимательны и осторожны!

После установки элементов крепления головок охлаждения процессора и чипсета можно вернуть материнскую плату в корпус ПК и подумать о подсоединении водоблоков к процессору и чипсету. Не забудьте удалить с процессора и чипсета остатки старой термопасты перед тем, как нанести новый тонкий слой.


Процессор с элементами крепления для водоблока.

Возможно, вам захочется подсоединить трубки для воды к водоблокам до того, как вы установите их на материнскую плату. Но будьте при этом осторожны: можно не рассчитать давление и силу, которые при сгибании трубок приложатся к хрупким чипсету и процессору. Главное - оставить достаточную длину трубок, ведь подрезать их по размерам можно позже.

Сейчас можно осторожно установить водоблоки на процессор и чипсет с помощью предоставленных элементов крепления. Помните, что не нужно прижимать их с силой: достаточно просто хорошо их установить на процессор и чипсет. Применяя силу, можно повредить комплектующие.


После установки водоблоков на процессор и чипсет, можно переключить внимание на видеокарту. Удаляем имеющийся на ней радиатор и заменяем его водоблоком. В нашем случае мы также сняли радиатор стабилизатора напряжения и установили на карту второй водоблок. После того, как водоблоки установлены на видеокарту, можно подсоединить трубки. После этого видеокарту можно вставить в слот PCI Express.


После установки всех водоблоков следует подсоединить оставшиеся трубки. Последней нужно подключать трубку, которая ведёт к внешнему блоку водяного охлаждения. Убедитесь в правильности направления движения воды: охлаждённая жидкость должна поступать сначала в водоблок процессора.


Настал момент, когда можно заливать воду в резервуар. Наполняйте резервуар только до уровня, указанного в инструкции производителя. По мере заполнения резервуара, вода будет медленно поступать в трубки. Особенно внимательно следите за всеми креплениями и имейте под рукой полотенце на случай непредвиденной утечки жидкости. При малейших признаках протекания, немедленно устраните проблему.


Когда все компоненты собраны вместе, можно заливать охлаждающую жидкость.

Если вы всё сделали аккуратно, и в системе не возникло протечек, то вам нужно прокачать охлаждающую жидкость, чтобы удалить пузырьки воздуха. В случае с Koolance EXOS-2 это достигается путём замыкания контактов на блоке питания ATX, чтобы подать питание водяному насосу, но не подавать питание на материнскую плату.

Пусть система поработает в таком режиме, а вы в это время медленно и осторожно наклоняйте компьютер в одну и другую стороны, чтобы пузырьки воздуха вышли из водоблоков. Когда все пузырьки выйдут, вы, скорее всего, обнаружите, что в систему требуется добавить охлаждающей жидкости. Это нормально. Примерно через 10 минут после заливки в трубках не должно быть видно никаких пузырьков воздуха. Если вы убедились, что пузырьков воздуха больше нет и вероятность протечки исключена, то можно запускать систему по-настоящему.


Тестовая конфигурация и тесты

Все заботы по сборке и установке позади. Настало время посмотреть, какие преимущества даёт система водяного охлаждения.

Аппаратное обеспечение
Процессор Intel Core 2 Duo e4300, 1,8 ГГц (разогнан до 2250 МГц), кэш 2 Мбайт L2
Платформа Biostar T-Force 965PT (Socket 775), чипсет Intel 965, BIOS vP96CA103BS
Оперативная память Patriot Signature Line, 1x 1024 Мбайт PC2-6400 (CL5-5-5-16)
Жёсткий диск Western Digital WD1200JB, 120 Гбайт, 7 200 об/мин, кэш 8 Мбайт, UltraATA/100
Сеть Встроенный адаптер Ethernet 1 Гбит/с
Видеокарта ATI X1900 XTX (PCIe), 512 Мбайт GDDR3
Блок питания Koolance 1200 Вт
Системное ПО и Драйверы
ОС Microsoft Windows XP Professional 5.10.2600, Service Pack 2
Версия DirectX 9.0c (4.09.0000.0904)
Графический драйвер ATI Catalyst 7.2

В нашей тестовой конфигурации мы использовали платформу Core 2 Duo, потому что процессор E4300 очень легко разогнать. Разгон позволил нам посмотреть, насколько высоко поднимется температура, и как с этим справятся стандартная система воздушного охлаждения и наша новая система водяного охлаждения.

Методика проста: максимально разогнать процессор E4300 со штатным воздушным охлаждением, а затем разогнать его с водяным охлаждением и сравнить результаты. Как оказалось, E4300 способен на большее. Мы увеличили частоту процессора с заявленных 1800 МГц до 2250 МГц. При этом процессор E4300 легко справлялся с добавленными 450 МГц без увеличения напряжения или каких-либо других проблем. Однако стандартный кулер не справился с работой, так как при нагрузке температура процессора поднялась до нежелательных 62 градусов Цельсия. Хотя ядро можно было бы разгонять и дальше, дальнейшее повышение температуры могло стать опасным, поэтому мы остановились, зафиксировали результат и установили систему водяного охлаждения.

Прежде чем рассмотреть температуру процессора при нагрузке, давайте взглянем на температуру при простое системы.

В режиме простоя водяное охлаждение даёт приличное снижение температуры процессора, примерно на 10 градусов. Однако это не такое уж большое достижение, если учесть, что собственный кулер процессора относится к классу low-end, а высококачественный воздушный кулер мог бы быть эффективнее. Тем не менее, стоит помнить, что водяное охлаждение не может снижать температуру так, чтобы она была ниже, чем температура окружающей среды, которая в нашем случае была около 22 градусов Цельсия.

При нагрузке системы - десятиминутный прогон стресс-теста Orthos - установка водяного охлаждения действительно показала, на что она способна.

Вот это уже на самом деле интересно. Штатный воздушный кулер не может даже поддерживать температуру процессора ниже нежелательно высоких для него 60 градусов, а система водяного охлаждения снизила температуру до 49 градусов при самой низкой скорости вентиляторов. Кроме снижения температуры, система водяного охлаждения работает гораздо тише, чем штатный кулер процессора.

При максимальной скорости вентиляторов в системе водяного охлаждения температура процессора опускается ниже 40 градусов! Это на 24 градуса ниже, чем со штатным кулером при нагрузке, и практически столько же, сколько собственный кулер выдаёт при простое. Результат производит впечатление, хотя при высокой скорости вентиляторов система водяного охлаждения производит больше шума, чем хотелось бы. Однако скорость вентиляторов регулируется по 10-бальной шкале, и вряд ли в повседневном использовании придётся устанавливать её на полную мощность. Orthos нагружает процессор сильнее, чем другие тесты, и нам было весьма интересно посмотреть, на что способна система водяного охлаждения.

В заключение обратите внимание на результаты, полученные для видеокарты. Обычно X1900 XTX нагревается очень сильно, но в нашем распоряжении был один из лучших воздушных кулеров - Thermalright HR-03. Посмотрим, какими преимуществами обладает водяное охлаждение по сравнению с этим кулером после 10 минут стресс-теста Atitool в режиме тестирования на артефакты.

Температура, поддерживаемая штатным кулером, ужасна: 89 градусов на графическом процессоре и свыше 100 градусов на стабилизаторе напряжения! Кулер Thermalright HR-03 потрясающе сработал, охладив графический процессор до 65 градусов, но температура стабилизаторов напряжения по-прежнему слишком высока - 97 градусов!

Система водяного охлаждения снизила температуру графического процессора до 59 градусов. Это на 30 градусов лучше, чем со штатным кулером, и всего на 6 градусов лучше, чем с HR-03, что ещё больше подчёркивает её эффективность.

Отдельный водоблок для стабилизатора напряжения демонстрирует отличный результат. HR-03 не имеет средств для охлаждения стабилизатора напряжения, а водоблок снизил температуру до 77 градусов, что на 25 градусов лучше, чем со штатным кулером. Это очень хороший результат.

Заключение

Результаты, полученные при тестировании с использованием системы водяного охлаждения, достаточно очевидны: жидкостное охлаждение намного эффективнее воздушного.

Водяное охлаждение доступно сейчас не только ограниченному кругу профессионалов, но и простым пользователям. К тому же, современные системы водяного охлаждения, такие, как EXOS-2, очень легко устанавливать, они работают по принципу "включай и работай", в отличие от старых систем, которые требовали сборки. Кроме того, современные наборы водяного охлаждения с подсвеченными и стилизованными корпусами выглядят очень симпатично.

Если вы энтузиаст и испробовали уже все системы воздушного охлаждения, то жидкостное охлаждение будет для вас следующим логическим шагом. Конечно, существует риск, и оборудование для водяного охлаждения будет стоить больше, чем для воздушного, но выгода очевидна.

Мнение редактора

Долгое время я избегал водяного охлаждения, так как опасался, что от него будет больше проблем, чем пользы. Но сейчас могу с уверенностью сказать, что моё мнение изменилось: системы водяного охлаждения гораздо легче устанавливать, чем я думал, а результаты охлаждения говорят сами за себя. Также хотелось бы выразить благодарность компании Koolance за предоставленный нам набор EXOS-2, работа с которым доставила удовольствие.

Системы водяного охлаждения для различных компонентов ПК в последнее время на слуху. Почему водяное охлаждение для компьютера выглядит настолько привлекательным? По какой причине оно лучше обычного воздушного? Обо всем этом вы узнаете в продолжении статьи.

Что бы у вас не стояло - "водянка" или простой кулер, физически, вы просто перемещаете тепло из одного места в другое. Помимо этого без кулера и радиатора, конечно, не обойтись. Они используются в обеих видах охлаждения. В принципе, любая система охлаждения компьютера работает по одним и тем же принципам, принципам термодинамики.

По сути, в основном водяное охлаждение для компьютера используется разве что для придания сборке эстетичности. Не поймите неправильно, водяное охлаждение способно справляться с огромным тепловыделением, сохраняя при этом низкие температуры.

Если вы смотрите в сторону цены/качества - то лучше всего взять хороший башенный кулер для процессора и видеокарту с двумя-тремя вентиляторами. Этого будет вполне достаточно, чтобы никогда не достигать температурного предела. Да и на сегодняшний день, при том же разгоне вы скорее упретесь в "железные" ограничения, нежели в температурный лимит.

Водяное охлаждение для компьютера практически не издает заметного шума. Кулеров может быть много, но уровень шума зависит как раз от скорости вращения оных. Например, если вы поставите 5 120 мм вертушек на частоте 1200 оборотов, и сравните с двумя такими же, но с 3000 оборотами, именно второй вариант будет шумнее.

Эстетика

Как сказано выше, водяное охлаждение применяется больше для вида, чтобы выделиться среди других. С помощью водяного охлаждения сделать это можно по-разному. Заметьте, никто не сказал что системы с воздушным охлаждением не могут выглядеть эстетично. Системы водяного охлаждения популярны среди моддеров. Благодаря им мы увидели в продаже такие штуки, как прозрачные боковые крышки, светодиодные ленты, кабеля в разноцветных оплетках.

У вас есть 4 варианта оснастить "водянкой" ваш компьютер. Как вариант, можно купить готовый кулер. Так вы не будете морочить себе голову с установкой и получите то же водяное охлаждение, еще и на гарантии.

Второй вариант - использовать мягкие трубки, цветные или прозрачные. Это наиболее удобный способ для сборки ввиду гибкости трубок и простоты в использовании.

Третий, и пожалуй наиболее популярный метод - пользоваться готовыми негнущимися акриловыми трубками. Прямые линии, сгибы трубок под углом придадут вашей сборке необычности.

Есть еще медные трубки. Практически полностью идентичны акриловым, разве что их проще согнуть. Ну и дешевизна тоже берет свое. Медь красиво сочетается с никелированными панелями. Что бы вы не выбрали, выйдет получаете очень тихая система, способная справляться с огромным тепловыделением.

Компоненты водяного охлаждения

Если вы думали что сборка своего ПК была сложной, у меня для вас плохие новости. Для сборки системы водяного охлаждения вам понадобятся: корпус, трубки, радиатор(ы), процессорный блок, блок для видеокарты, панель на плату видеокарты, резервуар(ы), помп(ы), компрессионные фитинги, угловые фитинги, запорные клапаны, охлаждающая жидкость и вентиляторы. С тех пор как вы решили сделать водяное охлаждение самому - будьте готовы раскошелиться. Красота требует жертв.

Процессорный блок

Пожалуй, самый важный компонент системы водяного охлаждения для компьютера. Убедитесь в том, чтобы блок был совместим с вашим процессором. Хотя, иногда этим можо пренебречь, т.к по размеру чипы от Intel и AMD практически не отличаются. Популярный вариант - Corsair H110.

Блок для видеокарты

Тут тоже нужно убедится о совместимости вашей карты с блоком охлаждения. Есть производители, например EKWB, которая выпускает блоки охлаждения, разработанные специально для карт серий Windforce от Gigabyte, Strix от ASUS, Lightning от MSI.

Блок для оперативки

Охлаждать ли оперативную память или нет - ваш выбор. Обычно дорогие планки идут уже с красивыми радиаторами, и лично я не вижу смысла в водяном охлаждении оперативной памяти. И никто вас не накажет, если все что вы собираетесь охлаждать подобным образом - лишь процессор и карта.

Фитинги

Система водяного охлаждения для компьютера требует закрепления трубок фитингами. Это наиболее важная часть системы. В зависимости от того, какую трубки вы выбираете, вам понадобятся либо компрессионные фитинги, либо акриловые фитинги. Если не хотите заморачиваться, можно просто взять стандартные.

Однако, если вы сторонник эстетики и прямолинейности, можно докупить те же угловые фитинги, как правило на 45 или 90 градусов. Кроме того, стопорный клапан может пригодиться для обслуживания.

Помпы и резервуары

Технически, вам не нужно покупать резервуар, чтобы успешно работать с водяным охлаждением. Тем не менее, они выглядят довольно впечатляюще, и так намного легче заполнять систему с водяным охлаждением по сравнению с другими методами.

Однако вам всегда понадобится насос, чтобы гарантировать, что жидкость в вашей системе переливается, отводит тепло от ваших основных компонентов и выходит к радиаторам.

Радиаторы и постоянное давление

Система водяного охлаждения для компьютера требует хорошей организации внешнего охлаждения помимо самих водяных трубок и насосов.

На этом этапе нам нужно узнать, как отводить накопившееся тепло. Единственный вариант - использование радиаторов. Можно сделать это как вам нравится, используя отдельные узлы для ваших видеокарт и процессоров или комбинируя их в одну систему.

Радиаторы же по прежнему необходимы, дабы избавиться от всего этого тепла, а так же соответствующие вентиляторы, чтобы это все выдувать. После того, как вы решите, сколько радиаторов позволяет разместить ваш корпус и сколько вы собираетесь использовать, вам нужно ближе познакомиться с понятием FPI и толщиной радиаторов, которые вы будете использовать.

FPI означает ребро на дюйм. По сути, чем выше FPI, тем выше постоянное давление, которое вам понадобится для эффективного перемещения холодного воздуха через этот радиатор.

Например, если у вас есть радиатор с 38 FPI , вам вероятно, понадобятся вентиляторы с оптимизацией давления. Однако, если у вас более глубокие радиаторы с меньшим FPI, равным 16, вы не увидите никакой сопоставимой разницы между вентиляторами постоянного давления или вентиляторами, использующими потоки воздуха. В этих случаях лучше оснащать радиаторы классическими кулерами.

Сборка и проектирование вашей системы

На этом этапе стоит уделить внимание выбору железа для вашей сборки. Для начала присмотрим лучший корпус. На рынке существует множество корпусов готовых для установки водяного охлаждения, начиная с маленьких MiniITX, заканчивая огромными E-ATX.

Как только вы нашли подходящий вам корпус, надо посмотреть, какие радиаторы возможно установить. Затем стоит продумать размещение трубок и сколько узлов охлаждения вы планируете поставить - 1 или 2. Как только вы все продумали, нужно узнать сколько нужно купить фиттингов и каким образом вы планируете запустить систему. Обычно на каждое охлаждаемое устройство нужно два фиттинга.

Для нас вопрос выбора корпуса был не сложен. Мы взяли Fractal Define S, специально разработанный для использования водяного охладения. Поставим два радиатора наверх и три спереди. Охлаждать будем две карточки от Nvidia и Intel Core i7-5820K.

В роли материнки будет ASUS X99 Sabertooth - на топовом чипсете Х99 и потрясающим дизайном. Плата покрыта черными и серыми защитными элементами. А чтобы добавить контраста - будем использовать белую жидкость.

Выбор нужного корпуса может оказаться непростой задачей, особенно для мода с водяным охлаждением. Как писалось выше, нужно смотреть в сторону готовых решений, предусматривающих возможность водяного охлаждения. Parvum, Phanteks, Corsair, Caselabs и Fractal как раз специализируются на выпуске корпусов для подобных модов, и позволяют превратить сборку ПК в искусство. Так же следует позаботиться о количестве радиаторов, о месте размещения резервуара, и как будут размещены трубки.

Фитинги и узлы

Начнем процесс сборки. Как и со сборкой обычного ПК, стоит собирать все сначала вне корпуса, чтобы увидеть как оно все работает, и уже только потом пихать все в корпус. Мы протестировали по отдельность каждую видеокарту, память и процессор со стоковым охлаждением, перед тем, как установить водяное охлаждение.

Далее идет сам процесс сборки, освобождение внутренностей корпуса от ненужных составляющих, например слотов для установки жестких дисков и т.д. Затем устанавливаем материнскую плату, оперативную память и видеокарты. Все плотно прикручиваем, чтобы ничего не выпало и не повредилось. Затем прикрутили радиаторы. Настало время установки резервуара и фитингов.

Укладка кабелей

В сборках подобного рода, укладка проводов должна быть безупречной. Не думаю что вам понравятся потрепанные провода, вылазящие изо всех щелей. Они не только будут мешать прокладке трубок, но и нормальной циркуляции воздуха. Блоки питания от Be Quiet!, Cooler Master, Corsair, EVGA и Seasonic укомплектованы уже отдельными кабелями с оплеткой. Как вариант, можно приобрести ее отдельно и "одеть" провода. Да, это сложно и займет много времени, но результат того стоит.

Ко всему прочему был приобретен отдельный контроллер кулеров от Phanteks. Благодаря ему, управлять пятью кулерами намного проще, к тому же скорость вращения будет зависеть от температуры процессора (которая в этой сборке будет достаточно низкая).

Сборка и наполнение СО

Пришло время начинать сборку системы охлаждения. Выровняйте отрезок трубки между двумя точками, которые вы хотите соединить, затем отрежьте немного больше чем вам кажется.

Лучше иметь немного про запас, так как трубку всегда можно обрезать. Затем открутите один из фитингов, насадите, покручивая, трубу на фитинг и наденьте другой конец обжимного фитинга на незакрепленный конец. Затем завинтите его, сжав трубопровод. Если вы изо всех сил пытаетесь вставить трубку, используйте пару плоскогубцев с иглами. Осторожно вставьте их в конец трубки и аккуратно растяните трубу, чтобы было легче работать.

Теперь вам предстоит снять муфту с другого фитинга, предварительно прикрепить его к новой трубке и сделать то же самое с другим концом.

Не столь важно, куда идет трубка, когда все работает в одном узле. Как только система загерметизирована и находится под давлением, температура воды будет одинакова, вне зависимости от того, к какому компоненту какая трубка идет. Все благодаря физике.

Подойдем к самому страшному этапу сборки - наполнению нашей системы. Сперва убедитесь что жидкость попадает из резервуара в помпы под силой тяжести. Затем прикрепите последний фитинг сверху резервуара. Используйте воронку, чтобы аккуратно налить наш хладагент в систему. В нашем случае мы просто взяли пустую вымытую бутылочку из-под соуса.

Прежде чем приступать, стоит убедиться что на материнскую плату не подается питание. Не лишним будет отключить питание и от процессора, видеокарт, и дисков. Сам блок тоже нужно обесточить.

Для удобства можно соединить две точки питания самом блоке питания канцелярской скрепкой, либо использовать специальный мостик. Тогда при заполнении резервуаров все сводится к банальному размыканию цепи питания. Помните, что этого не стоит делать, пока в резервуаре и насосе есть внутри жидкость.

Подведем итоги

Готовая сборка прекрасно выглядит. Как уже подметили, белая жидкость и черные блоки охлаждения отлично контрастируют с цветовой гаммой материнки. i7-5820k был разогнан до 4.4 ГГц, и температура оного вышла стандартная для подобного рода сборок - около 55 градусов Цельсия в нагрузке.

Видеокарты в режиме нагрузки выдавали около 60 градусов, а скорость кулеров для всей системы была выставлена на уровне 20%. Что касается производительности - выжать из видеокарт и процессора большее нам не удалось. В любом случае все работало на пределе их технологических возможностей. Все работало крайне тихо, даже под нагрузкой.

Тест на протекание прошел успешно. Несмотря на относительно небольшое время теста (около 45 минут), протечек не было никаких. Фитинги от EK действительно обеспечивают хороший уровень герметичности.

Главное - не повредить трубки во время сборки. В целом, перед тем, как запитать все комплектующие, стоит проводить тест как минимум в течении суток.

Если вы собираете компьютер, пользуясь критерием "цена/качество", не имеет смысла делать кастомное водяное охлаждение. Даже если брать не самые дорогие компоненты, это обойдется в сумму около 600 долларов США. система водяного охлаждения для компьютера предназначена для тех, кто хочет построить красивую и тихую рабочую станцию, способную выполнять любую задачу, которую только можно придумать.

Вывод

В этой статье было написано, какие компоненты понадобятся для сборки кастомной системы водяного охлаждения, а так же как собрать компьютер с водяным охлаждением. Думаю много кого не устраивает шум компьютера, особенно в ресурсоемких приложениях, например играх. Поэтому при наличии лишней пары сотен долларов можно взять готовый блок для процессора, и видеокарту с уже установленной водяной СО. Во всяком случае, даже если вы и не собираетесь приобретать "водянку", вы узнали как работает водяное охлаждение компьютера.

Каждый год производители «железа» для компьютеров представляют новые модели своих изделий, которые становятся все мощнее, что значит – горячее. Обычное воздушное охлаждение не справляется с тепловыделением. Перегрев устройства может привести к поломке. Лучше в таких случаях подходит водяная система охлаждения для ПК.

Что такое система водяного охлаждения для компьютера

Современные процессоры, видеокарты обладают такой производительностью под нагрузкой, с которой обычные вентиляторы с радиатором не справляются. Стандартная комплектация имеет только воздушную систему, но поможет она лишь в состоянии простоя. Для по-настоящему мощных чипов нужна водная система охлаждения компьютера. Представляет она собой совокупность элементов, которые переносят тепло от устройства через воду к охлаждающему элементу. Водяное охлаждение для ПК состоит из:

  • водоблока (ватерблок);
  • шлангов и фитингов;
  • радиатора с кулером;
  • резервуара с помпой (присутствует не во всех сборках).

Преимущества и принципы работы

Вода нагревается на месте подсоединения блока к элементу, и по шлангам переносится к радиатору, где кулеры охлаждают ее и вновь направляют к чипу. По статистике такие жидкостные системы понижают температуру процессора на 20-30% (а иногда и на 50%) эффективнее, чем воздушные. Существует два типа СВО:

  • внутренняя – все элементы находятся внутри корпуса ПК;
  • внешняя – охлаждающая часть расположена вне системного блока.

Такой моддинг доступен только обладателям стационарных компьютеров, потому что на ноутбук такие системы установить нет физической возможности, но последние поколения игровых моделей уже включают СВО. Главное преимущество жидкого охлаждения в том, что вода обладает гораздо большей теплопроводностью, чем воздух. Хорошие башенные кулера создают шум, занимают много места и могут быть установлены не на все форматы материнских плат (особенно касается mini-ATX).

Стоимость водяного варианта выше, чем аналогичного воздушного типа, но внутри корпуса оно занимает гораздо меньше места. Популярность таких систем неуклонно растет вместе с развитием технологий. Установить его можно не только на процессор, но и на видеократу, чипсет материнской платы. К примеру, видеокарта GTX 980 Ti выпускается уже вместе с СВО в комплекте.

Как правильно выбрать водоблок для процессора

При подборе СВО для ПК обратите внимание на размер вентиляторов для радиатора, их количество, возможность их установки внутри корпуса и материал водоблока. Waterblock – специальный темплообменник, который принимает на себя тепло от элемента и передает его воде. Чем лучше он это осуществляет, тем эффективнее происходит охлаждение, поэтому плохо для таких целей подходит алюминиевый ватерблок. Лучшим выбором станет медный вариант – он будет лучше забирать и отдавать тепло.

Серьезно стоит задуматься над выбором водоблока, если вы покупаете не готовый комплект СВО, а отдельные элементы, из которых будете собирать свою собственную систему. Актуален такой вариант, если вы хотите замкнуть в одну цепь сразу охлаждение для процессора и видеокарты. Если же покупать готовый комплект, то все они сейчас продаются с медным ватерблоком.

Лучшие системы водяного охлаждения – обзор

Вам вряд ли удастся найти готовый корпус для ПК с водяным охлаждением, поэтому устанавливать его придется самостоятельно. Ниже представлены самые популярные системы охлаждения с их основными параметрами. К самым главным можно отнести: уровень шума, материал водоблока, поддерживаемые форматы сокетов процессоров, скорость вращения роторов. Как правило, варианты СВО из магазинов поддерживают все современные разъемы от компании AMD (AM3+, AM3, AM2, FM2, Fm2+) и Intel (LGA1356/1366, LGA2011/2011-3, LGA775, LGA1150/1151/1155/1156)

Название

Материал ватерблока

Количество вентиляторов

Материал радиатора

Макс. скорость вращения, об./мин.

Уровень шума, дБ

DeepCool Captain 240

алюминий

Arctic Cooling Liquid Freezer 240

4 (по 2 с обеих сторон радиатора)

Cooler Master Nepton 140XL

DeepCool Maelstrom 240T

Corsair H100i GTX

Cooler Master Seidon 120V VER.2