Читать инструкцию по эксплуатации samsung. Инструкции для телефонов самсунг

Описание:

Достаточно распространенные в странах Северной Европы системы лучистого отопления и охлаждения обозначили отход от традиционных водяных и воздушных систем и сегодня представляют оригинальную европейскую методику. Хотя у данных систем тоже есть свои недостатки, они обеспечивают комфорт, в большей степени соответствующий характеру теплообмена человека.

Системы лучистого отопления и охлаждения

В последнее время в связи со строительством офисов больших площадей со свободной планировкой рабочих пространств появилась необходимость в применении систем отопления и охлаждения помещений, позволяющих трансформировать системы обеспечения микроклимата так же свободно, как и изменять планировку офиса. Появление современных стеклопакетов с высоким сопротивлением теплопередаче позволило убрать отопительные приборы из-под оконных проемов; требования к качеству микроклимата помещения и к энергосбережению возросли. Системы лучистого отопления и охлаждения получили новый виток развития. Теплые полы и излучающие панели, охлаждающие потолки и «балки» – все это не только современная альтернатива традиционным системам отопления, охлаждения и кондиционирования воздуха, но и оборудование, имеющее в своей основе иной принцип обеспечения комфорта в помещении, когда нагрев или охлаждение воздуха происходит за счет не только конвекции, но и излучения.

Достаточно распространенные в странах Северной Европы системы лучистого отопления и охлаждения обозначили отход от традиционных водяных и воздушных систем и сегодня представляют оригинальную европейскую методику. Хотя у данных систем тоже есть свои недостатки, они обеспечивают комфорт, в большей степени соответствующий характеру теплообмена человека.

Имеющиеся сегодня инженерные решения на основе систем лучистого отопления и охлаждения позволяют более рационально, по сравнению с традиционными, выстраивать архитектурный облик здания и интерьеры помещений. Теплоноситель (как правило, вода), используемый в таких системах, имеет умеренную температуру как для отопления, так и для охлаждения, отсюда оптимальные условия для работы конденсационных котлов и тепловых насосов, солнечных коллекторов, высокий уровень энергетической эффективности и экологической безопасности.

Часть 1. Отопление излучающими панелями

При использовании систем лучистого отопления средняя температура в помещении обычно выше, чем температура воздуха, т. к. передача тепла осуществляется нагретыми поверхностями пола, потолка, стен большой площади либо их сочетанием.

Вследствие большой площади теплоотдающих поверхностей их температура близка к требуемой температуре в помещении и нет необходимости использовать воздух в качестве дополнительного способа нагрева помещения. Равные условия комфорта в помещении можно обеспечить при более низкой температуре воздуха, сократив расход тепла на подогрев вентиляционного воздуха. Основное отличие между традиционным и лучистым отоплением как раз и состоит в температуре воздуха. В жилом помещении с лучистым отоплением она всегда ниже в среднем на 2 °C: понижение температуры всего на 1 °C позволяет снизить потребление энергоресурсов в среднем до 7 %. При этом должно быть понятно, что величина экономии растет пропорционально отапливаемым объемам. То есть в помещениях очень большой площади – соборах, музеях и пр. – экономия энергии достигает 40–50 %. Если к тому же системы лучистого отопления использовать в комбинации с современными генераторами тепла, результаты по параметрам сезонной производительности просто потрясающие.

Что касается материалов, применяемых для изготовления излучающих панелей, на первом месте стоит медь – по показателям теплопроводности, меньшей высоте прокладки, высокой термостойкости и отсутствию проблем с осмосом. Пластмассовые материалы (полиэтилен, полибутилен и др.), в свою очередь, очень технологичны при монтаже, что позволяет значительно снизить его стоимость.

Отопление теплыми полами

Отопление теплым полом обеспечивает практически безградиентное распределение температуры по высоте человека, при этом к ногам поступает тепла чуть больше, чем к голове.

Основным параметром при проектировании систем с теплым полом является температура его поверхности: известно, что при превышении определенных значений вероятно возникновение проблем физиологического характера, касающихся кровообращения нижних конечностей. По этой причине международными стандартами установлена максимальная температура теплого пола 29 °C при температуре внутреннего воздуха 20 °C. Для участков пола, где нахождение людей маловероятно, допускается максимальная температура поверхности пола 35 °C, в туалетных и ванных комнатах эта температура не может превышать 33 °C при температуре внутреннего воздуха 24 °C.

Теплоотдача пола с постоянной равномерной температурой рассчитывается по следующей формуле:

q = 8,92 х (t п – t в) 1,1 ,

где q – тепловой поток поверхности пола, Вт/м 2 ;

t п – средняя температура поверхности пола, °C;

t в – средняя температура воздуха, °C.

Если t п = 29 °C и t в = 20 °C, тепловой поток составит:

q = 8,92 х (29 – 20) 1,1 = 100 Вт/м 2 .

Одной из причин, по которым в 1950-е и 1960-е годы отопление теплым полом было признано недостаточно надежным, были проблемы с регулированием, обусловленные, главным образом, высокой тепловой инерцией системы, что плохо подходило для обеспечения регулирования температуры воздуха.

Сегодня в результате улучшения теплозащиты зданий, оптимизации геометрической раскладки труб и практически повсеместного наличия теплоизоляции под цементной стяжкой обогревающие полы могут давать очень неплохие результаты по обеспечению регулирования температуры воздуха, вполне сопоставимые с параметрами других систем отопления.

Для организации эффективного регулирования обогревающих полов необходим грамотный расчет циркуляционных колец, при котором в каждую излучающую панель (циркуляционное кольцо) должен поступать расчетный расход теплоносителя. Как правило, регулирование температуры теплого пола состоит в регулировании температуры воды на подаче в контур в зависимости от температуры наружного воздуха. Такое регулирование далеко не всегда может обеспечить комфортные условия в отдельных помещениях, поскольку центральное регулирование по датчику температуры наружного воздуха не позволяет учесть внутренние тепловыделения в отдельных помещениях. Более эффективно сочетание центрального регулирования с местными термоэлектрическими клапанами, устанавливаемыми на каждую панель и получающими сигнал от комнатного термостата. В этом случае центральное регулирование обеспечивает подачу теплоносителя с оптимальной, в соответствии с погодными условиями, температурой, а комнатные термостаты обеспечивают комфортные условия в каждом помещении с учетом внутренних тепловыделений.

Излучающие панели в стенах

Излучающие панели в стенах применяются, как правило, дополнительно к другим системам отопления, но могут использоваться и в качестве самостоятельной системы.

Поскольку пользователи не имеют непосредственного контакта с нагретой поверхностью панели, действующие европейские нормативы допускают температуру поверхности более 30 °C. Теплоотдача панелей выше, чем у обогревающих полов, и варьируется от 160 до 200 Вт/м 2 .

Монтаж панелей

Монтаж под штукатурку

Модульные блоки змеевика панелей монтируются непосредственно на стену обычным крепежом и покрывают штукатуркой слоем толщиной около 3,5 см.

Монтаж под облицовочные панели

Модульные блоки змеевика панелей монтируются на стену и закрываются гипсокартоном либо иной жесткой облицовкой.

Блоки змеевика крепятся посредством вертикальных либо горизонтальных осевых опорных штанг на слой теплоизолирующего материала, покрытого, как правило, алюминиевым листом.

Заделка в армированные бетонные панели

Модульные блоки змеевика крепятся к металлической арматуре, затем заливаются бетоном по традиционному методу. Готовая панель оставляется открытой либо штукатурится.

Температурная динамика в помещениях, оборудованных обогревающими панелями в стенах, достаточно плавная. Установлено, что при средней температуре 40 °C подаваемой в змеевик воды и температуре воздуха в помещении в пределах 19–20 °C доля излучения в теплоотдаче панелей составляет 80–85 %, доля конвекции – 15–20 %.

Другая особенность панелей в стенах – низкая тепловая инерция, которая (будучи обусловленной особенностями установки) в любом случае оказывается ниже, чем у теплых полов. Это обстоятельство приобретает особое значение для объектов, где теплоснабжение работает в переменном режиме. Следует, однако, признать, что в этом вопросе есть одна немаловажная особенность, которая оказывает влияние на выбор в пользу того или иного решения – в жилых помещениях, обставленных мебелью, эффективность обогревающих панелей в стенах существенно снижается.

Потолочные излучающие панели

Первые излучающие панели, которые появились на рынке отопительных систем, были потолочными.

В силу отсутствия прямого контакта излучающих панелей с человеком для них (как и для обогревающих панелей в стенах) допустимы более высокие значения температуры поверхности, нежели для теплых полов, что позволяет обеспечить достаточно высокую теплоотдачу, не создавая особого дискомфорта для пользователей.

Очевидно, что допустимые максимальные значения температуры поверхности для потолочных панелей в значительной степени обусловлены высотой потолков. Для жилых помещений со стандартной высотой потолков рекомендуется перепад 10 °C между температурой поверхности панели и температурой воздуха в помещении.

Высокая тепловая инерция самых первых отопительных систем этого типа была вызвана тем обстоятельством, что панели встраивались в бетонные междуэтажные перекрытия. Подвесные излучающие потолки модульного типа отличаются низкой тепловой инерцией, простотой установки и – что немаловажно – чрезвычайной легкостью и безопасностью доступа для обслуживания.

Распределение температуры по вертикали в режиме отопления показывает, что излучающие потолки подходят скорее для охлаждения помещений в летний период. Как бы там ни было, системы такого рода представляют собой добротный функциональный компромисс между летним охлаждением и зимним отоплением и особенно подходят для предприятий сферы услуг, где модульность подвесных потолочных конструкций обеспечивает:

Неплохую гибкость, поскольку используемые соединения позволяют без труда реконструировать систему в случае перепланировки помещений;

Возможность интеграции других типов систем (освещения, противопожарной системы и пр.) без изменения внешнего вида и нарушения функциональности установленных панелей.

Заключение

В прошлом негативное влияние определенных факторов, а точнее поверхностный подход к решению функциональных проблем, свойственным излучающим панелям, приводило к известному скептицизму в отношении систем лучистого отопления. Однако сегодня – в связи с улучшением теплоизоляции зданий и системы регулирования температуры воздуха – системы лучистого отопления переживают второе рождение.

Большие поверхности систем лучистого отопления, нагреваемые до невысоких температур, обладают целым рядом преимуществ, среди которых выделяются:

Высокий тепловой комфорт;

Лучшее качество воздуха;

Высокая гигиеничность;

Практически полное отсутствие воздействия на окружающую среду;

Экономия энергоресурсов.

То обстоятельство, что монтаж таких систем осуществляется, как правило, специализированными организациями, которые гарантируют функциональные проектные параметры, является залогом непрерывного роста числа излучающих панелей в сдаваемых объектах жилищного строительства.

В статье использованы материалы:

1. G. Redondi. Il riscaldamento a pannelli radianti // Costruire Impianti. 2003. № 1.

2. Ф. А. Миссенар. Лучистое отопление и охлаждение. М.: ГСИ, 1961.

3. В. Н. Богословский. Строительная теплофизика. М.: ВШ, 1970.

Тепловой комфорт и энергетический баланс человека

Системой обогрева – охлаждения в помещении должна быть создана благоприятная для человека тепловая обстановка. Самочувствие и работоспособность человека зависят от состояния физиологической системы терморегуляции организма, которая нормально функционирует при температуре около 36,6 °C. Для поддержания постоянной температуры организм человека непрерывно вырабатывает тепло, которое отдается окружающей среде. В зависимости от физиологического и эмоционального состояния человека, его одежды, возраста, вида выполняемой работы и индивидуальных особенностей организма количество тепла, выделяемого в окружающую среду, может быть различным.

Рисунок 1

Общий тепловой (энергетический) баланс человека (Вт) характеризуется следующим уравнением:

D Q ч = Q ч – Q p ч – Q к ч – Q л ч – Q т ч – Q и ч – Q ф ч,

где D Q ч – избыток (накопление) или недостаток тепла в организме;

Q ч – теплопродукция организма (общее количество энергии, вырабатываемой организмом);

Q p ч – расход тепла (энергии) на механическую работу;

Q к ч – составляющая теплообмена человека конвекцией;

Q л ч – составляющая теплообмена человека излучением;

Q т ч – тепловая энергия, обусловленная теплообменом со средой посредством теплопроводности;

Q и ч – составляющая теплообмена человека за счет затрат тепла на испарение влаги;

Q ф ч – тепло, затрачиваемое на физиологические процессы (нагрев вдыхаемого воздуха, естественный обмен веществ и пр.).

Рисунок 2

Основным способом передачи тепла является теплообмен между кожными покровами человека и окружающей средой посредством теплопроводности, конвекции, излучения и потоотделения (поскольку впоследствии пот испаряется).

Посредством теплопроводности тепла передается настолько мало, что в общем расчете теплового баланса его можно не учитывать, поскольку такие поверхности тела человека, как ладони рук или ступни ног, чрезвычайно малы по сравнению с общей площадью тела, а в тех случаях, когда температура поверхности в точке контакта существенно отличается от температуры тела человека, как правило, используются защитные предметы одежды.

Общая теплопродукция организма Q ч в основном зависит от степени тяжести выполняемой человеком работы.

Рисунок 3

Расход тепла на механическую работу Q p ч обычно составляет от 5 до 35 % от дополнительных тепловыделений, связанных с выполнением физической или умственной работы. Например, для работы средней тяжести, выполняемой стоя (Q ч = 300 Вт), этот процент равен 20 и Q p ч = 0,2 (Q ч – 100) = 40, где 100 Вт – тепловыделение в покое. Тепло, затрачиваемое на физиологические процессы, Q ф ч не превосходит 11,6 Вт, и в расчетах его можно не учитывать.

Если теплопродукция организма и потери тепла не сбалансированы, то в организме может наблюдаться накопление тепла D Q ч, связанное с повышением температуры, или его дефицит, приводящий к переохлаждению организма. Система терморегуляции организма позволяет в определенных пределах обеспечивать баланс продуцируемого и теряемого теплом тела. Однако возможности терморегуляции весьма ограничены.

Значения коэффициента А в зависимости от скорости движения воздуха
Скорость воздуха, м/с А
≤ 0,2 0,5
0,2 – 0,6 0,6
0,6 – 1,0 0,7

В пределах значений температуры среды, соответствующих комфортным условиям, теплообмен происходит главным образом конвекцией и излучением. В условиях теплового комфорта теплообмен человека происходит посредством:

Скрытого тепла (потоотделения и дыхания) – 21 %;

Конвекции – 33 %;

Излучения – 46 %.

Таким образом, основными параметрами среды в определении тепловлажностного комфорта являются: температура, влажность, подвижность воздуха и средняя температура окружающих поверхностей помещения.

Человек ощущает не столько температуру воздуха, сколько совокупность температур воздуха Т в и радиационную температуру помещения T R , что иначе называется «температура помещения» T п.

В умеренной тепловой среде или при температуре (T R – T в) < 4 °C показатель T п составит среднее арифметическое T в и T R . Точнее значение T п определяется следующей зависимостью:

T п = А T в + (1 – А) T R ,

где коэффициент А имеет значения, приведенные в таблице.

Таким образом, определенная «температура помещения» может быть получена двумя способами:

Повышением прежде всего радиационной температуры T R всех или части поверхностей помещения;

Повышением температуры Tв воздуха помещения.

Условия комфортности температурной обстановки в помещении

Интенсивность отдачи тепла человеком зависит от тепловой обстановки в помещении, которая определяется следующими показателями: температурой Т в, подвижностью М в и относительной влажностью j в воздуха в помещении, температурами поверхностей Т i , обращенных в помещение, расположение (относительно человека) и размеры которых определяют радиационную температуру помещений T R . Комфортное сочетание этих показателей соответствует таким оптимальным метеорологическим условиям, при которых сохраняется равновесие, отсутствует напряжение в процессе терморегуляции; в подавляющем большинстве случаев комфортное сочетание этих показателей положительно оценивается находящимися в помещении людьми. Допустимыми считаются такие метеорологические условия, при которых возникает некоторая напряженность процесса терморегуляции и может иметь место небольшая дискомфортность тепловой обстановки.

Первое условие комфортности

Комфортной будет такая общая температурная обстановка в помещении, при которой человек, находясь в середине помещения, будет отдавать все явное тепло, не испытывая перегрева или переохлаждения. На теплоощущения человека в определенной мере влияют радиационная температура, температура воздуха.

Второе условие комфортности

Это условие ограничивает интенсивность теплообмена при положении человека около нагретых и охлажденных поверхностей. Определяющей величиной в этом случае является интенсивность лучистого теплообмена (радиационный баланс на наиболее невыгодно расположенной и наиболее чувствительной к излучению части поверхности тела человека). К радиационному нагреву наиболее чувствительной оказывается поверхность головы. Радиационный баланс должен быть таким, чтобы каждая часть поверхности головы отдавала излучением окружающим поверхностям не менее 11,6 Вт/м 2 . При расположении излучающей панели в потолке наиболее невыгодным (а поэтому расчетным) будет положение человека непосредственно под центром панели. При расположении панели в стенах за расчетное принимают положение человека на расстоянии 1 м от нагретой поверхности.

Отопительные системы постоянно совершенствуются. Конструкторы разрабатывают все более эффективные, экономичные, красивые и удобные приборы. Лучистое отопление – одна из самых новых технологий. Системы лучистого отопления относительно недавно появились на рынке, но уже хорошо себя зарекомендовали. Принцип действия построен на нагревании предметов лучистой энергией, а уже предметы в свою очередь передают тепло воздуху в помещении. Источник инфракрасной энергии может запитываться от электросети или работать на газе, нагревательные элементы размещают в панелях или многослойной пленке.

Разновидности систем лучистого отопления

Различают пленочные лучистые электронагреватели (ПЛЭН) и панельные. Первые работают исключительно от электричества, вторые в зависимости от типа могут работать как на электроэнергии, так и на газе. В частных домах и квартирах обычно устанавливают электросистемы, т.к. они считаются более безопасными. Газовое лучистое отопление (сокращенно – ГЛО) хорошо подходит в качестве системы обогрева для производственных помещений, складов, ангаров, просторных мастерских.

Обустройство панельно-лучистого отопления в частном доме

ПЛЭН состоит из двух слоев полимера, между которыми размещены резисторы, которые, нагреваясь, отдают тепловую энергию алюминиевой фольге. Излучение от фольгированного покрытия греет предметы. Обычно ширина пленочного нагревателя не превышает 30 см, толщина – 1 мм. Температура нагрева – до 450 градусов. Конкретные параметры зависят от технического задания, в соответствии с которым определяют желаемую мощность обогревателей.

Лучистое отопление может быть водяным и электрическим. Источники тепла в данном случае – поверхности, внутри которых расположены трубы с горячей водой, или металлические панели с инфракрасными нагревателями. Напольное водяное отопление широко распространено и известно как системы теплого пола. Монтаж отопления этого типа довольно сложен, поэтому многие потребители ищут альтернативу и выбирают электрические инфракрасные панели.

Схема работы панельной системы отопления

Системы пленочного лучистого отопления

Пленочные нагреватели очень компактны, практичны и удобны. Системы оснащают терморегуляторами или GSM-контроллерами. На прогрев помещения уходит не более часа, но локальные зоны теплового комфорта создаются почти сразу же после включения приборов, т.к. они нагревают в первую очередь предметы и людей. В режиме поддержания температуры нагреватели включаются каждый час примерно на 10 минут. За счет этого обеспечивается экономный расход электроэнергии.

Электрические системы отопления сами по себе дороги, но при рациональной эксплуатации можно значительно снизить расходы. Если помещение нежилое и не нуждается в постоянном поддержании высокой температуры, то хорошим выходом будет эксплуатация системы в низкотемпературном режиме.

Конструкция пленочного нагревателя

Где устанавливают ПЛЭН

Сфера применения пленочных систем очень обширна. Нагреватели устанавливают в помещениях любого назначения:

  • квартиры, дома, дачные домики;
  • отапливаемые балконы, лоджии;
  • производственные здания;
  • складские помещения;
  • офисы;
  • магазины, торговые павильоны;
  • рестораны, кафе;
  • гостиницы;
  • медицинские, лечебно-профилактические учреждения.

Для жилых помещений и тех, в которых постоянно находятся люди, пленочное отопление используют не только как основную, но и как дополнительную систему обогрева. Кроме того, ПЛЭН применяют и не по прямому назначению. Например, в помещениях для покраски автомобильных кузовов нагреватели устанавливают для ускорения сушки покрашенных деталей.

Как работает ПЛЭН-система

Достоинства пленочных систем и ограничения в их использовании

Нагреватели можно устанавливать в новых и реконструируемых зданиях. Их преимущества:

  • компактность, малый вес;
  • относительная простота монтажа;
  • стилевая нейтральность;
  • долговечность;
  • эко-, пожаробезопасность.

Несмотря на все эти плюсы, системы ПЛЭН имеют и значительные ограничения в использовании. Установка в городской квартире часто оказывается нецелесообразной, т.к. владелец поневоле отапливает не столько свою жилплощадь, сколько соседние квартиры. Прибор нагревает все поверхности – пол, потолок, стены, и часть энергии уходит на отопление смежных помещений. Частично проблема решается при помощи теплоизолятора. Еще один существенный минус – высокая стоимость электрического обогрева. Обычные радиаторы водяного отопления обходятся гораздо дешевле.

Электрическое панельно-лучистое отопление

Системы панельно-лучистого отопления устанавливают в жилых помещениях, офисах, торговых точках. Обогреватели не пересушивают воздух, удобны и компактны.

Виды отопительных электропанелей

Различают такие виды панелей:

  • Керамические

Это приборы-«гибриды», работающие как излучатели и конвекторы одновременно. Внешняя поверхность представляет собой стеклокерамическую панель, а тыльная – теплоаккумулирующий элемент, обеспечивающий естественную конвекцию. Нагреватель для работы потребляет относительно небольшое количество электроэнергии, при этом коэффициент теплоотдачи высок.

  • Стеновые панели «СТЕП»

Это металлические конструкции толщиной 2 см, внутри которых расположен нихромовый провод. Прибор оснащен отражающим теплоизоляционным слоем. Стеновые панели относят к категории энергосберегающих обогревателей. Они безопасны, могут быть установлены в помещениях любого назначения как основное, резервное или дополнительное отопление. Их не рекомендуют монтировать в зданиях с высотой потолков более 3 м.

  • Настенные, напольные, потолочные панели «ЭИНТ»

Энергосберегающие отопительные приборы надежны и безопасны. Длинноволновое инфракрасное излучение положительно влияет на здоровье человека, поэтому обогреватели этого типа подходят для детских комнат. Есть «антивандальные» модели, которые монтируют в общественных местах. Обогрев осуществляется исключительно с помощью излучения, конвективных элементов нет, благодаря чему меньше распространяется пыль.

Панели отопления в торговой точке

Монтаж электрических панелей своими руками

Простота монтажа и удобство эксплуатации – немаловажные преимущества отопительной системы. Установить стеновые панели настолько просто, что с этой работой справится любой человек, даже если он не имеет опыта строительных и ремонтных работ. В комплект, помимо прибора, входят крепежные элементы и инструкция по монтажу. Обычно не приходится ничего покупать дополнительно.

Порядок работ:

  1. Выберите место, где повесите конструкцию. Чаще всего обогреватели располагают возле наиболее холодных зон (под окнами, рядом с дверями) и тех участков, которые нуждаются в особом тепловом режиме (например, около детской кроватки, рабочего стола и т.п.).
  2. Просверлите в стене отверстия под крепления.
  3. Зафиксируйте крепления, навесьте на них обогреватель.
  4. Подключите прибор к сети.
  5. Убедитесь, что он работает и надежно закреплен.

Порядок действий при установке стеновых отопительных панелей

Для жилых помещений используют преимущественно пленочные и панельные инфракрасные нагреватели. Газовое лучистое отопление больше подходит для установки в просторных производственных помещениях с высокими потолками и хорошей вентиляцией, т.к. продукты сгорания могут попадать в воздух. Газовые системы обычно монтируют в демонстрационных залах автосалонов, складских помещениях, цехах. Каждая из систем имеет собственные преимущества. При выборе следует руководствоваться потребностями владельца конкретного помещения.

Видео: принцип работы системы лучистого отопления

Конвективные системы отопления прочно удерживают лидерство по прменению в современных домах. Но системы лучистого отопления вполне готовы с ними серьезно побороться за наш с вами комфорт.

Примерно 200 лет назад системы отопления наших домов стали перерождаться, популярные тысячелетиями печи и камины были названы архаизмами, их заменила система водяного отопления, дающая конвективное тепло.

Лучевое или лучистое отопление

На лучевом тепле в течение века был поставлен крест, его списали в утиль, однако исследования учёных, проведённые за последние полвека, показывают совершенно обратное - лучевое тепло по своим характеристикам превосходит конвективное, причём по целому ряду характеристик. Предлагаем разобраться в этом вопросе и выяснить, чем же лучистое отопление лучше конвективного.

История отопления - от лучевого к конвективному и… опять к лучевому?

На протяжении тысячелетий первым и единственным источником отопления в человеческом жилище был костёр, а сам способ отопления - конвективно-лучевой. Во время горения костра в примитивной печи-каменке и после этого, при тлении кострища, от каменного портала исходили инфракрасные лучи, а вследствие конвекции нагревался воздух в помещении.

Очевидный недостаток такого способа отопления - при горении костра жилище наполняли дымовые газы, создавая невыносимую атмосферу. Поэтому в верхней точке кровли домов выполнялось отверстие дымохода, через которое улетучивался горячий дым вместе с нагретым воздухом, основная ставка делалась на лучевое отопление, т. к. его интенсивность не зависела от степени нагрева воздуха.

Две тысячи лет назад были созданы новые системы отопления, основанные на каналах под поверхностью каменных полов, по которым двигались дымовые газы от растопленных печей, нагревая полы своим теплом (гипокауст (Др. Рим), глория (Испания), ондоль (Корея), дикан (Китай) и др.). Население Европы между тем использовало частично модифицированный вариант костра - обложенный булыжниками очаг, топящийся по-чёрному. Только к XV веку европейцы усовершенствовали каменный очаг, подведя к нему вытяжную трубу, сколоченную из дерева.

В XVII веке в замковых и дворцовых комплексах России и Европы была популярна «русская система» отопления - воздухозаборная шахта проходила вплотную к стенке печи и вдоль неё, где воздух нагревался и вследствие конвекции поднимался по разветвлённым кирпичным каналам к помещениям, которые необходимо было отапливать. Отдав тепло, воздух из помещений уходил по вытяжным каналам за пределы здания.

Отопительная система такой конструкции полностью исключала возможность проникновения дымовых газов в жилые помещения, что было по тем временам удивительным ноу-хау. Данная система отопления, получившая название «огневоздушная система», пользовалась нарастающей популярностью до середины XIX века, однако к его концу перестала пользоваться спросом, чему способствовали постоянный низкочастотный гул в воздуховодах, чрезмерная сухость воздуха, пригорание пыли с отложением пылевой сажи на стенах и предметах интерьера.

В конце XVIII века французский инженер Жан-Симон Боннеман изобрёл и построил первую систему водяного отопления, циркуляция теплоносителя в которой осуществлялась естественным путём.

Спустя полвека в России появилась система отопления с естественной циркуляцией теплоносителя, разработанная профессором Петром Григорьевичем Соболевским. Конвекционные водяное, паровое и огневоздушное виды отопления набирали популярность год от года, во многом благодаря техническому прогрессу, появлению и развитию централизованных источников нагрева теплоносителя и систем для его доставки к объектам потребления.

В пользу конвективного водяного отопления сыграло масштабное строительство типовых многоэтажек с минимальным утеплением фасадов, низкокачественным перекрытием оконных и дверных проёмов - лучевое отопление эффективно только в хорошо утеплённом здании.

Однако спустя 150 лет учёными было установлено, что восприятие лучевого отопления гораздо ближе человеку, чем конвекционный нагрев воздуха. Причём не только человеку, но и предметам быта, а также материалам, использованным при внутренней отделке помещений.

Отопление в быту - реалии

Приходилось ли вам зимой находиться в неотапливаемом или плохо отапливаемом помещении - школьном классе, аудитории института или в актовом зале при каком-то учреждении? В ответ на недовольство собравшихся преподаватель (лектор) успокаивает - ничего, надышим и через полчасика тепло будет.

И действительно, через некоторое время становиться теплее, но причина этого вовсе не связана с термином «надышали» - присутствующие согрели атмосферу помещения тепловым излучением, генерируемым собственными телами. Исходящие от тел присутствующих в аудитории инфракрасные лучи нагревают расположенные вблизи них предметы, те, в свою очередь, генерируют собственное излучение, передавая его соседним предметам, а тепло своих поверхностей - воздуху.

Каждый и любой объект, имеющий температуру более абсолютного ноля по Кельвину (или –273,15 °С), излучает инфракрасные лучи. Излучение тем интенсивнее, чем выше температура объекта - к примеру, человеческое тело при его нормальной температуре (от 36,6 до 37 °С) генерирует инфракрасные лучи средневолнового диапазона, с длиной волны от 5 до 25 мкм.

Расход человеческой энергии на инфракрасное свечение сокращается при условии повышения температуры окружающей среды, но не воздуха, а ограждающих конструкций (стен, потолка и пола) и предметов мебели. Дело в том, что воздушная среда прозрачна и проницаема для инфракрасных лучей, соответственно, холодные стены и пол будут тянуть инфракрасное тепло из человеческих тел даже при 25-ти градусной температуре воздуха в помещении - это лучистый теплообмен, объясняемый законами Планка и Стефана-Больцмана.

Поколения горожан привыкли к условиям жизни в кирпичных и панельных домах, пытаясь компенсировать расходы инфракрасной энергии тела, уходящей на обогрев ограждающих конструкций, с помощью электроконвекторов разного рода.

В памяти горожан отложилась смутная убеждённость о значимости деревянных стен в доме, которые способны «дышать», компенсируя влажность воздуха - действительно, такая способность у ничем не окрашенных брусовых и бревенчатых стен имеется, однако главную роль в деревянных домах играли вовсе не они, а русская печь.

Массивной конструкции русской печи отводилось значительное место в доме, она отлично держала тепло и обогревала весь дом именно инфракрасным излучением. Никакая водяная или воздушная система отопления не сравнится по своим отопительным возможностям с русской печью!

К слову, именно из-за лучевого способа прогрева выпечка в русской печи получается гораздо аппетитнее и вкуснее, чем в самой современной духовке, принцип приготовления в которой основан на раскалённом воздухе (огневоздушная система).

Свойства лучистой энергии с позиции отопления исследовались лабораторией при Йельском университете, финансируемой фондом Джона Бартлетта Пирса - результаты эксперимента, проведённого с участием добровольцев, оказались весьма показательными.

На первом этапе испытуемых помещали в небольшую комнату с искусственно охлаждёнными стенами, температура воздуха в ней поддерживалась при помощи тепловентиляторов на уровне 50 °С - добровольцы, одетые в лёгкую одежду, после пребывания в этом помещении жаловались на сильный холод.

Во время второго этапа температуру воздуха намеренно понизили до 10 °С, а стены нагрели при помощи встроенных внутрь труб, по которым циркулировала горячая вода - испытуемые, одетые всё так же легко, при нахождении в этом помещении обильно потели, им было жарко.

Впрочем, проверить и лично испытать на себе «вампиризм» холодных и «донорство» нагретых стен каждый из нас может в любое время - нужно всего лишь подойти и встать перед стеной. Зимой вы почувствуете исходящий от неё холод, т. к. образующий стену материал будет поглощать исходящие от вас инфракрасные лучи, летом - ощутите тепло, т. е. уже ваше тело будет впитывать инфракрасное излучение, полученное стеной от Солнца в течение дня.

Описание систем лучистого отопления

Идеальным источником лучистого обогрева была и остаётся массивная печь, однако в условиях квартиры или офиса, да и во многих частных домах устроить такую печь нереально. Рассмотрим современные системы лучистого отопления, позволяющие обойтись без такой печи - «тёплый пол», стеновые и потолочные излучающие панели.

Системы «тёплых полов» различаются по конструкции и принципу отопления:


Панели, устанавливаемые на стены, представляют собой модульные блоки из медной трубы, теплоносителем в них выступает горячая вода. Теплопередача лучевого тепла у стеновых панелей с циркулирующей горячей водой при температуре 40 °С составляет порядка 80%, остальные 20% приходятся на конвекцию - это связано с допустимо высокой температурой теплоносителя, превышающей предельно установленные европейскими стандартами 30 °С для «тёплого пола».

Медные модульные блоки устанавливаются на поверхность стены при помощи горизонтальных или вертикальных штанговых опор, перед этим на поверхность стены монтируется слой утеплителя с алюминиевой фольгой.

После установки стеновые панели заделываются 350 мм слоем штукатурки, закрываются гипсокартоном или другими жёсткими покрытиями. Помимо внешней установки модульные блоки для лучевого отопления могут устраиваться внутрь бетонных стен - крепятся к армирующей раме с последующей заливкой бетоном.

К достоинству стеновых панелей относится более низкая тепловая инерция, по сравнению с «тёплыми полами», что особенно удобно для зданий с периодическим режимом отопления. Следует заметить, что для эффективного отопления стеновым панелям необходимо свободное пространство по периметру стен, в которых они установлены - при большом количестве корпусной мебели использовать их нерационально.

Первые модели потолочных излучающих панелей были созданы задолго до «тёплых полов» и стеновых панелей, интерес производителей к ним объяснялся просто - потолок, а значит, и потолочные панели, располагался дальше всего от домочадцев, что позволяло разогреть панели до высоких температур без какого-то ущерба для человека.

Максимальная температура современных потолочных панелей зависит от высоты потолков - оптимальный перепад между температурой воздуха в помещении и температурой поверхности лучевой панели находится на уровне 10 °С. Современные потолочные панели не встраиваются в перекрытия - устанавливаются на поверхности потолка, что позволяет упростить их монтаж и обслуживание.

В завершении

Популярность конвекционного отопления сегодня связана лишь с тем, что большинство домов обладают минимальными теплоудерживающими характеристиками - раньше это не интересовало проектировщиков и строителей, т. к. их задачи были ориентированы на удешевление проектов.

Отсюда светящиеся по ночам в инфракрасных детекторах дома, колоссальные затраты на тепловое обеспечение и частый косметический ремонт. И именно по причине высоких потерь тепла через оконные проёмы радиаторы отопления устанавливались непосредственно под ними - чтобы отсечь поступающий через щели оконных рам и через их остекление холодный воздух с улицы.

Конвективное отопление позволяет быстро и относительно недорого обогреть неутепленные помещения, однако не позволяет избежать иссушения воздуха, холодного воздуха на уровне пола (наиболее тёплый слой воздуха собирается у потолка), постоянного заплесневения стен в холодный сезон (по причине отложения влаги на их холодных поверхностях) и потребности в частом косметическом ремонте - приведённые факты неоспоримы.

Если ограждающие конструкции дома выполнены из древесины, кирпича или железобетона, с внешней (уличной) стороны выполнено утепление (сэндвич-панелями, теплоизоляционными материалами с последующим оштукатуриванием и т. д.), а в оконных и дверных проёмах установлены современные двери и окна с достаточно низкими показателями по теплопроводности, то решение проблемы отопления при помощи лучевой системы обогрева вполне себя оправдает.

С другой стороны, при утеплении ограждающих конструкций изнутри помещения, выполняемом особенно часто в многоэтажных домах советской постройки, строить отопительную систему на инфракрасном обогреве бессмысленно, т. к. материал, из которого выполнены стены, нагреваться и отдавать тепло в виде излучения не будет, ведь поверхности стен теплоизолированы утеплительными материалами.

С учётом новых требований по теплозащите зданий, изложенных в СНиП 23-02-2003, системы лучистого отопления вполне могут перехватить первенство у конвективного отопления.

Домочадцам любого возраста будет гораздо приятнее и полезнее воспринимать инфракрасные лучи определённого волнового диапазона, чем находиться в воздушном «аквариуме» с постоянно холодными стенами, заполненном нагретым в результате конвекции воздухом и взвешенной пылью. опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

2006-02-08

В последнее время в научных публикациях и каталогах фирм-производителей можно встретить информацию о системах лучистого отопления.


Эти системы рассматриваются в качестве альтернативы традиционным системам водяного и воздушного отопления. Среди преимуществ лучистых систем указываются следующие:

  • экономия энергии при использовании инфракрасных обогревателей;
  • обеспечение комфортных для человека условий при более низких температурах воздуха в помещении (на 2°C ниже нормируемой температуры при проектировании систем конвективного отопления); ❏ сравнительно небольшие габариты обогревателей, быстрота и удобство монтажа;
  • возможность обогрева рабочего места или определенных зон, а не всего помещения;
  • достаточно равномерное распределение температуры по высоте помещения (при использовании систем воздушного отопления увеличение температуры от пола к потолку составляет 1,5-2,5°C/м, при использовании систем лучистого отопления 0,3°C).

Расчет лучистого отопления включает определение тепловой нагрузки, выбор типа, конструкции и количества излучателей. Кроме того, необходимо обеспечить равномерность обогрева помещения и допустимую поверхностную плотность лучистого теплового потока (облученность).В зависимости от норм облученности должна определяться температура поверхности излучателя или расстояние до него.

Область применения систем лучистого отопления и допустимые температуры излучателей установлены СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» .Там же приведены значения допустимой поверхностной плотности лучистого теплового потока при лучистом отоплении постоянных рабочих мест. Для систем обогрева с газовыми инфракрасными излучателями величины допустимой облученности даны в Рекомендациях .

Для животноводческих помещений допустимые значения облученности приведены в . Фирмы-производители предлагают широкий ассортимент инфракрасных обогревателей. Чаще всего их классифицируют на две группы: приборы, работающие на газообразном топливе, и электрические приборы. В каталогах фирм, поставляющих данное оборудование, приводятся данные о мощности и габаритах инфракрасных обогревателей.

Однако зачастую отсутствует информация о температуре излучающей поверхности и ожидаемой облученности в обслуживаемых зонах. Вместо этого приводятся не вполне обоснованные рекомендации по размещению обогревателей по высоте и минимальные расстояния от поверхности стен, на которых предполагается установка панелей. Таким образом, не представляется возможным прогнозировать соответствие принимаемых решений требованиям действующих норм.

Контроль нормируемых параметров также затруднен ввиду дефицита необходимых приборов (актинометры, пирометры). Нами были определены основные характеристики газовых обогревателей GoGas, ГИИ, ИКГН и электрических обогревателей фирмы FRICO для варианта горизонтальной установки. Исходные данные (габаритные размеры, мощность и т.д.) приняты из каталогов фирм-производителей. Результаты расчетов представлены на рис. 1 и 2.

В нижней части графиков нанесены данные для электрических обогревателей, а в верхней — для газовых. Наши расчеты показали, что температуры поверхности панелей лучистого отопления весьма высоки и составляют 155-600°C (рис. 1). На рис. 2 представлена зависимость составляющей теплоотдачи излучением инфракрасных обогревателей от плотности теплового потока излучателя. Установлено, что не вся тепловая мощность передается излучением, и доля его составляет 60-85%.

Анализ полученных результатов позволяет сделать следующие выводы. Температура излучателей во всех рассматриваемых случаях больше 150°C, что может ограничивать возможность их применения ввиду несоответствия нормативным требованиям. При высокой температуре поверхности излучателя достаточно сложно обеспечить допустимую облученность в обслуживаемой зоне. Чем выше температура поверхности обогревателя, тем больше лучистая составляющая (рис. 2).

Для излучателей, работающих на газообразном топливе, она составляет 75-85% общей мощности. Для электрических излучателей доля лучистой составляющей достигает 60-75%. При меньших значениях плотности теплового потока излучателя значения лучистой и конвективной составляющих примерно одинаковы. Таким образом, не весь тепловой поток инфракрасного обогревателя передается излучением, как зачастую указывается в каталогах фирм-производителей.

При этом конвективная теплота, в основном, поступает в верхнюю зону помещений, увеличивая температуру удаляемого воздуха и теплопотери через покрытие. Очевидно, что наиболее эффективны высокотемпературные системы лучистого отопления, однако их применение ограничено требованиями норм . В каталогах фирм-производителей указывается минимальная высота установки излучателя, однако решение о размещении инфракрасных обогревателей можно принимать только после выполнения расчета облученности на каждом рабочем месте и в обслуживаемой зоне.

Не стоит верить утверждениям, что все тепло от инфракрасного нагревателя передается излучением. Нужно разумно сопоставлять предлагаемые характеристики с требованиями нормативных документов для данной категории помещений и только тогда, основываясь на расчете облученности на рабочем месте, определяться с выбором системы лучистого отопления, наиболее эффективной для рассматриваемого случая.

Для оценки параметров систем лучистого отопления необходимо выполнить подробный расчет распределения лучистого тепла по внутренним поверхностям помещений, а также определять уровень облученности находящихся в них людей или животных с учетом закономерностей лучистого теплообмена. Наиболее полно закономерности лучистого теплообмена применительно к задачам строительной теплофизики рассмотрены В.Н. Богословским.

Так, в монографии «Строительная теплофизика» приведены основные зависимости и данные о распределении лучистого тепла по внутренним поверхностям ограждающих конструкций. В технической и справочной литературе, например ,имеются формулы и графики для расчета угловых коэффициентов облучения для конкретных условий взаимного расположения поверхностей, участвующих в теплообмене.

Непосредственное использование этих формул для расчетов распределения лучистого тепла по поверхностям помещений весьма трудоемкая работа даже для компьютерных расчетов. Методики расчета лучистого отопления приводятся в справочном пособии Л.Д. Богуславского и в справочнике проектировщика . Для упрощения расчетов предложены вспомогательные материалы (таблицы, графики).Однако эти методики весьма сложны и разработаны для определенных типов нагревательных панелей, параметров теплоносителя и т.д.

Поэтому применение их для практических расчетов зачастую не представляется возможным. В своих подходах мы ориентировались на полную алгоритмизацию расчетов, что позволило в итоге разработать компьютерные программы, позволяющие рассчитывать лучистый теплообмен для решения различных задач, в том числе для проектирования лучистого отопления.

Для этого были использованы приемы стереометрии, что позволило получить удобные соотношения для расчета взаимных площадей излучения через координаты центров площадок, между которыми происходит теплообмен. Кроме того, применили метод численного интегрирования, что позволяет использовать предлагаемую методику для любых случаев взаимного расположения теплоотдающих и тепловоспринимающих поверхностей. Предлагаемая авторами методика расчета лучистого отопления позволяет решить следующие задачи:

  • по заданной температуре и размерам обогревателя облученности в обслуживаемой зоне;
  • по заданной облученности определить допустимую температуру поверхности излучателя;
  • по заданной облученности и характеристикам обогревателя найти количество излучателей, ориентацию и высоту установки.

Разработанная методика апробирована при проектировании системы инфракрасного отопления Дома спорта «Снежинка» в г.Екатеринбурге .С учетом нормативных требований было определено размещение и количество панелей электрического инфракрасного отопления. Выполнена оценка воздействия лучистого теплового потока на кабели систем электроснабжения, а также обоснована возможность предотвращения конденсации влаги на строительных конструкциях при заливке льда. Разработанные рекомендации нашли подтверждение при пуске объекта.

  1. СНиП 41-01–2003.Отопление, вентиляция и кондиционирование.- М.: ФГУП ЦНС,2004.
  2. Рекомендации по применению систем обогрева с газовыми инфракрасными излучателями.- М.:АВОК, 1996.
  3. Богословский В.Н.,Пирумов А.И., Посохин В.Н. и др. Внутренние санитарно- технические устройства. В 3 ч. ч.
  4. Вентиляция и кондиционирование воздуха. Кн. 1,Изд. 4-е, перераб. и доп. - М.: «Стройиздат», 1992.
  5. Каталог оборудования FRICO. Гетеборг: изд.FRICO, 1998.
  6. Богословский В.Н.Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха). Учебник для вузов. - М.: «Высшая школа», 1982.
  7. Исаченко В.П.,Cипова В.А., Сукомел А.С.Теплопередача.- М.: «Энергия», 1981.
  8. Богуславский Л.Д. и др. Энергосбережение в системах теплоснабжения, вентиляции и кондиционироваия воздуха. Справ. пособие.- М.: «Стройиздат», 1990.
  9. БогословскийВ.Н., Крупнов Б.А., Сканави А.Н. и др. Внутренние санитарно- технические устройства. В 3 ч., ч 1.Отопление.Изд. 4-е, перераб. и доп. - М.: «Стройиздат», 1990.
  10. Шумилов Р.Н.,Толстова Ю.И., Поммер А.А.Совершенствование методики расчета лучистого отопления.Материалы международной научно- технической конференции «Теоретические основы теплогазоснабжения и вентиляции».- М.: Изд.МГСУ, 2005.
  11. Шумилов Р.Н.,ТолстоваЮ.И., Ашихмин А.А. Защита от перегрева обслуживаемых зон и строительных конструкций при инфракрасном отоплении.Предотвращение аварий зданий и сооружений: Межвуз. сб. науч. тр.- Магнитогорск: Изд.МГТУ, 2005.