Индукционные светильники или светодиодные? Промышленный объект. Индукционные лампы и их принцип работы Индукционное освещение

Что такое индукционное освещение?

Индукционное освещение - это система новых технологий, которая сохраняет больше энергии и служит намного дольше, чем H.I.D. и энергосберегающие лампы. Это основывается на уникальном физическом принципе генерации света. Индукционные лампы - прорыв для профессионального и специального освещения. В индукционных лампах нет электродов благодаря чему достигается беспрецедентный срок службы в 100.000 часов. Все это сочетается с отличным качеством освещения и энергоэффективностью.

Принцип работы

Индукционная лампа состоит из трёх основных частей: газоразрядной трубки, внутренняя поверхность которой покрыта люминофором, магнитного кольца или стержня (феррита) с индукционной катушкой, электронного балласта (генератора высокочастотного тока). Возможны два типа конструкции индукционных ламп по виду индукции:

  • Внешняя индукция: магнитное кольцо расположено вокруг трубки.
  • Внутренняя индукция: магнитный стержень расположен внутри колбы.

Два типа конструкции индукционных ламп по способу размещения электронного балласта:

  • Индукционная лампа с отдельным балластом (электронный балласт и лампа разнесены как отдельные элементы).
  • Индукционная лампа с встроенным балластом (электронный балласт и лампа находятся в одном корпусе).

Электронный балласт вырабатывает высокочастотный ток, протекающий по индукционной катушке на магнитном кольце или стержне. Электромагнит и индукционная катушка создают газовый разряд в высокочастотном электромагнитном поле, и под воздействием ультрафиолетового излучения разряда происходит свечение люминофора. Конструктивно и по принципу работы лампа напоминает трансформатор, где имеется первичная обмотка с высокочастотным током и вторичная обмотка, которая представляет собой газовый разряд, происходящий в стеклянной трубке.

Характеристики

  • Длительный срок службы: 60 000 - 150 000 часов

(благодаря безэлектродному исполнению срок службы значительно выше, чем у традиционных источников света)

  • Номинальная светоотдача лмВт
  • Фотопическая эффективность (воспринимаемая глазом): 120 - 180 Флм/Вт (Данный параметр часто используется специалистами для качественной оценки источника света и способности восприятия света и оттенков цветов человеческим глазом. Например, натриевая лампа высокого давления имеет номинальную светоотдачу 70-150 лм/Вт, но реально воспринимается как источник света со светоотдачей 40-70 Флм/Вт)
  • Высокий уровень светового потока после длительного использования

(после 60 000 часов уровень светового потока составляет свыше 70% от первоначального);

  • Энергоэффективность: имеет большую эффективность по сравнению с лампами накаливания, электродными газоразрядными, электродными люминисцентными, светодиодами (кроме светодиодов ведущих производителей)
  • Отсутствуют термокатоды и нити накала
  • Мгновенное включение/выключение

(отсутствует время ожидания между переключениями, что является хорошим преимуществом перед ртутной лампой ДРЛ и натриевой лампой ДНаТ, для которых требуется время выхода на режим и время остывания 5-15 минут после внезапного отключения электросети)

  • Неограниченное количество циклов включения/выключения
  • Индекс цветопередачи (CRI): Ra>80

(комфортное освещение, мягкий и естественный излучаемый свет, что благоприятно сказывается на восприятии оттенков цветов, в отличие от натриевых ламп (Ra>30), которым присущ желто-оранжевый оттенок света и неестественная цветопередача);

  • Номинальные напряжения: 120/220/277/347В AC, 12/24В DC
  • Номинальные мощности: 12 - 500 Вт
  • Диапазон цветовых температур: 2700К - 6500К
  • Отсутствие мерцаний: рабочая частота от 190кГц до 250кГц или единицы мегагерц в зависимости от моделей
  • Низкая температура нагрева лампы: +60 °C - +85 °C
  • Широкий диапазон рабочих температур: −40 °C ~ +50 °C
  • Возможность диммирования (изменения интенсивности света): от 30% до 100%
  • Высокий коэффициент мощности электронного балласта (λ>0,95)
  • Низкие гармонические искажения (THD<5%)
  • Экологичность продукта: специальная амальгама; содержание твердотельной ртути <0,5мг, что значительно меньше, чем в обычной люминесцентной лампе

(5 votes, average: 5,00 out of 5)

На рынке энергосбережения компания НаноСвет существует уже более семи лет и активно производит, поставляет и внедряет индукционные светильники. Однако первые свои решения внедрения экономичных источников света начиналась с поставок светодиодных светильников, собранных из корпусов светильников типа РКУ и установленных в них светодиодных блоков. Как показал практический опыт, в вышеуказанные типы корпусов возможна инсталляция светодиодов или кластеров лишь небольших мощностей, так как не обеспечивался требуемый теплоотвод. Попытки создать качественную модель светильника по данному принципу и аналогичную по световым характеристикам светильнику с лампой ДРЛ-250 были неудачными, так как светодиоды перегревались и быстро деградировали. Данный путь создания недорогих светодиодных светильников был пройден многими компаниями, схожие решения светодиодных светильников небольшой мощности можно встретить на рынке и сейчас.

Аналогичная ситуация была с первыми вариантами промышленных светодиодных светильников. Стояла задача по освещению промышленных предприятий, складов, ангаров и т.д. В основу корпуса выбирались традиционные варианты светильников типа РСП, ЖСП и т.д., в которые монтировались светодиодные модули. Но важно отметить, что если первые светодиодные уличные светильники в корпусах типа РКУ эксплуатировались в более щадящем температурном режиме, то промышленные, зачастую установленные под крышей цеха, подвергались серьезным температурным нагрузкам. Срок службы таких изделий был коротким. В кратчайшее время светильники синели или зеленели. Либо блоки питания быстро выходили из строя. Со временем многие производители промышленных светильников стали учитывать все конструктивные особенности и температурные режимы светодиодных источников света.

Краткая история создания индукционных и светодиодных источников света

23 июня 1891 года, Николай Тесла получил патент США № 454622 на создание прототипа современной индукционной лампы и вошел в историю электротехники как изобретатель более эффективного и экономичного источника света, чем лапа накаливания.

Прототип первой индукционной лампы, запущенной в массовое производство был представлен компанией PHILIPS в 1976 году. Можно считать, что примерно в те же годы появились полноценные индукционные светильники. Принцип действия ламп серии MasterQL до сегодняшнего дня особо не поменялся. Некоторые производители индукционных ламп до сих пор копируют их, но, естественно, под своим брендом.

Как ни странно, но история светодиодных источников света начинается практически с тех же времен. Первое известное сообщение об излучении света твердотельным диодом было сделано в 1907 г. британским экспериментатором Генри Раундом из лаборатории Маркони.

В 1923 г. наш соотечественник Олег Владимирович Лосев, проводя радиотехнические исследования, заметил голубоватое свечение, испускаемое некоторыми полупроводниковыми детекторами. Однако интенсивность излучения была столь ничтожной, что научная общественность фактически «не увидела» его, по крайне мере, в переносном смысле, так как в электронике тех дней происходили более значимые вещи.

Первые светодиоды промышленного назначения были созданы Ником Холоньяком в лабораториях Университета штата Иллинойс (США) и именно Ник Холоньяк считается «отцом» современных светодиодов.

В шестидесятые годы двадцатого столетия были созданы первые образцы светодиодных ламп. Они были очень дороги и использовались только как индикаторы-сигнализаторы. Световая отдача их была 1-2 лм/Вт. Их практическое применение было очень ограничено.

В 1968 году создана первая светодиодная лампа, предназначенная для индикатора Monsanto, в этом же году в США компания Hewlett-Packard выпустила в свет самый первый в мире светодиодный экран, предназначенный для рекламы. Это был слабосветящийся дисплей, информация на котором отображалась только красным цветом.

Начиная с 1985 г. удалось увеличить поток света до 10 лм. и появилась возможность их применения в качестве самостоятельных световых элементов (к примеру – лампочки в автомобилях).

В начале 90-х гг. малоизвестная японская фирма «Hure» выбросила на рынок светодиоды в десятки раз более яркие, чем все их предшественники, светоотдача перешагнула рубеж в 30 лм/Вт. С этого времени светодиоды становятся адекватной альтернативой лампам накаливания.

В этом же году крупнейшие западные компании инвестировали свыше 70 миллионов долларов в исследовательскую деятельность, связанную с возможностью применения и производства светодиодов.

К концу 2006 г. светодиоды заняли прочные позиции на современном рынке, и сфера их применения значительно расширилась.

Промышленные энергосберегающие светильники, как категория наиболее энергоемких источников света

В данной статье мы постараемся рассмотреть вопросы, связанные с внедрением промышленных энергосберегающих светильников, так как по нашему мнению именно этот вид источников света является одним из самых наиболее энергоемких. Первые опыты по созданию недорогих светодиодных светильников начинались с создания светодиодных светильников собранных из корпусов светильников типа РКУ ЖКУ и установленных в них светодиодных блоков. Как показал практический опыт, в вышеуказанные типы корпусов возможна инсталляция небольших мощностей светодиодов или кластеров на их основе, так как в вышеприведенный вариант выбора корпуса не обеспечивается требуемый теплоотвод для светодиодных плат. Данный путь создания недорогих светодиодных светильников был пройден многим компаниями, схожие решения светодиодных светильников небольшой мощности можно встретить и сейчас. Попытки создать модель аналогичную по световым характеристикам светильнику с лампой ДРЛ 250 на основе штампованных корпусов из стали в основном были обречены на неудачу. В таких решениях светодиоды через незначительный промежуток времени перегреваются и начинают менять цвет, а это значит что период эксплуатации таких «поделок» существенно ниже заявляемых 50000 часов.

Наработав большую клиентскую базу, а так же проанализировав огромное количество обращений в нашу компанию по вопросам энергосбережения, стало ясно, что наиболее остро в экономии нуждаются промышленные предприятия. Это и понятно, как правило, высота установки промышленных светильников превышает 5-6 метров, а иногда достигает и 12-15 метров. Режим работы систем освещения на многих предприятиях составляет 12 или 24 часа. В этих условиях вопрос энергосбережения стоит особенно остро. Каким источником света заменить лампы ДРЛ, ДНаТ или МГЛ?

Ниже приведена сравнительная таблица некоторых видов ламп

Тип лампы Средний срок службы (часов горения) КПД устройства Эффективность (Лм/Вт) Уменьшение светового потока к концу срока службы лампы Температура эксплуатации Гарантийный срок Обслуживание в процессе эксплуатации 5 лет
Индукционная 100000 0.98 80-110 10-15% -42…+50 5-10 лет Технологическая чистка
Накаливания 1000 0.1 41794 40-60% -50…+70 Нет Замена ламп
Ртутная высокого давления 4000 0.85 20-24 40-60% -40…+40 Нет Замена ламп и ПРА
Люминесцентная 8000 0.85 26-29 40-50% +10…+40 Нет Замена ламп и ПРА
КЛЛ 8000 0,5-0,85 18-22 15-30% -20…+40 3 мес Замена ламп
Натриевая высокого давления 2000 0.85 42-50 40-60% -20…+40 Нет Замена ламп и ПРА
Металлогалогенная 8000 0,65-0,8 24-36 15-20% -20…+40 Особые условия Замена ламп и ПРА
Светодиодная 50000 0.93 95-123 20-30% -45…+60 3-5 года Технологическая чистка

Очевидно, что за последние пару лет рынок промышленного энергосберегающего освещения существенно вырос, причем он развивается как интенсивным, так и экстенсивным способом. С ростом количества предложений, появились модели светильников созданные явно дилетантами, далекими от понимания физических процессов в полупроводниковых источниках света. Но надо отдать должное, что некоторые производители добились явного успеха в разработке конструктивов и источников питания LEDсветильников, а так же созданием моделей с заданными параметрами световых потоков. Если проанализировать рынок светодиодных светильников, представленный разными производителями, то ассортиментный перечень наиболее широко представлен мощностями от 6-15 Вт до 40-60 Вт (световой поток светильников до 5-6 тысяч люменов). Это источники света для ЖКХ, множественные модификации светильников в потолки типа «армстронг», уличное освещение с небольших высот и т.д. После этого «мощностного» рубежа, количество моделей существенно снижается.

Это обусловлено тем, что для производства светодиодных светильников мощностью от 120-150 Вт и выше требуются специальные расчеты, обеспечивающие создание необходимой геометрии корпуса светильника для оптимального функционирования светодиодов. Можно с уверенностью сделать вывод, что конструкция мощного светодиодного светильника, выполненного с учетом всех требований по теплоотводу, оптимальными характеристикам драйвера является сложным техническим изделием. Именно к этой категории и относятся источники света для освещения цехов, складов терминалов и т.д

Промышленные энергосберегающие светильники на основе индукционных ламп существенно отличаются строением и требованиям к теплоотводу. Так, температура нагрева лампы не превышает 80-85 градусов по Цельсию и данный параметр лишь косвенно влияет на физические процессы получения света. Еще важно отметить один принципиальный момент, отличающий промышленные светодиодные светильники от индукционных. В случае выхода из строя первого, для его ремонта необходимо провести демонтаж оборудования и передать в торгующую организацию или на завод производитель. Как правило, в данном случае ремонт не сможет быть произведен по месту установки. Этой проблемы нет с индукционными источниками света. Достаточно просто приобрести или саму лампу или ПРА (балласт) к ней. Замену вышедшего из строя источника света может осуществить любой электрик предприятия без специальной подготовки. К тому же, гарантия на большинство светодиодных светильников не превышает три года против пяти лет на индукционные лампы или светильник на их основе.

Важным фактором в пользу создания энергосберегающих систем освещения на основе индукционных ламп является возможность использовать уже установленные корпуса светильников подвесного типа. При помощи специальных переходников под цоколь Е40 или Е27 возможна установка ламп в традиционные корпуса РСП (ЖСП). Данная функция позволяет существенно снизить затраты заказчика при переводе существующей системы освещения на энергосберегающую индукционную. Так в мае 2012 года, нашей компанией был реализован комплекс работ по переоснащению системы освещения ремонтных зон и выставочных залов у одного официальных дилеров NISSANв России – NATCGROUP. В установленные корпуса из алюминия и поликарбоната было установлено более 100 индукционных ламп мощностью 200 Вт. Замена ламп ДНаТ и МГЛ позволила сделать цвета выставленных в зале автомобилей машин более насыщенными и яркими, а так же обеспечить более комфортный свет для сотрудников ремонтных цехов.

В настоящее время ведется работа по переоснащению ряда промышленных цехов на предприятиях Московской, Курской и Белгородской областях.

Сравнительная стоимость индукционных промышленных светильников и светодиодных

Если проанализировать зависимость цены светодиодного светильника от его мощности или светового потока, то видно, что после рубежа в 50-60 Вт цена светильника возрастает в геометрической прогрессии при увеличении потребляемой мощности на каждые 20-30 Вт. Так, согласно статистики, цена заявляемого промышленного светодиодного светильника со световым потоком 8000-11000 лм, являющегося аналогом светильника РСП с лампой ДРЛ-250 находится в ценовом коридоре от 13 до 27 тысяч рублей. Возможно, некоторые компании могут предложить и более низкую цену, но качество таких изделий вызывает явные сомнения, поэтому в расчет мы будем брать продукцию, производители которой дают гарантию не менее 3 лет.

В открытых источниках информации взята информация по стоимости светодиодных промышленных светильников серии УСС одного из крупных российских производителей. Данные актуальны на начало июня 2012 года.

Проведем сравнение:

№п/п Модель светильника/аналог Потребляемая мощность Световой поток,лм Цена, руб с НДС Гарантия, лет
1 УСС 36/100 38 вт 3600 11700-00 3
2 HB-01 40W 40 вт 3200 6880-00 5
3 УСС 70/100 75 вт 7200 18500-00 3
4 HB-01 100W 100 вт 8000 8223-00 5
5 УСС150/100 150 вт 14400 35000-00 3
6 HB-01 150W 150 вт 12000 9940-00 5

Как видно из сравнения стоимостных характеристик, стоимость единицы светового потока (отношение Люмен/рубль) более привлекательное у индукционных светильников, чем у светодиодных. Причем, чем выше мощность осветительного оборудования, тем разница в ценах будет более существенной.

Сравнение параметров светодиодных и индукционных источников света

1. Срок службы индукционных ламп составляет от 60000-150000 часов, против 30000-50000 часов у светодиодных светильников;

2. Светоотдача индукционных ламп несколько ниже, чем у светодиодных – 80-110 лм/Вт, для сравнения у светодиодных светильников 90-120;

3. Приблизительно равный КПД 0.9 (0.9-0.95 у светодиодов);

4. Уменьшение светового потока к концу срока службы на 10-15% через 30000 часов. У светодиодов, за этот период деградация составит не менее 30%);

5. Большой гарантийный срок – 5 лет, у большей части светодиодных светильников – 2-3 года;

6. Высокая фотооптическая эффективность 120-200Флм/Вт. У светодиодов 40-90 Фл/Вт;

7. Цена ниже в 3-5 раз по сравнению со светодиодным светильником той же мощности;

8. Высокий индекс цветопередачи Rа>80-83, т.е. комфортный, мягкий свет, приятный для глаз. В настоящее время большинство светодиодов выпускается с индексом цветопередачи 70-75 Ra. В отличие от светодиодного света, у индукционного отсутствует блесткость;

9. Низкая температура нагрева лампы, всего 60-80 градусов по Цельсию и широкий диапазон рабочих температур от -40 до +60;

10. Высокий коэффициент мощности до 0.95;

Индукционное освещение: выводы

Стараясь объективно рассмотреть два источника света для решения задач освещения промышленных предприятий, по многим параметрам индукционные лампы опережают светодиодные. Важнейшим фактором в пользу индукционного света является период окупаемости энергосберегающих проектов на их основе. По нашим просчетам для действующего предприятия он не превышает 2-2,5 года, а для строящегося вновь – не более года. Период окупаемости проектов на индукционных светильниках существенно ниже гарантийного срока службы индукционных ламп и светильников на их основе. Это значит, что еще 2-3 года, до окончания гарантии на индукционные лампы после возврата инвестированных средств в энергосберегающую систему освещения, предприятие будет получать прибыль за счет сэкономленных финансовых ресурсов на освещение.

Безусловно, у светодиодных светильников есть своя ниша рынка, но как показывает практика и расчеты, из-за высокой стоимости оборудования, проекты энергосберегающего освещения на их основе пока не получили широкого внедрения. По нашему мнению, у индукционных ламп и светильников на их основе более реальные перспективы в ближайшие годы.

В последнее время все чаще уделяется вопрос управляемым системам освещения. На основе светодиодом уже получены успешные решения уличного и промышленного освещения. Технические специалисты нашей компании ведут работы по созданию энергосберегающих систем освещения на основе индукционных ламп. В третьем квартале 2012 года мы планируем получить первые серийные образцы данных решений. Об успехах в данном направлении мы сообщим в следующих номерах журнала.

Не только светодиодные лампы могут похвастаться сегодня высокими техническими характеристиками. Еще один вариант экономичного источника света - индукционная лампа . Индукционные лампы относятся к люминесцентным лампам, но отличаются более совершенной конструкцией в силу отсутствия внутри колбы электродов.

Для создания необходимой электрической напряженности (переменного электрического поля с частотой от 190кГц до 250кГц), заставляющей газ внутри колбы излучать электромагнитные волны, служит явление электромагнитной индукции. Поэтому лампа и называется индукционной лампой.

Такие лампы выпускаются на низкое постоянное (12 В или 24 В) и на сетевое переменное (120 В, 220 В, 277 В, 347 В) напряжение, при номинальной мощности от 12 до 500 Вт, и при цветовой температуре из диапазона от 2700 К до 6500 К, характерного для обычных люминесцентных ламп.

В процессе работы индукционной лампы проявляются одновременно несколько явлений: , свечение люминофора - результат получается аналогичным , однако срок службы индукционных ламп приблизительно в 10 раз превосходит компактные люминесцентные лампы и газоразрядные лампы популярных типов, достигая 100000 часов.

Кроме того светоотдача индукционных ламп выше 70 Лм/Вт, и падает максимум на 30% даже через 60000 часов работы, то есть данный источник света превосходит по энергоэффективности и качеству света электродные люминесцентные лампы. Индекс цветопередачи индукционных ламп больше 80, и человеческий глаз отлично воспринимает такой свет как комфортный и ровный. Нагрев колбы в процессе работы лампы минимален.


Сегодня на рынке представлены индукционные лампы со вешней и внутренней индукцией, в зависимости от расположения индуктора. У ламп со внешней индукцией индуктор располагается вокруг трубки колбы, а у ламп с индукцией внутренней - внутри колбы. Кроме того электронный балласт может быть расположен отдельно от колбы или быть встроенным в корпус. Электронный балласт индукционной лампы представляет собой высокочастотный преобразователь, у которого роль вторичной обмоткой ВЧ-трансформатора играет газ внутри колбы лампы.


Пример индукционной лампы с внутренней индукцией - лампа Венера Е40 на 80 ватт . Лампа имеет стандартный цоколь Е40, благодаря чему ее сразу можно установить в уже имеющийся осветительный прибор, без необходимости приобретать какой-то особенный - достаточно просто заменить лампу. Колба имеет обычную форму, как у лампы накаливания. Цветовая температура может варьироваться от 3000 до 5000 К - оптимально для восприятия человеком. Гарантированный срок службы лампы, заявленный производителем, - 14 лет при ежедневной работе по 12 часов.

Конструкция лампы традиционная для индукционных - безэлектродная . Электроника лампы расположена в цоколе, который соединен с индукционной катушкой. Разъемное соединение колбы и основания-балласта позволяет удобно транспортировать такие лампы и легко их устанавливать.

Электронный балласт изготовлен из высококачественных компонентов, которые не выйдут из строя даже при многократном включении-выключении. Объем колбы достаточно велик, чтобы лампа значительно не нагревалась в процессе работы, то есть проблемы перегрева элементов электронного балласта не возникнет.

Заменив лампу накаливания на индукционную мощностью 80 ватт, например в прожекторе ангара, в цеху, в офисе, или в любом помещении муниципального учреждения, потребитель получит световой поток в 6000 люмен при световой отдаче до 75 Лм/Вт, и сократит расходы на электроэнергию потребляемую освещением в 4-10 раз. Человек сможет надолго забыть о необходимости обслуживания и замены лампы.

Такая лампа прослужит до 8 раз дольше компактной люминесцентной лампы и до 60 раз дольше лампы накаливания. Данные индукционные лампы без проблем работают как в летнее, так и в зимнее время, даже в неотапливаемых помещениях, таких как гаражи или склады стройматериалов.


Пример индукционной лампы с наружной индукцией - индукционная лампа Сатурн 40 Вт . Такая лампа отлично подойдет для настенного или потолочного, домашнего или офисного светильника, ее световой поток составляет 3200 люмен. Более мощные модели подобных индукционных ламп устанавливают в прожекторы уличного освещения. 80 Лм/Вт - весьма достойная светоотдача, говорящая о высокой экономичности лампы. Цветовая температура - 3000/5000 К. Гарантированный срок службы лампы - 100000 часов.

Электронный балласт сделан выносным, его устройство позволяет использовать лампу, включать и выключать ее на протяжении 23 лет при непрерывных рабочих циклах по 12 часов в сутки. Расходы на обслуживание снижаются при этом примерно в 5 раз по сравнению с другими типами ламп, а о регулярной замене ламп можно забыть очень надолго.

Что касается установки лампы, то она может быть установлена сразу над рабочим местом без расчета на обеспечение удобных условий для замены и обслуживания. Это же относится к лампам более мощным для дорожных прожекторов - их можно устанавливать непосредственно над дорожным полотном, без расчета на то, что нужно будет часто подниматься к прожектору чтобы своевременно заменить отработавшую лампу, как это обычно происходит с натриевыми лампами.

Таким образом, конструктивные особенности лампы типа «Сатурн» исключают проблему чрезмерного нагрева, делая срок службы рекордным, а эксплуатацию в целом весьма экономичной. Цветовая температура максимально близка к естественному освещению, индекс цветопередачи выше 80. При всем при этом окупится лампа за 1,5 года, а прослужит не один десяток лет. Производитель и сам дает пятилетнюю гарантию.


Лампы с внешней индукцией являются универсальными. Их без проблем можно устанавливать как внутри помещений, так и снаружи на открытом воздухе, где они с легкостью выдерживают зимние морозы до -40°C. В промышленных и бытовых помещениях индукционные лампы отчетливо конкурируют со светодиодными (смотрите - ). В освещении мостов, дорог, туннелей, спортивных сооружений, стадионов, складов - всюду индукционные лампы займут достойное место, даже там, где требуется высокое качество цветопередачи.

Вообще преимущества индукционных ламп трудно переоценить. На самом деле они превосходят светодиодные лампы по реальному сроку службы, ведь светодиоды быстрее теряют световой поток, и обычно через 7 лет нуждаются в замене, в то время как индукционная лампа непрерывно прослужит более 15 лет, уверенно сохранив в среднем 85% изначального светового потока, причем циклов включения-выключения допускается неограниченное количество.

Светоотдача индукционных ламп достигает 160 Лм/Вт, и чем мощнее лампа - тем выше светоотдача, а следовательно и энергоэффективность (экономичность). КПД индукционных ламп составляет в среднем порядка 90%.

Индукционная лампа это новое поколение люминесцентных ламп и чтобы понять разницу между ними сначала рассмотрим принцип действия люминесцентной лампы:

  1. Светиться внутреннее покрытие трубки лампы — люминофор. Его в свою очередь побуждает к свечению ультрафиолетовое излучение паров ртути.
  2. Пары ртути излучают ультрафиолет под действием электрического напряжения (поля)
  3. Электрическое поле проходит через полость лампы по инертному газу, как правило используется аргон
  4. В торцах трубки находятся электроды, покрытые окислами щелочноземельных металлов. При включении между противоположными электродами возникает дуговой разряд, проходящий по инертным газам.

Покрытие окислами щелочных металлов электродов необходимо для увеличения срока службы вольфрамовой нити (вольфрамовая нить используется также в лампах накаливания), без него вольфрамовая спираль довольно быстро перегорает от перегрева. Однако со временем данное покрытие разрушается (выгорает, трескается, осыпается). Пик негативного влияния на покрытие вольфрамовой нити случается во время включения лампы, т.к. разряд возникает на небольшом участке нити, вызывая перегрев на данном участке. Постепенно электроды выгорают, перегрев становиться больше, что ведет к перегоранию нити, в следствии чего лампа перестает работать.

Ос но вное конструктивное отличие индукционной лампы состоит в том, что в ее составе нет электродов контактирующих с газовой плазмой. Электроны инертного газа приходят в движение под влиянием электромагнитного поля возникающего в индуктивной катушке с медной обмоткой. Медь в свою очередь мало подвержена разрушению в подобных условиях эксплуатации и продолжительность срока службы лампы будет зависеть от качества других материалов использованных при ее производстве, т.е. благодаря замене электродов на индукционную катушку удалось избавиться от самого ненадежного элемента в лампе. Данная конструкция позволила добиться более высокой производительности светильника и избавиться от колебаний светового потока, взамен получив большие габариты и удорожание себестоимости.

Принцип работы индукционной лампы.

  1. После включения высокочастотный ток с ПРА подается на индуктивные катушки, внутри которых возникает электромагнитное поле.
  2. Под действием поля свободные электроны разгоняются, разогревая лампу и амальгаму из которой испаряются атомы ртути.
  3. Остывая и возвращаясь в свое исходное состояние атомы ртути выделяют энергию — квант ультрафиолетового света. Повторно соударяясь со свободными электронами снова выделяют энергию возвращаясь в исходное состояние и т.д.
  4. Ультрафиолетовый свет проходя через люминофор преобразуется в видимое свечение.

Описанные выше процессы происходят очень быстро, благодаря чему лампа мгновенно загорается на 70% мощности и не требует времени на остывание при повторном включении.


Преимущества индукционных светильников.

— Эксплуатационный срок службы – до 100 тыс. часов.
— Гарантийный срок эксплуатации — 5 лет.
— Малое энергопотребление в сравнении со светильниками на основе ламп ДРЛ и ДНаТ.

— Светоотдача до 85 Лм/Вт.
— Минимальная пульсация (<1%).
— Индекс цветопередачи Ra от 80.
— Температурный режим работы от -50°C до +70 °C
— Виброустойчивость.
— Значительный интервал рабочего напряжения 110 — 280 В.
— Мгновенный пуск и перезапуск.

Свечение индукционного светильника и наглядное воздействие на предмет помещенный в индуктивную катушку:

Индукционная лампа имеет три основные части: газоразрядная трубка (ее внутренняя поверхность покрыта люминофором), стержень с индукционной катушкой (феррит) или магнитное кольцо и электронный балласт (являющийся генератором высокочастотного тока). Есть два типа конструкции данных ламп по разновидности индукции. Внешний тип индукции: магнитное кольцо находится внутри трубки; внутренний тип индукции: магнитный стержень располагается внутри колбы.

По методу размещения электронного балласта бывает два вида конструкции ламп индукции:

Индукционная лампа со встроенным балластом (в одном корпусе находятся электронный балласт и лампа).

Индукционная лама с отдельным балластом (лампа и электронный балласт состоят в качестве отдельных элементов).

В обычных осветительных технологиях применяются нити и электроды для получения внутри лампы электрического тока. Эти электроды или нити выгорают с течением времени, и лампу надо менять. В индукционном же освещении применяются передовые технологии для получения света от лампы высокого качества, ресурс работы такой лампы составляет 100000 часов. Колба без электродов и волокон полностью герметична, в ней электронный балласт генерирует высокочастотный ток, который протекает на магнитном стержне или кольце по индукционной катушке. Электромагнит и индукционная катушка образуют в электромагнитном высокочастотном поле новый газовый разряд, и под действием ультрафиолета происходит свечение люминофора. По принципу работы и по конструкции лампа походит на трансформатор, где есть и первичная обмотка с высокочастотным током, и вторичная обмотка, представляющая газовый разряд, который происходит в стеклянной трубе.

Почему индукционные лампы служат очень долго

В обычной технологии освещения, места, где провода для нитей, электродов накаливания проходят через стенки (или оболочку) лампы, подвергаются термическим напряжениям по причине нагрева и охлаждения лампы. Со временем это приводит к образованию микротрещин, через которые могут проникать газы атмосферы, загрязняющие корпус лампы. Электроды и нити также нагреваются при прохождении электричества, что приводит с течением времени к их испарению. Например: часто вокруг концов люминесцентных ламп видны черные кольца, образовавшиеся в результате конденсации испаренного металла из нитей. Индукционные лампы изолированы полностью и у них нет электродов или нитей.

Как индукционные лампы экономят электроэнергию и деньги?

Индукционные лампы характеризуются высокой преобразовательной эффективностью (60-90 люменов на ватт расходуемой мощности (Lm/W)). То есть, в свет превращается большая часть электроэнергии. Также в индукционных лампах использованы электронные балласты (в виде тепла теряется только 2-5%), которые эффективней типичных электромагнитных балластов (в виде тепла теряется 15-25% мощности) на 95-98% (первые эффективны на 75-85%). Индукционные лампы дают возможность экономить 35-60% электрической энергии в сравнении с обычной технологией за счет высокой светоотдачи и низкой потери электрической энергии на электронном балласте! С помощью некоторых приспособлений можно экономить энергию до 75% в сравнении с обычными осветительными приборами.

С заявленным периодом службы индукционных ламп (около 100 000 ч) расходы на обслуживание можно снизить, так как лампы не надо менять так часто, как обычные.

Есть ли угроза окружающей среде от использования индукционных ламп?

Индукционные лампы – наиболее экологические технологии освещения среди всех доступных. Они экономят электричество, что снижает в свою очередь выбросы СО2 в атмосферу.

Что такое индукционная лампа

Лампа индукции - это электрический источник света, действие которого основано на газовом разряде и электромагнитной индукции для получения видимого света. Главное отличие от известных газоразрядных ламп - безэлектродная конструкция – нет нитей накала и термокатодов, что существенно увеличивает срок службы.

Существуют ли различия между лампами с внутренним и внешним индуктором

Кроме формы, главные отличия состоят в продолжительности жизни и эффективности. Внешний индуктор лампы обладает повышенным КПД преобразования (дает значительно больше света при равной мощности), чем внутренний тип, у него более долгий срок службы (90000-100000 ч). Внутренний индуктор лампы обладает более низким КПД преобразования по сравнению с внешним индуктором (дает меньше света при такой же мощности), срок службы в пределах 60 000 – 75 000 ч. У индукционных ламп с внешним индуктором есть преимущество – тепло, выделяемое катушкой, быстро рассредоточивается в воздухе конвекцией. Конструкция с внешним индуктором больше подходит для мощных ламп кольцевой или прямоугольной формы. Тепло, производимое катушкой в лампах с внутренним индуктором, переходит в полость лампы и излучением выводится через стенки колбы из стекла и теплопередачей через цоколь. Индукционные лампы с внутренним индуктором характеризуются более коротким сроком службы по причине высоких рабочих температур. Лампа с внутренним индуктором походит больше на обычную лампочку, чем лампа с внешним индуктором. Часто это оказывается полезным.

Существуют ли специальные светильники или конструкции для индукционных ламп?

Да. Индукционные лампы нужно устанавливать в соответствующие светильники, имеющие соответствующие термические свойства и обеспечивающие корректную работу. Можно модернизировать некоторые из существующих светильников.

Создает ли индукционное освещение помехи в работе оборудования связи и электронных устройств?

Практически все существующие индукционные лампы соответствуют международным стандартам. Мобильные устройства и сотовые телефоны не будут иметь перебоев в работе. Продукция сертифицирована и помех больше, чем микроволновая печь или компьютер, не производит. Индукционное освещение соответствует FCC стандарту и на применение двусторонней радиосвязи сотовых телефонов не влияет.

Лампы индукции способны вызывать помехи с некоторым сверхчувствительным медицинским и лабораторным оборудованием. Если в таких помещениях будет использоваться индукционное освещение, то нужно соблюдать существующие правила обеспечения надежного заземления. Также есть смысл протестировать образец индукционного светильника на выявление чувствительности оборудования к помехам.

Влияет ли температура окружающей среды на температуру ламп индукции?

Индукционные лампы стабильно работают в достаточно широком диапазоне температур – от -35 до +50°С, время на разогрев при этом – 1-2 минуты.

Как реагируют лампы индукции на повторное горячее включение?

Индукционные лампы мгновенно включаются и производят сразу от 75 до 80% от полной мощности. Для достижения 100% светового потока достаточно 90-180 секунд, в зависимости от модели. Для человеческого глаза этап подогрева едва заметен. Если случается кратковременное прерывание в сети, то индукционные лампы способны восстанавливать полную мощность потока света обратно сразу после восстановления питания.

Влияет ли на индукционное освещение положение (ориентация) или вибрация?

На эффективности лампы индукции не отражается рабочее положение (ориентация). Колебания тоже не отражаются на работе ламп индукции, так как в них нет нитей или электродов. Поэтому их широко применяют в тоннелях, на мостах, на наружных вывесках.

Могут ли повредиться материалы или продукты при индукционном освещении?

Количество ультрафиолетового света, получаемого в индукционных лампах, ниже, чем в обычных люминесцентных трубках. Для дополнительных же чувствительных материалов можно применять индукционные светильники со стеклянными линзами, которые способны блокировать все УФ - эмиссии.

Устанавливают ли балласт вдали от самой индукционной лампы?

Вообще электронный балласт можно устанавливать от лампы на расстоянии до четырех метров, но при условии, что проводка между дросселем и лампой заключена в металлической заземленной трубе.

Можно ли использовать индукционные светильники на открытом воздухе?

Любая арматура, характеризующаяся степенью защиты IP54 и выше, может применяться на улице и в сырых местах.

Где можно применять индукционные лампы?

Лампы индукции используются для внутреннего и наружного освещения, особенно в тех местах, где нужно хорошее освещение с высокой цветопередачей и светоотдачей, длительным сроком службы: магистрали, улицы, складские и промышленные помещения, туннели, стадионы, аэропорты, автозаправочные станции, железнодорожные станции, подсветка зданий, автостоянки, супермаркеты, торговые помещения, павильоны, выставочные залы, учебные заведения. Светотехническое оборудование на лампах индукции дает возможность обеспечить комфортное освещение территорий и помещений благодаря спектру, приближенному к солнечному, и отсутствию мерцаний. При этом оно обладает высокой энергоэффективностью.

Безопасно ли индукционное освещение?

Индукционное освещение, которое предлагается в рамках NAFTA и ЕС рынков прошли строгий UL контроль, и CE тестирование, и предназначено для применения в разных странах. При грамотной установке квалифицированным персоналом лампы индукции являются эффективными, безопасными, энергосберегающими, а также представляют хорошую альтернативу традиционной технологии освещения.