Откуда брать точные эфемериды gps. Эфемериды спутника ведущая станция уточняет несколько раз в день

После заявления вице-премьера Дмитрия Рогозина о том, что Россия с 1 июня приостановит работу 11 наземных станций GPS на своей территории и что, возможно, с 1 сентября работа этих станций может быть полностью прекращена, офисные хомячки всполошились не на шутку. Как же теперь они найдут дорогу к холодильнику без GPS ? И смогут ли попасть на работу, если навигатор в машине не подскажет, где нужно повернуть?

Вместо того, чтобы разобраться в том, а зачем же вообще нужны эти станции, они начали сеять буквально панику на просторах интернета. Ведь ГЛОНАСС есть далеко не во всех телефонах и навигаторах.

Сегодня я расскажу вкратце о том, для чего используются базовые станции GPS , и действительно ли без них мир рухнет.

Во-первых разберемся из-за чего такая буча началась. Заявляения вице-премьера и дальнейшие действия являются симметричным ответом правительства России на отказ США размещать на своей территории станции коррекции сигнала российской навигационной системы ГЛОНАСС. А любая глобальная навигационная система, будь то российская ГЛОНАСС, американская GPS , европейская GALILEO, или китайская COMPASS создавались в первую очередь для применения в военных целях (грубо говоря, чтобы ракеты точнее наводить), а различные гражданские области применения — лишь побочный продукт. И в свете последних событий на политической арене, такие заявления нашего правительства являются вполне разумными.

Все, наверное, видели видеосюжеты в новостях про сверхточное оружие. Вот некоторая статистика: в операции «Буря в пустыне» лишь около 10% применявшейся боевой техники американцами использовали систему GPS для точного наведения, а уже в конфликте в Косово, GPS использовалась в 95% случаев для тех же целей.

Так для чего же нужны наземные станции?

На наземных станциях установлены приемники GPS для пассивного слежения за навигационными сигналами спутников, входящими в систему. После получения со спутника, информация передается, где впоследствии обрабатывается на главную управляющую станцию. Эти данные используются для обновления эфемерид спутников.

Эфемериды – это таблица, содержащая координаты небесного тела, приведенная в различные периоды времени за определенный период. Астрономы и геодезисты используют эфемериды для определения положений небесных тел, которые берутся в дальнейшем для вычисления координат точек на поверхности Земли.

Для нас GPS эфемериды можно сравнить с GPS спутниками, и представить их в качестве созвездия искусственных звезд. Для того, чтобы вычислить наше местоположение относительно спутников GPS , нам нужно знать их местонахождение в пространстве, другими словами, нам нужно знать их эфемериды. Существует два типа эфемерид: переданные (бортовые) и точные.

Переданные эфемериды

Переданные эфемериды поступают с GPS спутников. Они содержат информацию об элементах кеплеровской орбиты, которые позволяют GPS приемнику вычислять общеземные геоцентрические координаты каждого спутника, относительно исходной геодезической даты WGS-84 (это трехмерная система координат для позиционирования на Земле. В этой системе координаты определяются относительно центра масс Земли. Исходная дата — это дата, когда был определен центр масс ). Кеплеровские элементы состоят из информации о координатах спутников на определённую эпоху и изменений параметров орбиты от отчетного периода до момента наблюдения (принимается рассчитанная скорость изменения параметров). Наземные станции постоянно отслеживают заранее предсказанные положения орбит спутников, формируя поток эфемеридной информации. Далее, главная управляющая станция передает переданные эфемериды на спутники. Вычисленная точность переданных эфемерид составляет порядка 2.5 м и около 7 нс.

Точные эфемериды

Точные эфемериды состоят из общеземных геоцентрических координат каждого спутника, определенных в Общеземной наземной системе отчета и включают поправки часов. Эфемериды вычисляются для каждого спутника с определенным интервалом. Точные эфемериды – это продукт постобработки. Данные собираются наземными станциями и затем передаются в Международную Службу GPS , где и происходит вычисление точных эфемерид которые уже имеют точность порядка 5 см и 0.1 нс.

Отключение наземных станций GPS может отразиться лишь на точности позиционирования и вряд ли такая точность нужна для наших с вами повседневных задач. Простой обыватель, я думаю, не почувствует на себе потенциальное снижение этой точности при использовании смартфона в качестве навигатора.

Несмотря на то, что сам факт отключения базовых станций не приведет к тому, что устройства использующие систему GPS перестанут определять координаты, а лишь потенциально снизят , дальнейшим шагом теоретически может стать решение уже правительства США прекратить передачу сигнала GPS на территории РФ (просто пролетая над Россией американские спутники не будут транслировать сигнал). Конечно, это возможно. Но пока этого не произошло, и вряд ли случится завтра или через неделю. А через полгода лежащий в кармане смартфон станет уже не модным и нужно будет выбирать новый гаджет Вот тогда-то и нужно будет присмотреться к устройствам в которых есть ГЛОНАСС и я думаю, в ближайшее время их выбор только увеличится.

Точность, которую дает на сегодняшний день ГЛОНАСС несколько ниже чем у GPS , но этот разрыв сокращается с каждым новым запущенным российским спутником в рамках отечественной программы. К тому же несколько больше времени уходит на, так называемый, «холодный старт» — сигнал с первого найденного спутника в устройствах ГЛОНАСС ищется несколько дольше с точки зрения пользователя, и, на самом деле, не так уж это и страшно.

Как вы оцениваете эту публикацию?

Точность определения местоположения в навигационной системе ограничена из-за влияния различных факторов. Их можно разделить на две группы. Ошибки в расчётах местоположения спутников и влияние атмосферы (тропосферы и ионосферы) на скорость радиосигнала.

Как уже говорилось, навигационные спутники играют роль радиомаяков, передавая сигналы точного времени и свои координаты. Стоит отметить, что спутники ничего не знают о своём местоположении. Их координаты определяет сектор управления и в результате рассчитывает орбитальные характеристики – эфемериды. Эти эфемериды (набор численных коэффициентов) загружаются на спутник, который передаёт их вместе с остальной навигационной информацией. Приёмник GPS принимает сигнал со спутника и рассчитывает его координаты, используя полученный набор орбитальных коэффициентов. Эти коэффициенты (эфемериды) ведущая станция уточняет несколько раз за день по мере необходимости. Но тем не менее, расчётные координаты получаются неточными. Местоположение спутника определяется с ошибкой. Почему?

Если бы Земля имела форму шара с равномерной по глубине плотностью и других воздействий на спутник не было, то он двигался бы строго по одному и тому же эллипсу в соответствии с Первым законом Кеплера. Но форма Земли отличается от шара, кроме того, на спутник действуют Солнце и Луна, а также негравитационные факторы. Поэтому параметры эллипса непрерывно изменяются. Это приводит к ошибкам в расчётах. Вот таблица различных воздействий на спутник в порядке их убывания (А.Л. Генике, Г.Г. Побединский «Глобальные спутниковые системы …», 2004):

Таблица 1 . Влияние различных возмущений на движение навигационного спутника

Первое по списку – центральное поле Земли. Благодаря ему спутник и движется по эллипсу с ускорением 0,565 м/с 2 . Такое ускорение свободного падения на высоте 20,2 тыс. км. Гравитация – это всегда притяжение, поэтому первой (дипольной) поправки у гравитационного поля нет. Идёт сразу вторая зональная гармоника. Она вносит возмущение в 10 тысяч раз меньше: 5,3×10 – 5 м/с 2 . В результате за 1 час спутник может отклонится на 300 метров от расчётной траектории. А за 3 часа – уже на 2 км, так как ошибка возрастает нелинейно.

Гравитационное влияние Луны на порядок меньше, Солнца – ещё в 2 раза меньше. Из негравитационных воздействий на первом месте стоит солнечная радиация (солнечный ветер). Гравитационные аномалии вызваны неравномерным распределением масс внутри Земли (см. фото вверху). Они за час отклоняют спутник на 6 см. Лунные и солнечные приливы также вносят свой вклад в перераспределения масс на поверхности Земли. Несмотря на свою относительную малость, они за два дня могут отклонить спутник от расчётной орбиты на 2 метра.

Управляющий сектор ориентируется на эти данные, но не использует их в своих расчётах. Все эфемериды рассчитываются исключительно исходя из наблюдений. При расчёте орбитального движения принято считать, что спутник движется строго по эллипсу, словно бы и нет никаких возмущений. Эта орбита называется оскулирующей. Через малый промежуток времени параметры орбиты изменяются, и спутник движется по другому эллипсу. И так далее. Таким образом весь эффект от возмущений сводится исключительно к непрерывному изменению параметров оскулирующего эллипса.

Благодаря многочисленным наблюдениям за движением спутников, ведущая станция подбирает математическую модель, которая способна рассчитать это движение с наименьшими ошибками. Численные коэффициенты модели (эфемериды) регулярно обновляются и загружаются на спутники три раза в день. Кроме этого, эфемериды уточняются каждый час.

Важно отметить, что навигационная система постоянно развивается. Координаты опорных станций уточняются. Используя опорные станциями с более точными координатами, можно более точно определить эфемериды спутника и так далее.

Тем не менее, современные ошибки в определении эфемерид спутников приводят к ошибкам в расчёте их координат на уровне 10-20 метров. На первый взгляд, это кажется много. Это так, если определять координаты местоположения абсолютным (прямым) способом. Но в навигационной системе используется дифференциальный (относительный) способ определения местоположения (см. здесь). Благодаря этому способу удаётся повысить точность определения координат в сто раз и более.

Такая точность уже достаточна даже для проведения большинства геодезических работ. Но, скажем, для изучения движения земной коры, требуется ещё более высокая точность. В этих случаях используются не эфемериды, передаваемые по радиоканалу спутника, а их существенно уточнённые значения, полученные в результате последующих наблюдений. Длительные наблюдения за орбитами спутников позволяют уточнить значения эфемерид в прошлом. Эти уточнённые значения накапливаются в специальном банке, действующем в США при национальной геодезической службе (NGS).

Что такое эфемериды?

В знаменитом словаре определений Вебстера, приводится следующее определение термина эфемериды" "Эфемериды – это таблица координат небесного тела, приведенная в различные периоды времени за определенный период. Астрономы и геодезисты используют эфемериды для определения положений небесных тел, которые берутся в дальнейшем для вычисления координат точек на поверхности земли.

В общем, для нас GPS эфемериды можно сравнить с GPS спутниками, и представить их в качестве созвездия искусственных звезд. Для того, чтобы вычислить наше местоположение относительно спутников GPS, нам нужно знать их местонахождение в пространстве, другими словами их эфемериды. Существует два типа эфемерид: переданные (бортовые) и точные.

Переданные (бортовые) эфемериды

Переданные (бортовые) эфемериды, как видно из их названия, передаются непосредственно от GPS спутников. Переданные эфемериды содержат информацию об элементах кеплеровской орбиты, которые позволяют GPS приемнику вычислять общеземные геоцентрические координаты каждого спутника, относительно исходной геодезической даты WGS-84. Эти кеплеровские элементы состоят из информации о координатах спутников на определённую эпоху и изменений параметров орбиты от отчетного периода до момента наблюдения (принимается рассчитанная скорость изменения параметров). Пять станций мониторинга постоянно отслеживают заранее предсказанные положения орбит спутников, формируя поток эфемеридной информации. Далее главная управляющая станция Navstar ежедневно передает переданные эфемериды на спутники. Вычисленная точность переданных эфемерид составляет ~ 260 см и ~ 7 нс.

Точные эфемериды (Final products)

Точные эфемериды состоят из общеземных геоцентрических координат каждого спутника, определенных в Общеземной наземной системе отчета и включают поправки часов. Эфемериды вычисляются для каждого спутника с интервалом 15 мин. Точные эфемериды – это продукт постобработки. Данные собираются станциями слежения, расположенными по всей территории Земли. Далее эти данные передаются в Международную Службу GPS (IGS), где и происходит вычисление точных эфемерид. Точные эфемериды становятся доступными приблизительно через 2 недели после времени сбора данных и имеют точность менее 5 см и 0.1 нс.

Точные эфемериды можно скачать с сервера NASA:
ftp://igscb.jpl.nasa.gov/igscb/product/

Быстрые эфемериды (Rapid products)

Быстрые эфемериды вычисляются по тому же принципу, что и точные эфемериды, однако при обработке используется меньший набор данных. Быстрые орбиты, как правило, “выкладываются” на службы международных агентств на следующий день. Точность быстрых эфемерид составляет 5 см и 0.2 нс.

Быстрые эфемериды можно скачать с сервера IGS:
http://igscb.jpl.nasa.gov/components/dcnav/igscb_product_wwww.html

Предсказанные или Ультрабыстрые эфемериды (Ultrarapid products)

Ультрабыстрые эфемериды передаются, как и переданные эфемериды, но обновляются они дважды в день. Иногда их называют эфемеридами в реальном времени. Это можно объяснить тем фактом, что их используют также как и переданные эфемериды, но для приложений в реальном времени. Точность ультрабыстрых эфемерид составляет ~ 25 см и ~ 5 нс.

Ультрабыстрые эфемериды можно скачать с сервера IGS:
http://igscb.jpl.nasa.gov/components/dcnav/igscb_product_wwww.html

А нужны ли нам точные эфемериды?

Для того, чтобы ответить на этот вопрос, давайте установим связь между точностью эфемерид и точностью решения GPS вектора. Предположим, речь идет о базовой линии длиной 10 км. Мы обрабатываем линию, используя при этом, переданные эфемериды (точность 2.60 м). В этом случае, ожидаемая точность будет равна (10 км /20000 км) * 2.60м = 1.3 мм. Если длина базовой линии будет равна 100 км, ошибка возрастет до 13 мм. Эти цифры позволяют сделать вывод о том, что на коротких базовых линиях (до 100 км) использование переданных эфемерид является более чем достаточным.

Вообще, можно говорить о том, что в связи с развитием системы GPS, потребность в точных эфемеридах несколько уменьшилась. Например, еще несколько лет назад ошибка переданных эфемерид составляла 20 м, при этом ошибка измерения на 10 км базисе составила бы 1 см.

Зачем использовать точные эфемериды?

Во-первых, необходимо иметь в виду, что величины ошибок, которые приводились ранее, справедливы для линий, имеющих фиксированные решения. Однако на линиях порядка 50 км и выше, весьма трудно получить фиксированное решение, используя переданные эфемериды. Использование точных эфемерид значительно повышает шансы получить фиксированное решение.

Во-вторых, давно известно, что высота с помощью GPS определяется менее точно, чем плановые координаты. Поэтому, при работах, требующих более качественного определения высоты, рекомендуется использовать точные эфемериды.

В-третьих, надо помнить о том, что переданные эфемериды только предположение о том, где должны находиться спутники. Иногда могут возникнуть ситуации, когда в переданных эфемеридах содержатся ошибки, которые не могут не отразиться на качестве решения базовой линии. Выходом из такой ситуации, может служить использование быстрых эфемерид, спустя сутки после выполнения наблюдений.

Где я могу найти точные эфемериды?

Существует много источников, где можно бесплатно найти различные типы эфемерид. В качестве примеров, можно привести сайт Международной Геодинамической Службы (IGS):
http://igscb.jpl.nasa.gov/components/prods.html

Какой наиболее распространённый формат точных эфемерид?

Точные эфемериды доступны в двух стандартных форматах: SP3 (ASCII формат) и E18 (бинарный формат). Большинство профессиональных программ обработки GPS измерений напрямую поддерживают один из этих двух форматов (например, поддерживает оба типа точных эфемерид, прим. переводчика). При необходимости можно воспользоваться утилитой по переводу между этими двумя форматами.

Процессы, происходящие в современной технике, для пользователя загадка. Более того, зачастую пользователя они ничуть не волнуют: или не интересно, или просто все равно. Это касается и навигаторов. Включил – и знаешь свои координаты. Несколько движений пальцами – маршрут готов. Однако порою, чтоб разобраться с техническими характеристиками того же навигатора, нужно знать больше, чем необходимо просто для пользования им.

Поэтому, оговорюсь сразу: статья будет интересна тем, кого не устраивает роль рядового пользователя «черной коробочки с экраном». Тем, кто стремится изучить все пункты технической характеристики устройства перед его приобретением. Тем, кто получает удовольствие от понимания процессов, происходящих в разнообразных устройствах.

Такие люди не отвечают «не знаю» на вопросы типа: «Какой на твоем компьютере установлен процессор?». Вопрос-то, по сути, элементарный, но вы будете удивлены тем, какой процент друзей-товарищей ответ на него знает. Попробуйте!

Немного о терминах

В каждой сфере науки и техники полным-полно терминов. Термины эти звучат для непосвященных загадочно, но становятся, в целом, понятными при более пристальном рассмотрении.

В теории космической навигации также есть множество терминов. И неудивительно: эта сфера знаний связана и с движением спутников в околоземном пространстве, и с приемом-обработкой-передачей сигналов, и с их кодированием.

Терминами, которые небесполезно будет рассмотреть, являются понятия альманах и эфемериды. Почему именно эти понятия нам интересны? Да потому, что на знании этих понятий основывается понимание «холодного» и «горячего» старта навигатора.

Альманах в современной навигации и не только

Еще до начала эры космической навигации понятие альманах уже существовало. Альманахом называли справочник, который содержит основные астрономические данные – положения небесных тел и их привязку к календарю. Одним из самых старых альманахов является китайская книга Тун Син.

В наши дни назначение альманахов не изменилось. Изменилось только количество данных, которые в них содержатся, и их точность. Альманах в космической навигации – совокупность данных об основных параметрах орбит спутников в навигационной системе. Форма представления этих данных для нас, собственно, не так и важна.

Альманах содержит шесть параметров орбиты спутника на определенный момент времени. Причем каждый спутник системы имеет данные о других спутниках. Навигатор, установив связь всего с одним спутником, после получения альманаха имеет данные о параметрах орбит и других. Альманах, загруженный в память спутника, действителен 30 дней. Тем не менее уточняются эти данные чаще – раз в несколько суток, во время сеанса связи с одной из наземных станций.

Эфемериды

Кроме основных параметров орбит, навигатор получает от каждого из спутников их эфемериды, это данные, по которым вычисляются отклонения орбиты, коэффициенты возмущений и т.д. То есть с их помощью навигатор с высокой точностью может определить местоположение спутников.

Эфемериды, несущие более точные данные, устаревают гораздо скорее. Их данные активны только около 30 минут. Они также обновляются наземными станциями.

Без данных о местоположении навигационных спутников невозможно определение координат приемника. Необходимо для этого целых четыре спутника. Об особенностях включения навигатора и о «холодном», «теплом» и «горячем» старте, поговорим в следующей статье.

Что такое «холодный» и «горячий» старт навигатора?

Общий алгоритм работы навигатора

Именно общий – все до мелочей знают только разработчики. Итак, после включения навигатор начинает совершать попытки установить связь с одним из навигационных спутников.

Первый же спутник, с которым связь была установлена, передает навигатору альманах, в котором содержится информация про основные параметры орбит каждого спутника орбитальной группировки этой конкретной навигационной системы.

Одного спутника для определения координат мало. Для этого, например, в навигационной системе GPS их необходимо как минимум четыре. Каждый из этих четырех передает навигатору свои эфемериды – набор уточненных данных про свою орбиту.

В целом, ничего сложного, но вот так незаметно мы и подобрались к тому этапу, на котором будет раскрыта разница между двумя этими видами старта навигатора.

«Холодный» старт

Включив навигатор в первый раз или после длительного перерыва в его использовании, получения собственных координат придется ждать. Сколько? Зависит от многих факторов:
- от качества приемного блока навигатора;
- от количества спутников в зоне радиовидимости;
- от состояния атмосферы;
- от уровня электромагнитного шума на основных частотах.

При так называемом «холодном» старте навигатора, в его памяти вообще отсутствуют как альманах, так и эфемериды. А может, и присутствуют, но они безнадежно устарели.

В таком случае навигатор должен пройти полный цикл получения этих данных.

Алгоритм его действий примерно таков:
- установить связь с первым из найденных спутников;
- получить альманах, сохранить;
- получить эфемериды от найденного спутника, сохранить;
- установить связь еще с тремя спутниками, получить от них эфемериды, сохранить;

Немало действий, правда? На все это необходимо время. Потому старт и называют «холодным» – навигатору нужно время на «разогрев», подготовку к работе.

«Горячий» старт

Кардинально отличается от «холодного» тем, что на момент включения в памяти навигатора уже находится актуальный альманах и актуальные эфемериды. Вспоминаем, что данные альманаха действительны 30 суток, а эфемерид – 30 минут.

Значит, старт может быть «горячим» только в том случае, когда питание отключается только на весьма непродолжительное время.

Алгоритм работы навигатора значительно упростится:
- установить связь со спутниками;
- если необходимо – обновить эфемериды, сохранить;
- на основе эфемерид, зная местоположение спутников, вычислить собственные координаты.

«Теплый» старт

Кратко. Навигатор располагает актуальным альманахом, но все без исключения эфемериды устарели, значит, необходимо получить только их.

Расставим все по местам

Если расставить в порядке возрастания времени, необходимого для определения навигатором приемника после включения, получится такая последовательность: «горячий», «теплый», «холодный» старты.

Теперь характеристика навигатора «время холодного/горячего старта» не только не сможет смутить знающего человека, но и даст возможность продемонстрировать свои знания. А ведь все не так уж сложно!

В алгоритме работы навигатора при «холодном» и «горячем» старте упоминалось о вычислении навигатором своих координат.

Как навигатор определяет свои координаты?

Не раз упоминалось, что для определения навигатором своих координат, нужны четыре спутника. Почему именно четыре и какова общая схема этого процесса, попробуем разобраться прямо сейчас.

Простыми словами о сложном

Электромагнитное излучение перемещается в пространстве с конечной скоростью – со скоростью света. Исходя из этого, можно, замерив интервал между моментом начала передачи сигнала и моментом его приема, определить расстояние между передатчиком и приемником.

Навигатор, установив связь со спутниками, располагая загруженными в память альманахом и эфемеридами, принимает сигнал с меткой точного времени от каждого из спутников. По своим внутренним часам навигатор определяет время, которое потребовалось сигналу, чтоб его достичь. Зная скорость распространения сигнала и время, навигатор решает простую задачу – вычисляет расстояние, на котором он находится от спутника.

Включаем объемное мышление. Для однозначного определения положения в трехмерном пространстве относительно точек с известными координатами необходимо знать, где находятся как минимум три точки.

Зная точные координаты трех спутников в определенный момент времени (спасибо альманаху и эфемеридам) и расстояния до них, навигатор и определяет свои координаты на поверхности земного шара. Уже в привязке к двумерным координатам, принятым в картографии (долгота и широта), и к высоте над уровнем моря.

С тремя разобрались. Теперь разберемся с четвертым спутником.

Не думай о секундах свысока

А если речь идет о космической навигации и скорости света – то свысока нельзя думать даже о микросекундах. Малейшая погрешность в измерении времени прохождения сигналом расстояния от навигатора до спутника может вылиться в сотни метров, а то и в километры.

Точность измерения времени – слабое место любой навигационной системы.

На каждом из спутников установлены очень точные (и дорогие и большие) атомные часы, точность хода которых – наносекунды (это 10 –9). Навигаторы оснащены намного менее точными часами – на кварцевом генераторе.

Именно для синхронизации времени в системе навигатора - три спутника и необходим четвертый. Он синхронизирует время и сводит к минимуму погрешности, которые возникают из-за неточности измерения времени. Вернее, он заставляет спутник и навигатор в одно время генерировать одинаковый код. Код этот передается в том самом сигнале, по которому замеряется расстояние. Приняв сигнал с кодом, навигатор определяет, какое время назад он сам генерировал такой код.

Такова схема в общих чертах. На деле все гораздо сложнее: цифровой сигнал подвергается кодированию, синхронизация времени, вычисление координат спутников и своего местоположения – вовсе не простые задачи. Все усложняется еще и тем, что разработчики используют различные уловки для повышения точности измерений: помехоустойчивое кодирование, поправки для нивелирования воздействия эффекта Доплера, поправки на изменение скорости прохождения радиосигнала в тропосфере и ионосфере.

Но это уже тема не краткой поясняющей статьи, а намного более серьёзной и объемной работы.

- 28.35 Кб

Основы GPS: использование высокоточных эфемерид при обработке измерений.

Что такое эфемериды?

В знаменитом словаре определений Вебстера, приводится следующее определение термина эфемериды" "Эфемериды – это таблица координат небесного тела, приведенная в различные периоды времени за определенный период. Астрономы и геодезисты используют эфемериды для определения положений небесных тел, которые берутся в дальнейшем для вычисления координат точек на поверхности земли.

В общем, для нас GPS эфемериды можно сравнить с GPS спутниками, и представить их в качестве созвездия искусственных звезд. Для того, чтобы вычислить наше местоположение относительно спутников GPS, нам нужно знать их местонахождение в пространстве, другими словами их эфемериды. Существует два типа эфемерид: переданные (бортовые) и точные.

Переданные (бортовые) эфемериды

Переданные (бортовые) эфемериды, как видно из их названия, передаются непосредственно от GPS спутников. Переданные эфемериды содержат информацию об элементах кеплеровской орбиты, которые позволяют GPS приемнику вычислять общеземные геоцентрические координаты каждого спутника, относительно исходной геодезической даты WGS-84. Эти кеплеровские элементы состоят из информации о координатах спутников на определённую эпоху и изменений параметров орбиты от отчетного периода до момента наблюдения (принимается рассчитанная скорость изменения параметров). Пять станций мониторинга постоянно отслеживают заранее предсказанные положения орбит спутников, формируя поток эфемеридной информации. Далее главная управляющая станция Navstar ежедневно передает переданные эфемериды на спутники. Вычисленная точность переданных эфемерид составляет ~ 260 см и ~ 7 нс.

Точные эфемериды (Final products)

Точные эфемериды состоят из общеземных геоцентрических координат каждого спутника, определенных в Общеземной наземной системе отчета и включают поправки часов. Эфемериды вычисляются для каждого спутника с интервалом 15 мин. Точные эфемериды – это продукт постобработки. Данные собираются станциями слежения, расположенными по всей территории Земли. Далее эти данные передаются в Международную Службу GPS (IGS), где и происходит вычисление точных эфемерид. Точные эфемериды становятся доступными приблизительно через 2 недели после времени сбора данных и имеют точность менее 5 см и 0.1 нс.

Точные эфемериды можно скачать с сервера NASA:
ftp://igscb.jpl.nasa.gov/ igscb/product/

Быстрые эфемериды (Rapid products)

Быстрые эфемериды вычисляются по тому же принципу, что и точные эфемериды, однако при обработке используется меньший набор данных. Быстрые орбиты, как правило, “выкладываются” на службы международных агентств на следующий день. Точность быстрых эфемерид составляет 5 см и 0.2 нс.

Быстрые эфемериды можно скачать с сервера IGS:

Предсказанные или Ультрабыстрые эфемериды (Ultrarapid products)

Ультрабыстрые эфемериды передаются, как и переданные эфемериды, но обновляются они дважды в день. Иногда их называют эфемеридами в реальном времени. Это можно объяснить тем фактом, что их используют также как и переданные эфемериды, но для приложений в реальном времени. Точность ультрабыстрых эфемерид составляет ~ 25 см и ~ 5 нс.

Ультрабыстрые эфемериды можно скачать с сервера IGS:
http://igscb.jpl.nasa.gov/ components/dcnav/igscb_ product_wwww.html

А нужны ли нам точные эфемериды?

Для того, чтобы ответить на этот вопрос, давайте установим связь между точностью эфемерид и точностью решения GPS вектора. Предположим, речь идет о базовой линии длиной 10 км. Мы обрабатываем линию, используя при этом, переданные эфемериды (точность 2.60 м). В этом случае, ожидаемая точность будет равна (10 км /20000 км) * 2.60м = 1.3 мм. Если длина базовой линии будет равна 100 км, ошибка возрастет до 13 мм. Эти цифры позволяют сделать вывод о том, что на коротких базовых линиях (до 100 км) использование переданных эфемерид является более чем достаточным.

Вообще, можно говорить о том, что в связи с развитием системы GPS, потребность в точных эфемеридах несколько уменьшилась. Например, еще несколько лет назад ошибка переданных эфемерид составляла 20 м, при этом ошибка измерения на 10 км базисе составила бы 1 см.

Зачем использовать точные эфемериды?

Во-первых, необходимо иметь в виду, что величины ошибок, которые приводились ранее, справедливы для линий, имеющих фиксированные решения. Однако на линиях порядка 50 км и выше, весьма трудно получить фиксированное решение, используя переданные эфемериды. Использование точных эфемерид значительно повышает шансы получить фиксированное решение.

Во-вторых, давно известно, что высота с помощью GPS определяется менее точно, чем плановые координаты. Поэтому, при работах, требующих более качественного определения высоты, рекомендуется использовать точные эфемериды.

В-третьих, надо помнить о том, что переданные эфемериды только предположение о том, где должны находиться спутники. Иногда могут возникнуть ситуации, когда в переданных эфемеридах содержатся ошибки, которые не могут не отразиться на качестве решения базовой линии. Выходом из такой ситуации, может служить использование быстрых эфемерид, спустя сутки после выполнения наблюдений.

Где я могу найти точные эфемериды?

Существует много источников, где можно бесплатно найти различные типы эфемерид. В качестве примеров, можно привести сайт Международной Геодинамической Службы (IGS):
http://igscb.jpl.nasa.gov/ components/prods.html

Какой наиболее распространённый формат точных эфемерид?

Точные эфемериды доступны в двух стандартных форматах: SP3 (ASCII формат) и E18(бинарный формат). Большинство профессиональных программ обработки GPS измерений напрямую поддерживают один из этих двух форматов (например, Trimble Geomatics Office поддерживает оба типа точных эфемерид, прим. переводчика). При необходимости можно воспользоваться утилитой по переводу между этими двумя форматами.

Как формируется название файлов точных эфемерид?

Если Вы впервые используете точные эфемериды, имена их файлов могут показаться вам сложными и не имеющими логического построения. Однако на деле, все оказывается не таким уж сложным. Имена файлов точных эфемерид имеют вид zzznnnnx.aaa, где

zzz – имя организации (NGS, IGS и т.д.)
nnnn – порядковый номер GPS недели (например 0475)
x –день недели (воскресенье=0, суббота=6)
ааа – тип файлы (например, sp3, e18)

ГЛОБАЛЬНЫЕ СИСТЕМЫ ПОЗИЦИОНИРОВАНИЯ

1. РЕЖИМЫ ИЗМЕРЕНИЯ, ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ

Кодовый режим - это режим, изначально заложенный в систему. Сигнал каждого спутника содержит его эфемериды - данные о местоположении спутника, позволяющие вычислить координаты спутника в земной системе координат. Кроме того, кодовый сигнал содержит передаваемую каждые шесть секунд временную метку. Момент ухода временной метки со спутника, определенный по часам спутника, подписан на ней. Приемник захватывает сигнал спутника, идентифицирует спутник по коду его сигнала, считывает временную метку и определяет время t r прохождения сигнала от спутника до приемника. Это позволяет вычислить дальность от приемника до спутника. Все было бы именно так, если бы часы приемника и спутника шли синхронно. На самом деле между их показаниями в один и тот же момент времени существует ненулевая разность - относительная поправка часов. Она входит в результат определения дальности. Поэтому в данном случае дальность называют псев додальностью. Говорят, что в кодовом, навигационном режиме измеряемой величиной является кодовая псевдодальность. Поправку часов приемника относительно часов спутника на момент наблюдений определяют как неизвестную величину из обработки результатов этих наблюдений.

Таким образом, для каждого пункта имеется не три неизвестных - три координаты пункта - а четыре неизвестных: три координаты и поправка часов приемника. Следовательно, для мгновенного определения местоположения необходимо, чтобы на антенну приемника одновременно приходили сигналы не менее чем от четырех спутников системы. Созвездие спутников системы обеспечивает это требование.

Фазовый режим - это режим высокоточных геодезических измерений. В нем одновременно участвуют по крайней мере два приемника. В этом режиме получают координаты вектора базы, то есть разность координат пунктов, на которых установлены антенны спутниковых приемников. Ошибка определения вектора базы составляет от нескольких миллиметров до нескольких сантиметров. Измерения выполняют на несущей частоте сигнала спутника, освобожденного от кода процедурой квадратирования. Измеряемой величиной является мгновенная разность фаз сигнала спутника и сигнала генератора приемника. Здесь уместно сказать о терминах абсолютные и относительные определения. По более или менее сложившейся терминологии под абсолютными определениями понимают определение координат пункта, то есть работу в кодовом навигационном режиме. Под относительными определениями понимают определение местоположения одного пункта относительно другого - твердого, исходного пункта. Таков разностный фазовый режим геодезических измерений. Относительными определениями можно также назвать дифференциальный навигационный кодовый режим, когда местоположение и вектор скорости подвижного носителя определяют относительно дифференциальной станции.

Допплеровский режим, точнее режим интегрального допплера, является как бы побочным по отношению к фазовому. Допплеровская частота пропорциональна скорости изменения фазы, поэтому допплеровскую частоту получают попутно с измерением фазы, без каких-либо дополнительных затрат. Несмотря на «бесплатность» этот режим дает богатую информацию о местоположении пункта. Следует напомнить, что первые спутниковые радионавигационные системы были исключительно допплеровскими.

Как сказано, режимы наблюдений неразрывно связаны друг с другом. Геодезиста более всего интересует высокоточный фазовый режим, однако приближенные значения координат пунктов, необходимые для уравнивания, он получает из кодовых и допплеровских измерений. Перемещение по объекту и поиск исходных пунктов также очень облегчает использование кодового навигационного режима. Далее рассмотрим измеряемые величины более детально.

1.1. Кодовые псевдодальности

Каждый спутник системы излучает несущие колебания с длиной волны около 20 сантиметров, манипулированные по фазе кодовыми последовательностями. О структуре сигнала подробнее написано в разделе 3. Здесь скажем, что все спутники GPS работают на одних и тех же несущих частотах, но каждому спутнику присущ его индивидуальный код. Спутниковый приемник генерирует копии кода каждого спутника и идентифицирует спутники именно по форме кода. Сразу после включения приемника он начинает захват сигналов спутников. Другими словами, приемник выполняет корреляционную обработку сигнала спутника и генерируемых этим приемником копий кодов, перебирая эти копии. Отличие функции корреляции от нуля означает, что спутник идентифицирован, а его сигнал - захвачен.

После захвата сигнала первого же спутника приемник начинает скачивать кодовую информацию, содержащуюся в навигационном спутниковом сообщении. В частности, скачивается альманах. Об этом подробнее написано в разделе 3.2. Иногда приемник самостоятельно принимает решение перейти к скачиванию информации с другого, более «удобного», по его мнению, спутника, как правило, находящегося ближе всего к зениту пункта наблюдения. Вся процедура отражается на дисплее, оператор может это наблюдать, но не может вмешаться. После захвата сигналов достаточного количества спутников приемник начинает определять навигационные координаты своей антенны по измеренным кодовым псевдодальностям. Для определения всех трех координат антенны необходимо работать с четырьмя спутниками. Такой режим обозначают 3D (3 Dimensional) - трехмерный. В навигационных приемниках предусмотрена возможность работы в двумерном режиме 2D. Приемник, пока он успел захватить сигнал только трех спутников, определяет плановые координаты пункта. После захвата сигнала четвертого спутника приемник переходит в режим 3D.

Кодовые псевдодальности определяют из корреляционной обработки кодового сигнала спутника, и копии этого сигнала, генерируемой приёмником. С/А-кодовый и Р-кодовый сигналы спутника сопровождаются временными метками, генерируемые спутниковым стандартом частоты и времени - часами спутника. Аналогично кодовые сигналы приёмника сопровождаются временными метками, генерируемыми часами приёмника. В ходе корреляционной обработки осуществляют поиск максимума коэффициента корреляции двух сигналов. В результате получают относительную временную задержку двух сигналов как временной интервал между одноимёнными временными метками. Этот временной интервал, исправленный за задержки сигнала в атмосфере и еще за влияние ряда факторов и умноженный на скорость сигнала, дает псевдодальность. Ее вычисляют по формуле для случая однократного прохождения сигнала по дистанции. Отличие в том, что результат искажен поправкой часов приемника относительно часов спутника. По физической сути измерение кодовых псевдодальностей выполняют, реализуя временной метод измерений с кодовой модуляцией сигнала, проходящего дистанцию однократно. Зная из навигационного сообщения координаты спутников в момент наблюдений и используя измеренные псев до дальности, приемник определяет координаты антенны. Задача аналогична линейной пространственной засечке. Отличие в том, что в дополнение к координатам антенны получают поправку часов приемника. Ошибку измерений характеризует URA (User Range Accuracy) - точность измерения дальностей (до каждого спутника) для данного пользователя. Ошибка определения координат и поправки часов зависит также от геометрии наблюдений. Вся эта информация также выдается на дисплей. О геометрическом факторе написано в разделе 1.4.

Краткое описание

В знаменитом словаре определений Вебстера, приводится следующее определение термина эфемериды: "Эфемериды – это таблица координат небесного тела, приведенная в различные периоды времени за определенный период. Астрономы и геодезисты используют эфемериды для определения положений небесных тел, которые берутся в дальнейшем для вычисления координат точек на поверхности земли. В общем, для нас GPS эфемериды можно сравнить с GPS спутниками, и представить их в качестве созвездия искусственных звезд.