Беспроводные самоорганизующиеся сети. Когнитивные беспроводные самоорганизующиеся сети

Самоорганизующаяся сеть – сеть, не имеющая определенной структуры, меняющаяся и распределяющая функции между узлами при подключении нового устройства, изменении характера трафика и т.д.

2. История создания и развития

История современных самоорганизующихся сетей начинается с 1970-х годов с момента создания PRNET (Packet Radio Networks), финансированные министерством обороны США. Цель создания самоорганизующихся сетей заключалась в возможности работать в сети, получать доступ к сети Интернет в любом месте, даже в движении, не полагаясь на инфраструктуру фиксированной сети.

С развитием всепроникающих сетей возникла необходимость в использовании нового типа сетей, без устойчивой структуры и способной адаптироваться к меняющимся характеристикам каналов связи. Такие стали называть самоорганизующимися. Первые коммерческие самоорганизующиеся мобильные сети были развернуты в США и Японии в 2009-2010 годах.

Самоорганизующиеся сети в зависимости от скорости самоорганизации, доли участия в ней людей делят на целевые (ad hoc) и ячеистые (mesh) сети. В переводе с латыни «ad hoc» буквально означает «для этого, специально для этого случая». Основное отличие между ad hoc и mesh сетями состоит в том, что, как правило, ad hoc относят к терминальным сетям, a Mesh - к транзитным, хотя это деление весьма условно, но принято в настоящее время.

3. Технические характеристики

Самоорганизующаяся сеть обладает следующими характеристиками:

    Самоконфигурация – распознавание и регистрирование в сети новых подключенных устройств. При этом соседние автоматически корректируют свои технические параметры (например, мощность излучения, наклон антенны и т.д.).

    Самооптимизация – адаптация параметров устройств при изменении параметров сети: количества пользователей, уровня сигнала, уровня внешних помех и др.

    Самовосстановление – автоматическое обнаружение и устранение сбоев: перераспределение функций между устройствами при выходе из строя каких-либо узлов сети для повышения отказоустойчивости сети.

Алгоритмы маршрутизации самоорганизующихся сетей:

    Проактивная маршрутизация – наличие постоянно обновляемых полных списков адресов назначения и маршрутов до них.

    Реактивная маршрутизация – построенные маршрута по необходимости, т.е. при наличии трафика предназначенного определенному адресату, с помощью опросов соседних узлов и алгоритмов обнаружения соседей.

    Гибридная маршрутизация – сочетание элементов проактивной и реактивной маршрутизации. Т.е. хранение таблицы некоторых адресатов, и последующий их опрос по требованию по мере необходимости построения иных маршрутов.

Для организации самоорганизующейся сети чаще всего используют протоколы Bluetooth, Wi-Fi, ZigBee, для маршрутизации – AODV, SAODV, ZRP, OLSR, LAR.

4. Кейсы применения

Быстрое развертывание сенсорных сетей в чрезвычайных ситуациях: например, для поиска пострадавших, анализа масштаба бедствия и т.д. В локальных сетях (сеть HANET), например, при создании системы автоматизации зданий, домов, систем локального позиционирования (RTLS).

В транспортной сфере для системы умного транспорта и умного трафика – сети VANET. В местах массового скопления людей для разгрузки базовых станций и обеспечения связи мобильных устройств напрямую без участия базовых станций (MANET).

5. Полезные ссылки

Источники:

Если в случае «традиционной» беспроводной сети мы должны разворачивать зачастую дорогостоящую инфраструктуру базовых станций, то в случае самоорганизующихся сетей достаточно одной или нескольких точек доступа.

Суть самоорганизующихся сетей — предоставление абоненту возможности доступа к различным сетевым услугам посредством передачи и приема «своего» трафика через соседних абонентов.

Самоорганизующиеся сети связи — сети с изменяемой децентрализованной инфраструктурой. В общем случае данные сети имеют такие преимущества, как широкое покрытие и теоретически широкая абонентская база без большого количества дорогостоящих базовых станций и увеличения мощности излучаемого сигнала.

Если говорить простыми словами, структура простейшей самоорганизующейся сети представляет из себя большое количество абонентов на некоторой площади, которую упрощенно можно назвать площадью покрытия сети, и одну или несколько точек доступа к внешним сетям. Каждое из абонентских устройств, в зависимости от его мощности, обладает своим радиусом действия. Если абонент, находясь «на периферии» посылает пакет абоненту, находящемуся в центре сети или на точку доступа, происходит так называемый многоскачковый процесс передачи пакета через узлы, находящиеся на пути заранее проложенного маршрута. Таким образом можно сказать, что каждый новый абонент за счет своих ресурсов увеличивает радиус действия сети. Следовательно, мощность каждого отдельного устройства может быть минимальной. А это предполагает как меньшие стоимости абонентских устройств, так и лучшие показатели безопасности и электромагнитной совместимости.

На данный момент широким фронтом идут исследования и применения самоорганизующихся сетей в следующих сферах:

Военная связь;

Интеллектуальные транспортные системы;

Локальные сети;

Сенсорные сети;

Обо всех этих направлениях — в следующих статьях.

В настоящее время существует несколько «базовых» технологий для самоорганизующихся сетей:

1. Bluetooth

Самоорганизующиеся на основе Bluetooth состоят из ведущих и ведомых устройств (эти роли могут совмещаться), способных передавать данные как в синхронном, так и в асинхронном режимах. Синхронный режим передачи предполагает прямую связь между ведущим и ведомым устройствами с закрепленным каналом и временными слотами доступа. Данный режим используется в случае ограниченных по времени передач. Асинхронный режим предполагает обмен данными между ведущим и несколькими ведомыми устройствами с использованием пакетной передачи данных. Используется для организации пикосетей. Одно устройство (как ведущее, так и ведомое) может поддерживать до 3-х синхронных соединений.

В синхронном режиме максимальная скорость передачи данных равна 64 кбит/с. Максимальная скорость передачи в асинхронном режиме составляем 720 кбит/с.

Достоинства сетей на базе Bluetooth:

    возможность быстрого развертывания;

    сравнительно малое энергопотребление абонентских устройств;

    широкий спектр поддерживающих эту технологию устройств.

Недостатки сети:

    небольшой радиус действия (радиус действия одного абонентского устройства составляет 0.1 — 100 м);

    малые скорости передачи данных (для сравнения: в сетях WiFi этот показатель составляет 11 — 108 Мбит/с);

    нехватка частотного ресурса.

Возможно, последняя проблема будет решена с выходом устройств Bluetooth 3.0, где предполагается возможность использовать альтернативные протоколы уровней MAC и физического с целью ускоренной передачи данных профилей Bluetooth (AMP). В частности могут быть использованы протоколы стандарта 802.11.

Исходя из вышеприведенного, можно заключить, что сети на основе Bluetooth применимы лишь в местах большого скопления людей (например, в центрах городов, небольших офисах, магазинах). Например подобная сеть может служить для организации видеонаблюдения на небольшом объекте.

Сети стандарта 802.11 изначально были задуманы как способ замены проводных сетей. Однако, относительно высокие скорости передачи (до 108 Мбит/с) делают перспективным возможное применение в тех самоорганизующихся сетях, в которых необходимо передавать большие объемы информации в реальном времени (например, видеосигнала).

2007 году впервые была выпущена черновая версия стандарта 802.11s, определяющего основные характеристики самоорганизующихся сетей на основе WiFi.

В отличии от традиционных сетей WiFi, в которых существует только два типа устройств - «точка доступа» и «терминал», стандарт 802.11s предполагает наличие так называемых «узлов сети» и «порталов сети». Узлы могут взаимодействовать друг с другом и поддерживать различные службы. Узлы могут быть совмещены с точками доступа, порталы же служат для соединения с внешними сетями.

На основе уже существующих стандартов 802.11 можно строить MANET-сети (мобильные самоорганизующиеся сети), отличительной чертой которых можно назвать большую зону покрытия (несколько квадратных километров).

Проблемы, требующие особого внимания при дальнейшем развитии самоорганизующихся сетей на базе WiFi можно разделить на следующие классы:

Проблемы пропускной способности;

Проблемы масштабируемости сетей.

3. ZigBee

Стандарт 802.15.4 (ZigBee) описывает низкоскоростные сети связи малого радиуса действия с маломощными передающими устройствами. Предусмотрено использование трех диапазонов частот: 868-868.6 МГц, 902-928 МГц, 2.4-2.4835 ГГц.

В качестве метода доступа к каналу используется DSSS с различными длинами последовательности для диапазонов 868/915 и 2450 МГц .

Скорости передачи данных варьируются от 20 до 250 кбит/с.

Согласно стандарту сеть ZigBee поддерживает работу с топологиями типа «звезда» и «каждый с каждым».

Существуют два варианта приемопередающих устройств: полнофункциональные (FFD) и неполнофункциональные (RFD). Коренное отличие этих устройств состоит в том, что FFD могут устанавливать прямую связь с любыми устройствами, а RFD — только с FFD.

Сеть ZigBee может состоять из нескольких кластеров, образованных устройствами FFD.

Сети стандарта ZigBee могут работать в режиме mesh. При этом предполагается, что каждый узел сети (узел сети образует устройство FFD, RFD работают в качестве т.н. сенсоров) постоянно следит за состоянием соседних узлов, обновляя при необходимости свои маршрутные таблицы.

В отличии от всех предыдущих вариантов сетей ad hoc, ZigBee рассчитана на низкие скорости передачи данных и проблемы возможности увеличения таковых не существует.

В век коммуникационных устройств, социальных сетей и прочих сервисов сообщение на расстоянии и мгновенный обмен информацией кажутся чем-то само собой разумеющимися. Однако возможность оставаться на связи именно в те моменты, когда коммуникационная инфраструктура оказывается нарушенной, приобретает особое значение. Например, на Гаити после недавнего катастрофического землетрясения главным средством связи оказались спутниковые телефоны, предоставленные службами помощи. Но парализовать инфраструктуру сотовой связи могут не только масштабные природные катаклизмы — даже банальное отключение электропитания способны превратить наши мобильные устройства в бесполезные игрушки.
В подобных случаях все более привлекательным вариантом становится создание беспроводной самоорганизующейся (или динамической, или ad hoc) сети. Такая структура формирует сама себя всякий раз, когда специально запрограммированные мобильные телефоны или иные устройства связи оказываются в пределах прямого доступа. Каждое из них выполняет в динамической сети функции и передатчика, и приемника, а также, что очень важно, служит ретрансляционным пунктом для всех ближайших приспособлений. Устройства, расстояние между которыми превышает дальность прямой связи, могут поддерживать связь между собой, если им готовы помочь другие приспособления, находящиеся между ними, передавая сообщения по цепочке, как ведра при пожаре. Иными словами, каждый узел в сети служит и коммуникатором для собственных сообщений, и элементом инфраструктуры для сообщений других узлов.
Помощь при бедствиях — лишь одна из возможных функций самоорганизующихся сетей. Они будут полезны везде, где создание стационарной базы будет слишком долгим, трудным или дорогим. Военные вложили большие деньги в разработку самоорганизующихся систем для применения на поле боя. Динамические сети в вашем доме позволят бытовым приборам находить друг друга и устанавливать связи между собой, избавив от необходимости протягивать провода в спальню или кабинет. Удаленные поселения и малообеспеченные соседи могли бы через беспроводные ad hoc сети получить широкополосный доступ в Интернет. Ученые, исследующие экологические микросреды на верхушках деревьев или гидротермальные источники на дне океана, смогли бы размещать датчики в исследуемых точках, не заботясь о том, будут ли они «слышать» друг друга, или о том, как информация попадет в их компьютер.
Разработка таких сетей ведется уже больше трех десятилетий, но лишь в последние годы успехи теории сетей привели к созданию первых рабочих крупномасштабных систем. В Сан-Франциско новая компания Meraki Network подключила 400 тыс. жителей города к Интернету через свою систему Free the Net, созданную на основе технологии беспроводных самоорганизующихся сетей. Компоненты Bluetooth в сотовых телефонах, компьютерные игровые системы и ноутбуки обеспечивают связь между собой без проводных соединений или специального конфигурирования при помощи технологий динамических сетей. Самоорганизующиеся сети развернуты в ряде удаленных или неблагоприятных мест для сбора информации от маломощных беспроводных датчиков. Для того чтобы подобные сети получили широкое распространение, требуется еще ряд технических прорывов, но на нескольких направлениях успехи уже достигнуты.

Сотовая сеть
Беспроводные самоорганизующиеся сети пока еще редко встречаются. Чтобы понять причину их медленного внедрения, полезно рассмотреть различия между такими новыми технологиями, как сотовые телефоны и Wi-Fi. Когда вы звоните другу по мобильнику, в беспроводной связи задействован только каждый из соединяемых телефонов и ближайшая к нему вышка сотовой связи (базовая станция). Вышки неподвижны и связаны между собой обширной сетью проводов и кабелей. В беспроводных локальных сетях, в частности Wi-Fi, также используются неподвижные антенны и проводные соединения.
Такой подход имеет как достоинства, так и недостатки. Для передачи информации необходима энергия, и в классических беспроводных сетях она запасается в аккумуляторах мобильных устройств (например, телефонов и ноутбуков), а максимально возможная часть коммуникационной нагрузки возлагается на стационарную инфраструктуру, питаемую от электросети. Ширина беспроводной полосы — также фиксированный и ограниченный ресурс. В традиционных беспроводных сетях ширина полосы экономится за счет передачи большей части информации по проводным каналам. Использование стационарной инфраструктуры позволяет создавать большие и наиболее надежные телефонные и WiFi-коммуникационные ресурсы в областях, где потребность в них наиболее велика.
Однако использование фиксированной инфраструктуры делает эти сети уязвимыми: их работа нарушается в случае отключения электропитания и других сбоев даже при исправности отдельных телефонов и других мобильных устройств в зоне действия сети. Надежность динамических сетей намного выше. Если один мобильный прибор отключается, остальные видоизменяют сеть таким образом, чтобы в возможно большей степени компенсировать выбывший элемент. С подключением и отключением устройств сеть подстраивается и «вылечивается» сама.
Но такая перенастройка не дается даром. Сеть должна передавать информацию таким образом, чтобы сообщение могло быть реконструировано даже в том случае, если в ходе передачи послания какие-то звенья цепи связи между отправителем и адресатом прекратят работу. Система должна определять оптимальный путь доставки сообщения адресату даже при условии, что отправляющее устройство не имеет возможности определить местонахождение адресата. Кроме того, сеть должна справляться с неизбежными шумами от множества устройств, одновременно передающих сообщения.

Беспроводные самоорганизующиеся сети (другие названия: беспроводные ad hoc сети, беспроводные динамические сети) -- децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать данные предназначенные другим узлам. При этом определение того, какому узлу пересылать данные, производится динамически, на основании связности сети. Это является отличием от проводных сетей и управляемых беспроводных сетей, в которых задачу управления потоками данных выполняют маршрутизаторы (в проводных сетях) или точки доступа (в управляемых беспроводных сетях).

Первыми беспроводными самоорганизующимися сетями были сети «packet radio» начиная с 1970-ых годов, финансируемые DARPA после проекта ALOHAnet.

Применение: Минимальное конфигурирование и быстрое развёртывание позволяет применять самоорганизующиеся сети в чрезвычайных ситуациях таких как природные катастрофы и военные конфликты.

В зависимости от применения беспроводные самоорганизующиеся сети могут быть разделены на:

мобильные самоорганизующиеся сети

беспроводные ячеистые сети

беспроводные сенсорные сети

Основные принципы беспроводных Ad-hoc сетей :

  • - Беспроводные сети делятся на две категории -- сети типа Infrastructure (инфраструктурные) и сети типа ad-hoc (специализированные). Для объединения нескольких компьютеров в инфраструктурную сеть используются маршрутизаторы или групповые пункты доступа. В сети ad-hoc не используются маршрутизаторы и групповые пункты доступа. Она состоит из компьютеров, которые осуществляют обмен данными непосредственно друг с другом.
  • - Ad-hoc сети - это множество беспроводных мобильных узлов связи (станций, пользователей), образующих динамическую автономную сеть при помощи полностью мобильной инфраструктуры. Узлы общаются друг с другом без вмешательства централизованных точек доступа или базовых станций, поэтому каждый узел действует и как маршрутизатор, и как конечный пользователь.
  • - Примером может служить соединение нескольких компьютеров беспроводным способом без точки доступа. Нередко такой способ соединения используется на выставках, в конференц-залах.
  • - В Интернете маршрутизаторами в пределах центральных областей сети владеют хорошо известные операторы, и поэтому предполагается некоторая степень доверия к ним. Но это предположение больше не справедливо для Ad-hoc сетей, т.к. ожидается, что все узлы, входящие в сеть, принимают участие в маршрутизации.

Режим IBSS : - Режим IBSS, также называемый ad-hoc, предназначен для соединений точка-точка. На самом деле существуют два типа режима ad-hoc. Один из них является режимом IBSS, называемый также режимом ad-hoc или IEEE ad-hoc. Этот режим определён стандартами IEEE 802.11. Второй режим называется демонстрационным режимом ad-hoc, или Lucent ad-hoc (или, иногда неправильно, режимом ad-hoc). Это старый, существовавший до появления 802.11, режим ad-hoc, и он должен использоваться только для старых сетей.

Шифрование: - Шифрование в беспроводной сети имеет важное значение, потому что у вас нет больше возможности ограничить сеть хорошо защищённой областью. Данные вашей беспроводной сети вещаются по всей окрестности, так что любой заинтересовавшийся может их считать. Вот здесь используется шифрование. Шифруя данные, посылаемые в эфир, вы делаете их прямой перехват гораздо более сложным для всех любопытных.

  • - Двумя наиболее широко применяемыми способами шифрования данных между вашим клиентом и точкой доступа являются WEP и ip-sec:
  • - WEP. WEP является сокращением от Wired Equivalency Protocol (Протокол Соответствия Проводной сети). WEP является попыткой сделать беспроводные сети такими же надёжными и безопасными, как проводные.
  • - IP-sec. ip-sec является гораздо более надёжным и мощным средством шифрования данных в сети. Этот метод определённо является предпочтительным для шифрования данных в беспроводной сети.

Утилиты: - Имеется несколько утилит, которые можно использовать для настройки и отладки беспроводной сети:

Пакет bsd-airtools

  • - Пакет bsd-airtools представляет собой полный набор инструментов, включая инструменты для проверки беспроводной сети на предмет взлома WEP-ключа, обнаружения точки и т.д.
  • - Утилиты bsd-airtools можно установить из порта net/bsd-airtools.

Утилиты wicontrol, ancontrol и raycontrol

Это инструменты, которые могут быть использованы для управления поведением адаптера беспроводной связи в сети. Wicontrol выбирается, тогда когда адаптером беспроводной сети является интерфейс wi0. Если установлено устройство беспроводного доступа от Cisco, этим интерфейсом будет an0, и тогда будет использоваться ancontrol

Поддерживаемые адаптеры: Точки доступа

Единственными адаптерами, которые на данный момент поддерживаются в режиме BSS (как точка доступа), являются те устройства, что сделаны на основе набора микросхем Prism 2, 2.5 или 3).

Клиенты 802.11a и 802.11g

  • - К сожалению, все еще много производителей, не предоставляющих схематику своих драйверов сообществу open source, поскольку эта информация считается торговым секретом. Следовательно, у разработчиков операционных систем остается два варианта: разработать драйверы долгим и сложным методом обратного инжиниринга, или использовать существующие драйверы для платформ Microsoft® Windows.
  • - Благодаря усилиям Билла Пола (wpaul),существует »прозрачная» поддержка Network Driver Interface Specification (NDIS). FreeBSD NDISulator (известный также как Project Evil) преобразует бинарный драйвер Windows так, что он работает так же как и в Windows. Эта возможность всё ещё относительно нова, но в большинстве тестов она работает адекватно.

Базовая инфраструктура современного Интернета, как известно, управляется и поддерживается десятком организаций, часть из которых подконтрольны правительству США. Далеко не всем по нраву такое положение вещей, и потому уже в течение нескольких лет IT-специалисты обсуждают альтернативные способы организации глобальных информационных сетей.

Существует две основных угрозы для безопасного информационного обмена в электронных сетях: это несанкционированный доступ к приватных данным и вмешательство в работу оборудования и устройств с целью нарушить их активность и даже вывести их из строя.

Возможный ответ на эти угрозы заключается в распространении нового типа телекоммуникаций - независимых, децентрализованных сетей, каждое устройство в которых является полноправным участником и несет свою долю ответственности за функционирование сети. Такой тип информационных сетей называется AHN (ad hoc network).

Главная проблема, которая раньше препятствовала развертыванию подобных сетей в глобальном масштабе, происходила из низкой производительности устройств и «узких» каналов связи: маршрутизация и передача необходимой для работы ad hoc-сети данных отнимает системные ресурсы и предъявляет высокие требования к пропускной способности канала, связывающего устройства между собой. Сегодня множество устройств лишены этих недостатков, а значит в ближайшие годы следует ожидать появления экспериментальных ad hoс-сетей, состоящих из тысяч устройств.

А через пару десятилетий беспроводные, или мобильные ad hoc-сети (MANETs, Mobile ad hoc networks) вполне могут стать необходимым условием для безопасной работы будущих транспортных систем, которым предстоит объединить огромное число роботизированных автомобилей, самолетов и поездов. Каждое транспортное средство в такой системе будет получать навигационную и другую информацию напрямую от своих соседей: так можно обеспечить надежность и непрерывность связи для автономного транспорта.

Беспроводные самоорганизующиеся сети (MANET- Mobile Ad-Hoc Networks) представляют архитектуру построения мобильных радиосетей, которая предполагает отсутствие фиксированной сетевой инфраструктуры (базовых станций) и централизованного управления. Особую привлекательность эти сети приобрели с появлением беспроводных стандартов и сетевых технологий (Bluetooth, Wi-Fi, WiMAX). На основе уже существующих стандартов 802.11 и 802.16 можно строить беспроводные самоорганизующиеся сети городского масштаба, отличительной чертой которых можно назвать большую зону покрытия (несколько квадратных километров).

Беспроводная самоорганизующаяся сеть (БСС) характеризуется динамическими изменениями топологии, ограниченной пропускной способностью, ограниченной мощностью батарей (аккумуляторов) в узлах, неоднородностью ресурсов узлов, ограниченной безопасностью и др Однако в последнее время БСС-сети стали использовать в интеллектуальных транспортных системах и для дома (HANET - Home AdHoc Network), для сетей небольших офисов, для совместных вычислений компьютеров, расположенных на небольшой территории. Самоорганизующиеся сети (Ad-Hoc сети) могут быть классифицированы согласно их применению: - мобильные беспроводные самоорганизующиеся сети (Mobile Ad-hoc Networks, MANET); - Беспроводные mesh-сети (Wireless Mesh Networks, WMN);

Мобильная беспроводная самоорганизующаяся сеть (MANET), которую иногда называют мобильной mesh-сетью, является самонастраивающейся сетью, которая состоит из мобильных устройств. Все узлы используют для связи беспроводные соединения (рис. 1.8).

Рис. 1.8. Пример архитектуры БСС-сети

Все устройства в БСС-сети постоянно перемещаются, а следовательно, в сети постоянно меняются связи. Каждый узел должен выполнять функции маршрутизатора и принимать участие в ретрансляции пакетов данных. Главная задача в создании такой сети - сделать так, чтобы все устройства могли постоянно поддерживать актуальную информацию для правильной маршрутизации трафика. БСС-сеть также можно разделить на несколько классов:

Vehicular Ad Hoc Network (VANET) - Ad-Hoc-сеть, которая используется для связи транспортных средств друг с другом, а также для их соединения с придорожным оборудованием;

Intelligent vehicular Ad-Hoc network (InVANET) - своего рода искусственный интеллект, который помогает управлять автомобилем в разных непредвиденных ситуациях;

Internet Based Mobile Ad hoc Network (iMANET) - БСС-сеть, которая соединяет мобильные узлы с фиксированными Internet-шлюзами.

Беспроводные mesh-сети - это особый вид Ad-Hoc-сетей, который имеет более спланированную конфигурацию. Mesh-сети состоят из клиентов, маршрутизаторов и шлюзов (рис. 1.9). Основное отличие состоит в том, что беспроводные узлы не перемещаются в пространстве во время работы. Основное отличие между MANET и Mesh-сетями состоит в том, что, как правило, MANET - относится к терминальной сети, т.е. к сети без транзитных функций, а Mesh-сети - к транзитной сети, хотя деление это весьма условно, но принято в настоящее время. В соответствии с более сложными функциями Mesh-сети при ее построении тоже различают родительские и дочерние сети Internet.


Рис. 1.9. Пример беспроводной mesh-сети

На данный момент наблюдается огромный научный и прикладной интерес к созданию самоорганизующихся самовосстанавливающихся сетей .

Как было упомянуто выше, одним из наиболее актуальных кандидатов для реализации когнитивных беспроводной сетей считают: беспроводные самоорганизующиеся сети.

Рамминг (Ramming) в утверждает, что для БСС-сети требуется новый тип технологии организации сети, называемый когнитивной технологией. Он в подбор утверждает, что такая сеть должна понимать задачи приложения, а приложение способно понять возможности сети в любой момент времени. Это позволило бы сети, посредством изучения основных требований приложения, использовать новые возможности и динамически выбирать удовлетворяющие этим требованиям протоколы сети.

Как основное положение когнитивной теории, когнитивный цикл применяется в сетях для распознавания образов. Степень возможности распознавания образов узлом зависит от его логического положения и уровня расположения в сети. Исходя из этого, подобно БСС-сети, когнитивная сеть может рассматриваться в качестве динамической интегрирующейся сети. Поэтому возможно применять когнитивную технологию в БСС-сетях, что, следовательно, приводит к развитию БСС-сетей.

Когнитивная беспроводная самоорганизующаяся сеть - естественная конечная точка развития современной БСС-сети. Однако когнитивные сети реагируют намного быстрее, чем самоорганизующиеся сети, поскольку они должны быть способны изучать и планировать и, следовательно, существует большая потребность в самоанализе. Можно было бы утверждать, что полностью функционирующая когнитивная сеть является естественным развитием БСС-сети.

Рассмотрим простейший пример управления маршрутизацией в когнитивной беспроводной самоорганизующейся сети. В качестве примера необходимости адаптации всей системы рассматривается сеанс передачи данных в самоорганизующейся сети между исходящим узлом S1 и узлом назначения D1, как показано на рис. 1.10. Исходящий узел S1 не имеет достаточной мощности для прямой передачи данных в D1. Поэтому он должен передать данные в узел назначения только через промежуточные узлы, такие как R1 и R2.

Рис. 1.10. Управление маршрутизацией в когнитивной Ad-Нос сети

Предполагается, что цепь из источника до назначения имеет высокую вероятность успешной передачи. Уровень маршрутизации будет определять маршруты на основе минимального количества промежуточных узлов, которые в данном случае включают в себя либо R1, либо R2. Узел S1 выполняет адаптацию канального уровня для выбора R1 или R2 на основе отношения сигнала к шуму и наименьшей вероятности нарушения связи. С точки зрения канального уровня в узле S1 это обеспечивает самую высокую вероятность того, что переданные пакеты прибудут к ретрансляционным узлам корректно. Однако без дополнительной информации этот выбор не гарантирует вероятность доставки передаваемых данных от S1 до D1 .

В отличие от адаптации отдельных элементов сети, для расчета полной вероятности нарушения связи на пути от узла S1 до D1 через узлы R1 и R2 когнитивная сеть использует информацию от всех узлов. Это показывает преимущество более глобального подхода, но у когнитивной сети есть и другое преимущество: ее способность к обучению. Предположим, что механизм познания измеряет пропускную способность от источника до пункта назначения, чтобы оценить эффективность предыдущих решений, а узлы S1 и S2 направляют свой трафик в обоих направлениях через узел R2, поскольку это удовлетворяет требованию минимальной вероятности нарушения связи. Теперь предполагается, что R2 переполняется из-за большого объема трафика, поступающего из S2. Это становится очевидным в процессе изучения пропускной способности на основании сообщений узлов S1 и S2. Механизм изучения признает, что предшествующее решение больше не оптимально, и познавательный процесс направляется на выработку другого решения. Когнитивная сеть явно не знает, что есть переполнение в узле R2, потому что мы не включали эту информацию в качестве наблюдения. Тем не менее, сеть в состоянии сделать вывод, что могут возникнуть проблемы из-за снижения пропускной способности, а затем реагировать на переполнение, возможно, перенаправлением трафика через узлы R1 и (или) R3. Этот пример иллюстрирует потенциал когнитивных сетей в оптимизации непрерывной работы и способность реагировать на непредвиденные обстоятельства. Протокол маршрутизации когнитивной сети основан не на чисто алгоритмическом подходе и способен выбрать эффективный операционный режим даже в непредвиденных ситуациях.

Библиографический список

1- Wyglinski A.M., Nekovee M., Hou Y.T. (Editors). Cognitive radio communications and networks: principles and practice, Academic Press | 2009, 736 pages.

2- Комашинский В. И. Системы подвижной радиосвязи с пакетной передачей информации./ В.И. Комашинский, А.В. Максимов // СПБ.: Изд-во Лема, 2006. - 238с.

3- Cordeiro C. IEEE 802.22: the first worldwide wireless standard based on cognitive radio / С Cordeiro, K. Challapali, D. Birru, Sai Shankar // First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), Nov. 2005. P.328-337.

4- Баранов В.П. Синтез микропрограммных автоматов. М.: Нолидж, 1997.-376 с.

5- Кучерявый А. Е. Самоорганизующиеся сети и новые услуги / А.Е. Кучерявый // Электросвязь, № 1 2009. С. 19-23.

6- Ramming С. Cognitive networks. Proceedings of DARPA Tech Symposium, March 2004. pp.9-11 .